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The four-body equations of Alt, Grassberger and Sandhas are solved for a system
of four nucleons, using realistic NN interactions in channels 1S0,

3S1−
3D1,

1P1,
3P0,

3P1 and 3P2. The results of the calculation are compared with data for the
reactions dd → dd, dd → p3H and n3H → n3H. The calculations indicate that the
nucleon-nucleon p-waves have a strong effect on 4N observables, but one finds some
disagreement with data that indicates the need for a 3N force or new 2N+3N force
models.
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1. Introduction

In a recent review article on the three-nucleon continuum [1], one finds that n–d
elastic observables (cross sections, vector and tensor polarizations) are insensitive
to the choice of realistic NN potential. Beyond the persistent Ay discrepancy at
low energy, the agreement between calculations and data is excellent in the energy
range up to 65 MeV in the elastic channel. In the present work, we extend our
understanding of realistic NN interactions by testing them in the four-nucleon con-
tinuum where one expects the observables to be more sensitive to the spin structure
of the NN force and its off-shell dependence. Our main goal is to calculate both
isospin I = 0 and I = 1 four-nucleon observables in order to understand the low-
energy spectrum of such systems, and identify possible failures that may shed light
on the NN interaction one uses.

The starting point involves the solution of the equations of Alt, Grassberger
and Sandhas [2] for the transition operators involving all (2)+(2) and (3)+1 chan-
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nels. For the local NN potentials, such equations are three-vector-variable integral
equations which, after partial wave decomposition, reduce to a set of coupled equa-
tions in three continuous variables. Similar equations were recently solved for 4He
[3] and n3H elastic scattering [4] below three-body breakup threshold, requiring
more than one hundred hours of single processor super-computing time to handle
large-dimension matrices (n > 106). Since scattering calculations require a great
number of channels, we follow an approach based on the separable representation
of subsystem amplitudes in order to reduce the equations to two or one continuous
variable. Although the number of effective 1 + (3) channels increases by a factor
of three or four, there is a net gain due to the reduction in the dimensionality of
the equations and the internal sum of two- and three-body subsystem channels in
the kernel of the equations, leading to matrices that are three orders of magnitude
smaller. The integral equations we use are the same as in Ref. 5 and result from
the modified AGS equations [6] after one has: (a) represented the original NN t-
matrix by an operator of rank one; (b) represented the resulting 3N t-matrix by
a finite-rank operator and taken as many terms as needed for convergence. Since
in the modified AGS equations, the 2 + 2 subamplitudes are expressed in terms
of a convolution integral involving two non-interacting pair-propagators, as first
proposed by Fonseca [7], the sole approximation in this approach involves a rank
one representation of the 2N t-matrix which may be obtained from the well-known
method of Ernest, Shakin and Taylor [8]. The multi-term representation of the
3N t-matrix is done using the EDPE method developed by Sofianos, McGurk and
Fiedeldey [9]. This latter approximation for the 3N t-matrix is well under control
since one may compare the finite-rank approximation with the original t-matrix
results for the 3N observables (cross sections and analyzing powers), and check the
convergence rate of 4N observables for increasing rank of the 3N representation.

This method was first used in Ref. 5 to calculate the binding energy of 4He and
later confirmed to be accurate by the exact work of Kamada and Glöckle [10]. More
recently [11], the results of our calculations for n3H elastic scattering were shown
to agree with the results of the Grenoble groups [4], for both Malfliet-Tjon and
Argonne V14 potentials taken in 2N partial waves with j ≤ 1+ (1S0,

3S1−
3D1).

