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We have obtained static and spherically symmetric solutions of the gravitational
field equations for isotropic and anisotropic distribution of matter in the context
of higher-dimensional bimetric theory of gravitation under the assumption that
the physical metric admits a one-parameter group of conformal motion. The solu-
tions agree with Einstein’s general relativity for physical systems such as the solar
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1. Introduction

The isotropic fluid configurations in general relativity have been studied in sev-
eral investigations due to their possible application in astrophysical studies of mas-
sive objects. Anisotropy in fluid pressure can be introduced by a solid core, by
the pressure of type-3A superfluid or by other physical effects. Bowers and Liang
[2] have investigated the possible importance of local anisotropies for a relativis-
tic fluid sphere by generalizing the equation of hydrostatic equilibrium to include
the effects of local anisotropy. Their study shows that anisotropy may have non-
negligible effects on such parameters as maximum equilibrium mass and surface
red-shift. Consenza et al. [3], Bayin [4], Krori et al. [5], Maharaj and Maartens [6]
have obtained different exact solutions of Einstein’s field equations describing the
interior gravitational field of an anisotropic fluid sphere. Herrera et al. [7] studied
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the consequences of inclusion of a one-parameter group of conformal motions of
anisotropic matter in Einstein’s general relativity and obtained analytical solutions
of field equations for static and spherically-symmetric distributions of isotropic and
anisotropic matter.

The purpose of the present paper is to obtain static spherically-symmetric so-
lutions of field equations in higher-dimensional bimetric theory of gravitation pro-
posed by Rosen [8,9] for isotropic and anisotropic distributions of matter when the
physical metric admits a one-parameter group of conformal motion. The solutions
agree with the higher-dimensional Einstein’s general relativity for physical system
known in the Universe, such as the solar system.

2. Field equations

Bimetric theory of gravitation is a modification of Einstein’s general relativity
theory involving a background metric in addition to the usual physical metric. The
background metric corresponds to the space-time of constant curvature and can
be throught of as the geometry which the universe would have in the absence of
matter (a de Sitter Universe). The physical metric gµν as in conventional general
relativity and there is a background metric γµν having the curvature tensor Pλµνσ

given by

Pλµνσ =
1

a2
(γµνγλσ − γµσγλν). (1)

The field equations of bimetric general relativity are taken to be the same as in
general relativity, except for the fact that ordinary derivatives of physical metric
are replaced by covariant derivatives with respect to the background metric. It was
found by Rosen [10] that these equations can be written in the form of Einstein’s
field equations but with an additional term on right-hand side

Gµν = Sµν − 8πTµν , (2)

where Gµν is the Einstein’s tensor, Tµν is the energy stress tensor and

Sµν =
3

a2
(γµν −

1

2
gµνgαβγαβ). (3)

For a higher-dimensional spherically-symmetric system we take the physical metric
as

ds2 = eνdt2 − eλdr2
− r2dΩ2, (4)

where

dΩ2 = dθ2
1 + sin2 θ1dθ2

2 + sin2 θ1 sin2 θ2dθ2
3 + . . . +

[

n−1
∏

i=1

sin2 θi

]

dθ2
n,
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and λ and ν are the functions of r alone. An anisotropic spherically symmetric
matter distribution Tµν is given by

Tµν = (ρ + P⊥)UµUν − P⊥gµν + (Pr − P⊥)χµχν , (5)

where Uµ is the (n+2)-velocity, χµ a unit space-like vector orthogonal to Uµ, ρ the
energy density, Pr the radial pressure in the direction of χµ and P⊥ the pressure
orthogonal to χµ. In the co-moving system, we choose

Uµ = (U0, 0, 0, 0, . . . (n + 1) times) ,
χµ = (0, χ1, 0, 0, . . . n times) .

(6)

From UµUµ = −χµχµ = 1, we obtain

U0 = e−ν/2, χ1 = e−λ/2.

The non-vanishing components of energy momentum tensors are

T 0
0 = ρ, T 1

1 = −Pr, T 2
2 = T 3

3 = . . . = Tn+1
n+1 = −P⊥. (7)

If we take the background metric γµν , in a static de Sitter form, the line element
is given by

dσ2 =

(

1 −
r2

a2

)

dt2 −

(

1 −
r2

a2

)−1

dr2
− r2dΩ2. (8)

For r ≪ a, this line element on the flat space has the form

dσ2 = dt2 − dr2
− r2dΩ2. (9)

Let us consider Sµν in a region where r ≪ a. If we neglect the quantities which are
small everywhere, we can write for a non-vanishing component

S0
0 = −S1

1 = . . . = −Sn+1
n+1 =

3

2a2
e−ν . (10)

Following the procedure of Rosen [10], field equations (2) for r ≪ a are

e−λ

[

n(n − 1)

