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The general formulation of a technically advantageous method to find the ground
state solution of the Schrödinger equation in configuration space for systems with
the number of particles A greater than 4 is presented. The wave function is ex-
panded in pair-correlated hyperspherical harmonics beyond the lowest-order ap-
proximation and then calculated in the Faddeev approach. A recent efficient re-
cursive method to construct antisymmetric A–particle hyperspherical harmonics is
used. The accuracy is tested for the bound-state energies of nuclei with A = 6 to
12 using the effective V4 potentials. The high quality of the results thus obtained
becomes evident from a comparison with other approaches.
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1. Introduction

Few-body nuclei with the number of nucleons A between 5 and 16 are a partic-
ularly interesting testground for nuclear theory. They lie in the range between the
classical few–nucleon systems (A ≤ 4) and the smallest nuclei that can be described
realistically starting from a mean-field ansatz. Therefore, one hopes that these nu-
clei could build a link between few–body and many–body physics. At present, quite
an effort is made for a better understanding of these intermediate systems. Specific
interest is devoted to halo-nuclei, but also the less-exotic nuclei in this mass range
are investigated thoroughly. Many theoretical techniques for the calculation of their
ground states have been imported from the classical few–body field, where there has
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been a considerable progress in the last years. In fact, for the classical few-body sys-
tems, several rather different approaches have been developed and proven to lead
to precise results. These methods include solutions of the Faddeev–Yakubovsky
equation, variational (VMC) and Green function Monte Carlo (GFMC), the hy-
perspherical harmonic (HH) ansatz, the stochastic variational (SVM), as well as
coupled-cluster and resonating-group methods.

For nuclei with A > 4, a similar level of precision has not yet been achieved.
Here GFMC has led to the most accurate results. Exact bound-state energies with
realistic NN interactions have been calculated for A ≤ 9 [1]. Unfortunately, the
wave functions cannot be generated with this method. Recently, a very powerful
tool to calculate few-body wave functions has been developed with the SVM ansatz
[2,3]. However, this approach is probably most suitable for systems with A < 8. For
nuclei with A ≥ 8, rather good results have been obtained in the integro–differential
equation approach (IDEA) [4], which uses the HH expansion, and with a variational
method, the translational-invariant-configuration-interaction method (TICI) [5,6],
which is inspired by the coupled-cluster method.

In this contribution, we summarize the results of a new method [7], which
combines the main ideas of the HH expansion, the pair-correlation ansatz and
the Faddeev approach to calculate wave functions of few-body systems. Including
higher-order HH functions, we make the nontrivial step beyond the IDEA approach.
The difficulty in constructing antisymmetric A–particle HH is overcome by the use
of a recently developed very efficient recursive method [8], where HH basis functions
are constructed, belonging to well defined irreducible representations (irreps) of the
orthogonal group of kinematic rotations and the symmetric group.

2. General formulation of the method

It is well known that finding a solution of the Schrödinger equation in terms of
the uncorrelated hyperspherical harmonics can be very difficult, because the number
of basis functions increases very fast with K, and in order to have a real convergence,
one must use a huge number of basis functions [9]. Therefore, a correlation function
is advantageous to give the wave function a proper behaviour [10]. Its advantages
have been extensively verified for classical few-body systems, reaching a high level
of accuracy [11,12]. A general ansatz within the two-body correlation scheme is the
Jastrow factor

Ψ =
∏

i<j

fijΦ , (1)

where fij is a two-body correlation function. However, the use of the Jastrow ansatz
leads to 3A − 3 dimensional integrals. Therefore, it is more convenient to use the
so-called pair-correlation ansatz

Ψ =
∑

i<j

χijΦ, (2)
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because in this case one can use the Faddeev approach which leads to at most
four-body integrals. In the Faddeev approach, the Schrödinger equation is replaced
by equivalent equations,

(T − E)Ψij = −VijΨ , (3)

where Ψ =
∑

i<j Ψij . In order to speed up the convergence, these equations can

be further modified [4] to include the contribution of the hypercentral potential
explicitly. The hypercentral potential Vhc(ρ) is defined as the projection of the two-
body interaction on the subspace of the lowest-order hyperspherical state. With
the help of Vhc(ρ), we can rewrite Eq. (3) as follows