2. Results

The four-nucleon calculations, we present here, make use of the Paris, Bonn-
A, Bonn-B and Argonne V14 potentials in channels 1S0,

3S1−
3D1,

1P1,
3P0,

3P1

and 3P2. The first two channels correspond to including all 2N partial waves with
j ≤ 1+, while the first five channels to those with j < 1. As mentioned before, the
sole approximation is the use of a rank-one EST expansion of the respective 2N
t-matrix in each partial wave. Independently of the number of 2N partial waves
that are included for a given NN interaction, one needs to set upper limits for
a given subsystem of quantum numbers in order to reach a converged 4N result.
In particular, one has to decide the largest 3N total angular momentum J to be
included and the rank of the corresponding EDPE expansion. Since preliminary
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work was first presented in Ref. 12, we do not show here how the 4N results converge
with the rank “r” in the EDPE expansion of the 3N t-matrix. Instead, we show
in Fig. 1 how dd → p3H and dd → dd observables change with the number of 3N
subamplitudes for increasing 3N total angular momentum J . The N-N potential is
Bonn-B in channels j ≤ 1+ and all 4N observables are calculated using four-nucleon
amplitudes with the total angular momentum up to J = 6, in all corresponding
1 + 3 and 2 + 2 channels with the relative orbital angular momentum L ≤ 5. The
3N subamplitudes for a given J are calculated using all underlying 3N channels
with N – (2N) orbital angular momentum L ≤ 3 and fixed rank “r” equal six for
J ≤ 3/2, four for J = 5/2 and two for J ≥ 7/2.
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Fig. 1. dd – p3H (left) and dd – dd (right) observables for Bonn-B potential in
channels j ≤ 1+ as we increase the number of 3N subsystem amplitudes from one
(J = 1/2+) to ten (J ≤ 9/2). The deuteron laboratory energy is Ed = 6.1 MeV
and the experimental points are from Ref. 13.

From Fig. 1 one learns that 3N quantum numbers other than the triton
(J /=1/2+) are extremely important to the build up of 4N observables, even at
this low energy. This effect is well known [14] and results from the importance of
p-wave N – (2N) partial waves to four-particle scattering. Due to the presence of
the NN tensor-force, relative N-(2N) d-waves are also strengthened. For this reason,
in order to obtain converged 4N results, we include all J up to 7/2+.

Since n3H – n3H is an isospin I = 1 reaction, one also needs to include I = 3/2
3N subamplitudes in addition to I = 1/2. A similar study indicates that all J up
to 5/2+ with I = 3/2 are needed for convergence. The net effect of adding 3N
subamplitudes with higher J or I is shown in Fig. 2 for n3H – n3H observables,
using Argonne V14 potential in channels j ≤ 1+.
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Having fixed all upper limits on 3N and 4N quantum numbers needed for con-
vergence, we now explore the underlying physics by changing the N – N interaction
and increasing the number of 2N partial waves included in order to account for the
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Fig. 2. n3H – n3H observables for Argonne V14 potential in channels j ≤ 1+ as
we increase the number of 3N subamplitudes from one (J = 1/2+, I = 1/2) to
twelve (J ≤ 7/2+, I = 1/2;J ≤ 5/2+, I = 3/2). The neutron laboratory energy is
En = 3.2 MeV.
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Fig. 3. dd – p3H (left) and dd – dd (right) observables at Ed = 6.1 MeV for different
realistic interactions in partial waves j ≤ 1+ (1S0,

3 S1−
3D1). The experimental

points are from Ref. 13.
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full wealth of the interaction in terms of its spin structure.