2r2
−

nλ′

2r

]

−
n(n − 1)

2r2
=

3

2a2
e−ν

− 8πρ, (11)

e−λ

[

n(n − 1)

2r2
+

nν′

2r

]

−
n(n − 1)

2r2
= −

3

2a2
e−ν + 8πPr, (12)

e−λ

[

ν′′

2
+

ν′2

4
−

(n − 1)(λ′ − ν′)

2r
−

λ′ν′

4
+

(n − 1)(n − 2)

2r2

]

(13)

−
(n − 1)(n − 2)

2r2
= −

3

2a2
e−ν + 8πP⊥,
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where the primes denotes derivatives with respect to r. It is very difficult to obtain
the solution of equations (11) – (13) due to the non-linearity of the field equations.
Therefore, one has to make certain simplifying assumptions to derive useful results.
In the next section, we assume that the physical metric (4) admits a one-parameter
group of conformal motions and obtain analytical solutions of the field equations
for static and spherically-symmetric fluid distributions of isotropic and anisotropic
matter.

3. Conformal motions and solutions of field equations

The space-time admits a one-parameter group of conformal motions generated
by the vector field ξµ if

Lξgµν = gµν,σξσ + gaνξa
,µ + gµaξa

,ν = ψgµν , (14)

where the commas denote the covariant differentiation with respect to γµν , and ψ
is an arbitrary function of coordinates. If the vector field ξµ is collinear with χµ,
then by virtue of spherical symmetry and independence of the metric tensor on the
time-like coordinates, the most general form of ξµ is

ξµ = F (r)χµ. (15)

From Eqs. (4), (14) and (15), we obtain (see Appendix)

ψ = Fν′e−λ/2 = 2F ′e−λ/2 =
2Fe−λ/2

r
. (16)

A straightforward calculation gives

e−λ =
ψ2

4C2
2

, eν = C1r
2, F = C2r, (17)

where C1 and C2 are constants of integration. Without loss of generality, we can
take C1 = 1. Substituting (17) into Eqs. (11) – (13), we get

8πρ =
−nψψ′

4C2
2r

−
n(n − 1)ψ2

8C2
2r2

+
n(n − 1)

2r2
+

3

2a2

1

r2
, (18)

8πPr =
n(n + 1)ψ2

8C2
2r2

−
n(n − 1)

2r2
+

3

2a2

1

r2
, (19)

8πP⊥ =
nψψ′

4C2
2r

+
n(n − 1)ψ2

8C2
2r2

−
(n − 1)(n − 2)

2r2
+

3

2a2

1

r2
. (20)
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If we wish to match any solution to the exterior metric on the boundary of the
sources, the radial pressure should vanish for some finite values of the radial coor-
dinate (say, r = r0). The vanishing of the radial pressure gives

ψ2(r0) =
8C2

2

n(n + 1)

[

n(n − 1)

2
−

3

2a2

]

. (21)

After integrating (18), we get the total mass M with in the sphere of radius r0. By
using (18) and assuming ψ(0) < ∞, it can be shown that

M

r0
=

n

2(n + 1)

[

n − 1 +
3

a2

]

. (22)

We observe from (22) that all solutions obtained from Eqs. (18) – (20) have the
same gravitational potential, provided that the boundary is the surface of vanishing
radial pressure for any choice of the function bounded in the interval 0 ≤ r ≤ r0.
If we take ψ = 2, then from Eqs. (18) – (20) we obtain

ρ =
1

8π

[

n(n − 1)

2
−

n(n − 1)

2C2
2

+
3

2a2

]

1

r2
, (23)

Pr =
1

8π

[

n(n + 1)

2C2
2

−
n(n − 1)

2
+

3

2a2

]

1

r2
, (24)

P⊥ =
1

8π

[

n(n − 1)

2C2
2

−
(n − 1)(n − 2)

2
+

3

2a2

]

1

r2
. (25)

From (24), it is clear that the radial pressure does not vanish for any finite value of
r. Hence, the solution cannot be matched to any exterior metric. From Eqs. (23) –
(25), we obtain the relation

nP⊥ − (n − 1)Pr = ρ. (26)

This relationship between the stresses and the density has been established by
Herrera et al. [7] for n = 2 when the space-time admits the special conformal
motion for which the function ψ satisfies the condition

ψ,µ,ν = 0. (27)

For ψ = 2, Eq. (27) is satisfied identically. When C2 =
√

n/(n − 1), the equation
of state becomes

ρ = Pr = P⊥, (28)

which is widely used in general relativity to obtain stellar and cosmological models
for ultradense matter.
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3.1. Perfect-fluid solution

From the condition Pr = P⊥ and using Eqs. (19) and (20), we get the equation

rψψ′ +
4(n − 1)C2

2

n
− ψ2 = 0, (29)

the general solution of which is given by

ψ2 = C2
2

[

4(n − 1)

n
+ Cr2

]