The first step is shown in Fig. 3 where dd – p3H and dd – dd observables
are calculated for different NN potentials taken in 2N partial waves with j ≤ 1+.
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Fig. 4. n3H – n3H differential cross section at En = 3.5 MeV for different realistic
interactions in partial waves j ≤ 1+. The experimental points are from Ref. 15.
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Fig. 5. Total neutron cross section versus energy for both AV14 (stars) and Malfliet-
Tjon (circles) potential. The experimental points are from Ref. 16. The results of
an exact Faddeev-Yakubovsky calculation are shown for comparison [4,11].
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It is interesting to note that inspite of the well-known differences between these
interactions, ranging from on-shell fitting to different 2N data (p – p versus n – p),
to off-shell missmatch due to choice of underlying physics input (virtual bosons,
form factors and nucleonic resonances), and triton binding, the results are very
similar but in disagreement with the data. The same disagreement shows up in
n3H – n3H elastic scattering as shown in Fig. 4 for the differential cross section
at En = 3.5 MeV and in Fig. 5 for the total neutron cross section. Both Bonn-
B and AV14 miss the data points at the peak of the resonance region, while a
pure model potential such as Malfliet-Tjon follows closely the experimental total
cross section. Although in Figs. 3 – 5 most of the disagreement may be attributed
to the lack of higher N – N partial waves or use of rank-one EST representation
of the N-N t-matrix, the purpose of these simplified calculations is threefold: a)
to allow benchmark comparisons with other groups; b) to show that most realistic
interactions behave in a similar way vis-a-vis the data; c) to set a framework through
which one may be able to identify the contribution of higher N – N partial waves to
4N observables in order to learn about the spin structure of the NN interaction and
its influence on the spectrum of the 4N system. The results of the first benchmark
calculation [11] show that, at these energies, the rank one EST representation of the
N – N t-matrix is a very good approximation. In Fig. 5, the exact work of Ciesielski
et al. [4,11] is represented by the dashed line for AV14 and the long dashed line
for Malfliet-Tjon potentials. Although no exact solution exists at present for the
dd – dd and dd – 3H observables, we also expect our method to be adequate.

The second step involves adding higher NN partial waves. This is shown in Fig.
6 for dd – dd and dd – p3H and in Fig. 7 for n3H – n3H, leading to a remarkable
but, in some cases, not sufficient improvement vis-a-vis the data. In all cases, we
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Fig. 6. dd – p3H (left) and dd – dd (right) observables at Ed = 6.1 MeV for Bonn-B
potential in NN partial waves ranging from j ≤ 1+ to j ≤ 1+3P2. The data points
are from Ref. 13.
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use the Bonn-B potential with all partial waves j ≤ 1 plus an uncoupled 3P2. Un-
like d – p tensor observables, all vector and tensor 4N observables are sensitive
to NN p-waves, as noted in Fig. 6. Both iT11 in dd – p3H and T20 in dd – dd
show remarkable improvements when NN p-waves are added, particularly iT11 in
dd – p3H. Nevertheless, other observables, such as T20 in dd – p3H, remain largely
unexplained. As for T22 in dd – dd, recent measurements [17] indicate that the data
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Fig. 7. n3H – n3H differential cross section (left) and analysing power iT11 (right)
at En = 6 MeV for Bonn-B potential in NN partial waves j ≤ 1+ and j ≤ 1+3P2.
The effect of changing the upper limit on N – (2N) and N-(3N) or (2N)-(2N) orbital
angular momentum is also shown. The experimental points are from Refs. 18 and
19.
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tentials taken with different number of NN partial waves. The data are from Ref.
16.
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do not go as far down as plotted here, which, if confirmed, creates a new challenge
for the theory. It is also worth noting that the same calculation produces dd – p3H
tensor observables that are one order of magnitude bigger than dd – dd results.
Nevertheless, the largest shift due to NN p-waves is observed in Fig. 7 where
the calculated experimental differential cross section and analysing power iT11 at
En = 6 MeV move towards the data points. This is again confirmed in Fig. 8 for
the total cross section as depicted by the squares (ArgonneV14) and the triangles
(Bonn-B). To our knowledge, this is the first time NN p-waves can be directly
associated to a major change (> 10%) in a few-nucleon cross section. Although NN
p-waves are small, their effect in N – (3N) L = 1 phases gets amplified through the
N-(2N) L = 1 subamplitudes which are known to be responsible for the rise of the
total neutron cross section in this energy range.
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Fig. 9. Differential cross section for dd – p3H at Ed = 6.1 MeV for both Bonn-B
and Paris potentials taken in NN partial waves j ≤ 1+3P2. The crosses are exper-
imental points from Ref. 13.