, (30)

where C is the constant of integration. If we wish to match the solution to exterior
metric on the boundary r = r0, the radial pressure must be zero, which implies
that

C =
−4

n(n + 1)

[

n − 1 +
3

a2

]

1

r2
0

. (31)

The metric of the solution can be written as

ds2 = r2dt2 −

[

n(n − 1)

2
−

Mr2

r3
0

]−1

dr2
− r2dΩ2. (32)

The expressions for pressure and density are

ρ =
1

16π

[

n − 1 +
3

a2

] [

1

r2
+

1

r2
0

]

, (33)

Pr = P⊥ =
1

16π

[

n − 1 +
3

a2

] [

1

r2
−

1

r2
0

]

. (34)

From Eqs. (33) and (34) it is clear that

ρ ≥ Pr ≥ 0. (35)

3.2. An anisotropic solution

We choose

ψ2 = C2
2

[

Cr2 +
4(n − 1)

n

]

+ C2
2H, (36)

where H is a constant which measures the anisotropy. Substituting (36) into Eqs.
(18) – (20), we get

8πρ = −
n(n + 1)

8
C +

[

n − 1

2
+

3

2a2
−

n(n − 1)

8
H

]

1

r2
, (37)
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8πPr =
n(n + 1)

8
C +

[

n − 1

2
+

3

2a2
+

n(n + 1)

8
H

]

1

r2
, (38)

8πP⊥ =
n(n + 1)

8
C +

[

n − 1

2
+

3

2a2
+

n(n − 1)

8
H

]

1

r2
. (39)

The radius of sphere r0 is given by

r2
0 = −

4

n(n + 1)C

[

n − 1 +
3

2a2
+

n(n + 1)

4
H

]

, C < 0. (40)

The metric of the solution becomes

ds2 = r2dt2 −

[(

n − 1

n
+

H

4

)

−

(

n − 1 +
3

a2
+

n(n + 1)

4
H

)

r2

r2
0

]−1

dr2

−r2dΩ2, (41)

which possesses vanishing radial-pressure surface. For positiveness of energy-density
and the pressure (ρ + pr ≥ 0), we must have

−
4

n

(

n − 1 +
3

a2

)

≤ H ≤ 0. (42)

4. Conclusion

In the present paper we have obtained static spherically symmetric solutions
for isotropic and anisotropic distribution of matter in the contexts of higher-
dimensional bimetric theory of gravitation. It should be stresses that the assump-
tion Pr = 0 has been made for the sake of mathematical simplicity. The solutions
represent the gravitational field near the source of gravitation. For a physical sys-
tem, the term 3e−ν/(2a2) in the field equations (11) – (13) is negligible. This means
that in such a case, the present equations give the agreement with the Einstien’s
field equations. The present results reduces to the Einstein general relativity, ob-
tained by Herrera et al. [7] for n = 2. The interesting feature of the solution is that
the energy density is larger than any of the stresses within the sphere.

Appendix

Higher dimensional spherically symmetric space time is

ds2 = eνdt2 − eλdr2
− r2dΩ2. (43)

Here
g00 = eν , g11 = −eλ, g22 = −r2, g33 = −r2 sin2 θ1,

g44 = −r2 sin2 θ1 sin2 θ2, . . . , gnn = −r2
n−2
∏

i=1

sin θi.
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The corresponding flat space-time of (43) is

dσ2 = dt2 − dr2
− r2dΩ2 (44)

Here
γ00 = 1, γ11 = −1, γ22 = −r2, γ33 = −r2 sin2 θ1,

γ44 = −r2 sin2 θ1 sin2 θ2, . . . , γnn = −r2
n−2
∏

i=1

sin θi.