Finally, in Figs. 9 – 11, we show all dd – p3H and dd – dd observables for Bonn-
B and Paris potentials with all p-waves included. Although one finds that the 4N
scattering observables are more sensitive to the 2N input than 3N observables,
there are no dramatic differences that may dictate a preference between potentials.
Everywhere one finds discrepancies that may be attributed to the lack of higher
partial waves (3F2,

1D2 or 3D2), higher rank in the NN t-matrix representation,
possible failures of the method used to expand 3N subamplitudes and absence of
3N forces. Although the effect of adding higher partial waves is currently under
investigation, we expect their contribution to be small, at least when compared
with the p-waves already included. Higher rank in the NN t-matrix respresentation
is bound to introduce changes in the 4N observables, but from the benchmark work
already performed, it may not be responsible for large effects; on the contrary, we
believe the dominant physics at this energy to be well represented by the rank one
representation of the NN t-matrix in each partial wave jp. Given the strong relation
between the triton binding energy and n – 3H scattering length, the 3N force is

160 FIZIKA B 8 (1999) 1, 153–164



fonseca: use of realistic interactions to calculate nt-nt, . . .

going to have a very strong effect on the n – 3H total cross section at threshold, as
already shown [11] for a very simple 3N force model. Nevertheless, in the resonance
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Fig. 10. dd – p3H tensor analysing powers at Ed = 6.1 MeV for Bonn-B and Paris
potentials taken in NN partial waves j ≤ 1+3P2.
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Fig. 11. dd – dd tensor analysing powers at Ed = 6.1 MeV for Bonn-B and Paris
potentials taken in NN partial waves j ≤ 1+3P2
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region that dominates the n – 3H elastic scattering around En = 3.5 MeV, the 3N
force has no effect. At present, there are no 4N scattering calculations that make
use of realistic 2N + 3N force models, but if one takes into consideration that the
3N force plays a marginal role in low-energy 3N physics, it is reasonable to admit
that 4N observables may show little sensitivity to its presence, at least not more
than we already observe when we change the 2N forces.

3. Conclusions

We have solved AGS equations for all 1 + 3 and 2 + 2 four-nucleon amplitudes
and calculated low-energy observables for nt → nt, dd → dd and dd → p3H. For the
NN interaction, we use the Paris, Bonn-A, Bonn-B and Argonne V14 potentials.
The corresponding NN t-matrix is represented as a rank one operator through the
EST expansion method. The results show the shortcomings of 2N force models in
describing 4N observables. If present findings are confirmed by future calculations,
one may be confronted with very interesting new physics such as the need for new
3N force models and/or a consistent description of 2N and 3N interactions. For now
two very important conclusions may be drawn from the present work: 1) the small
p-wave channel components of the NN interaction play a crucial role, not only in
determining the size of vector and tensor observables in 4N scattering, but also
the magnitude of the total cross section for n3H → n3H reaction in the resonance
domain; 2) all tested realistic NN potentials are equally good or bad, depending on
the observable one focus once attention.
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RAČUN OPSERVABLI nt – nt, dd – pt i dd – dd RASPRŠENJA PRIMJENOM
REALISTIČNIH MED– UDJELOVANJA

Rješavaju se jednadžbe Alta, Grassbergera i Sandhasa za četiri tijela za sustav četiri
nukleona uz primjenu realističnih pretpostavki o NN-med–udjelovanju u kanalima
1S0,

3S1−
3D1,

1P1,
3P0,

3P1 i 3P2. Ishodi računa uspored–uju se s podacima za
reakcije dd → dd, dd → p3H i n3H → n3H. Računi pokazuju da nukleon – nukleon
p-valovi snažno utječu na 4N opservable, ali neka neslaganja s podacima ukazuju
na mogućnost pogreške u poznavanju stvarnih med–udjelovanja.
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