The non-vanishing Christoffel symbols for the metric (44) are

Γ1
22 = −r,

Γ2
12 = Γ3

13 = Γ4
14 = · · · = Γn

1n = cot θ1,

Γ3
23 = Γ4

24 = Γ5
25 = · · · = Γn

2n = cot θ2,

Γ4
34 = Γ5

35 = Γ6
36 = · · · = Γn

3n = cot θ3,

Γ2
33 = − sin θ1 cos θ1, Γ3

44 = − sin θ2 cos θ2,

Γ4
55 = − sin θ3 cos θ3, . . . , Γn

(n+1)(n+1) = − sin θn−1 cos θn−1,

Γ1
33 = −r sin2 θ1, Γ1

44 = −r sin2 θ1 sin2 θ2, . . . ,Γ1
(n+1)(n+1) = −r

n−1
∏

i=1

sin2 θi,

Γ2
44 = − sin θ1 cos θ1 sin2 θ2, Γ2

55 = − sin θ1 cos θ1 sin2 θ2 sin2 θ3, . . . ,

Γ2
(n+1)(n+1) = − sin θ1 cos θ1

n−1
∏

i=2

sin2 θi,

Γ3
55 = − sin θ2 cos θ2 sin2 θ3, Γ3

66 = − sin θ2 cos θ2 sin2 θ3 sin2 θ4, . . . ,

Γ3
(n+1)(n+1) = − sin θ2 cos θ2

n−1
∏

i=3

sin2 θi,

Γ4
66 = − sin θ4 cos θ4 sin2 θ5, Γ4

77 = − sin θ3 cos θ3 sin2 θ4 sin2 θ5, . . . ,

Γ4
(n+1)(n+1) = − sin θ3 cos θ3

n−1
∏

i=4

sin2 θi.

A one-parameter group of conformal motions generated by the vector field ξµ is
admitted by a space-time if

ψgµν = gµν,σξσ + gaνξa
,µ + gµaξa

,ν . (45)

The function ξµ is defined as

ξµ = F (r)χµ. (46)
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Equation (45) is written as

ψgµν =

(

∂gµν

∂xσ
− gµαΓα

νσ − gναΓα
µσ

)

ξσ + gaν

[

∂ξa

∂xµ
+ ξαΓa

αµ

]

+gaµ

[

∂ξa

∂xν
+ ξαΓa

αν

]

,

(i) ψg00 =

(

∂g00

∂xσ
− g0αΓα

0σ − g0αΓα
0σ

)

ξσ + ga0

[

∂ξa

∂x0
+ ξαΓa

α0

]

+ga0

[

∂ξa

∂x0
+ ξαΓa

α0

]

=

(

∂g00

∂x1
− g0αΓα

01 − g0αΓα
01

)

ξ1 + g00

[

∂ξ0

∂x0
+ ξ1Γ0

10

]

+g00

[

∂ξ0

∂x0
+ ξ1Γ0

10

]

=

(

∂g00

∂x1

)

ξ1.

That is,

ψ(eν) =
∂

∂r
(eν) · F (r)e−λ/2 = ν′eνF (r)e−λ/2,

ψ = ν′F (r)e−λ/2,

(ii) ψg11 =

(

∂g11

∂xσ
− g1αΓα

1σ − g1αΓα
1σ

)

ξσ + ga1

[

∂ξa

∂x1
+ ξαΓa

α1

]

+ga1

[

∂ξa

∂x1
+ ξαΓa

α1

]

=

(

∂g11

∂x1
− g1αΓα

11 − g1αΓα
11

)

ξ1 + g11

[

∂ξ1

∂x1
+ ξ1Γ1

11

]

+g11

[

∂ξ1

∂x1
+ ξ1Γ1

11

]

=

(

∂g11

∂x1

)

ξ1 + 2g11
∂ξ1

∂x1
.

That is,

ψ(−eλ) =
∂

∂r
(−eλ)F (r)e−λ/2 + 2(−eλ)

∂

∂r
[F (r)e−λ/2],

ψ = 2F ′(r)e−λ/2,

(iii) ψg22 =

(

∂g22

∂xσ
− g2αΓα

2σ − g2αΓα
2σ

)

ξσ + ga2

(

∂ξa

∂x2
+ ξαΓa

α2

)

+ga2

(

∂ξa

∂x2
+ ξαΓa

α2

)

FIZIKA B 12 (2003) 4, 257–266 265



khadekar et al.: anisotropic fluid distribution in higher-dimensional . . .

=

(

∂g22

∂x1
− g22Γ

2
21 − g22Γ

2
21

)

ξ1 + 2g22(ξ
1Γ2

12) =

(

∂g22

∂x1

)

ξ1.

That is,

ψ(−r2) =
∂

∂r
(−r2)F (r)e−λ/2,

ψ =
2F (r)e−λ/2

r
.

Similarly, we obtain

ψgnn =
∂gnn

∂x1
ξ1

⇒ ψ =
2F (r)e−λ/2

r
. (47)
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ANIZOTROPNA RASPODJELA TVARI U ROSENOVOJ
VIŠEDIMENZIJSKOJ TEORIJI GRAVITACIJE

Dobili smo statička sferno simetrična rješenja jednadžbi gravitacijskog polja za
izotropnu i neizotropnu raspodjelu tvari, na osnovi vǐsedimenzijske bimetrijske
teorije gravitacije, uz pretpostavku da fizička metrika dopušta jedno-parametarsku
grupu konformnog gibanja. Rješenja se slažu s Einsteinovom općom relativnošću
za sustave kao što je Sunčev sustav. Ovaj je rad proširenje ranijeg rada Shri Rama
i Pandeya za četiridimenzijski prostor-vrijeme.
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