[

T +
A(A − 1)

2
Vhc(ρ) − E

]

Ψij = −[Vij − Vhc(ρ)]Ψ . (4)

Motivated by the pair-correlation ansatz (2), we shall expand the Faddeev ampli-
tude Ψij in the following way,

Ψij =
∑

Kνp

RKνp(ρ)HKν(Ω, s1..sA, t1..tA)χp(zij) , (5)

where HKν are the antisymmetric hyperspherical-spin-isospin functions, RKνp are
the hyperradial functions, and χp(zij) is a polynomial of order p, with zij related
to the relative two-body distance through

zij = rij/ρ . (6)

Substituting the expansion, Eq. (5), into Eq. (4), after integration over the
hypersphere Ω, we get a set of coupled equations for RKνp. These equations are
solved numerically to yield the binding energy and ground-state wave function of
the system.

3. Discussion of the results

The present method becomes more and more complex as the number of fermions
increases. Therefore in this work, we consider only central NN potentials. We
present results for 6 and 8 nucleons interacting via the Volkov [13] (VV), the Afnan–
Tang [14] (S3), the modified S3 potential [15] (MS3), the Brink–Boeker [16] (B1)
and the Malfliet–Tjon [17] potentials (MT–I/III and MT–V). The Coulomb poten-
tial is neglected.

Our numerical results are presented in Table 1 for the 6 nucleon system and in
Table 2 for the 8 nucleon system.

For 6Li, the calculations include irreps of the kinematical group O5 with only
one line and the irreps [42] and [33] of the permutation group. We compare our
values with recent accurate variational results [2] available for some of these central
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potentials. One can notice that with the VV potential, one reaches convergence
faster than with other potentials. The result for the binding energy starts oscillating
around the asymptotic value. It also compares nicely to the variational result of
Ref. 2. The other potentials show a tendency to convergence even if Kmax is not
large enough to establish it. The MT potentials seem to lead to a more rapid
convergence than S3 and B1. The differences may be due both to the fact that the
limiting value has not yet been reached and to the missing irreps of the permutation
group. The two-line irreps of the orthogonal group are of little importance. This
has been checked for the 8 particle case, where they give rather small contributions.

TABLE 1. Binding energies of the six-nucleon system 6Li, (L, S)Jπ = (0, 1)1+,
interacting via various NN potentials. NHH represents the number of hyperspherical
harmonic states.

Kmax NHH B1 MT–I/III MTV S3 VV

2 1 30.99 30.15 62.45 62.76 66.10

4 4 37.82 34.67 63.27 64.45 66.53

6 12 39.11 35.43 64.10 66.49 66.63

8 31 39.61 35.91 64.55 67.18 66.57

SVM [2] - - 66.30 70.65 66.25

TABLE 2. Binding energies of eight–nucleon system 8Be, (L, S)Jπ = (0, 0)0+,
interacting via various NN potentials. Also given are results from Ref. 6 with state
independent TICISI and state dependent TICISD correlations.

Kmax NHH B1 MT–I/III MTV MS3 VV

4 1 56.71 52.82 134.29 31.19 147.42

6 4 65.39 59.31 137.72 38.08 148.70

8 15 70.03 60.64 137.80 42.11 148.49

TICISI 49.18 46.67 129.25 26.26

TICISD 61.30 52.67 130.23 37.30

The calculations for 8Be include only the irrep (400) of the kinematical group
O7 and irreps with at most 3 rows of the permutation group. Here the comparison
is made with the TICI results [6], which, using the variational principle, leads to the
highest binding energy to date. In all cases, our results for the binding energy are
somewhat larger. They show characteristics similar to the six-body case. Again, one
sees that the VV potential result presents small oscillations around the convergent
value and that the rather hard core MT potentials seem to give values closer to
convergence than B1 or MS3. From the comparison between the TICI results with
and without state-dependent correlations, one can infer that for the MT potentials,

184 FIZIKA B 8 (1999) 1, 181–186



barnea et al.: hyperspherical ground state wave functions for . . .

state-independent correlations already give rather satisfying results, while state-
dependent correlations are more important for B1 and MS3. Since our correlations
are state independent, one could expect such a different convergence behaviour as
found in Table 2.

4. Conclusions

In this work, we have presented the results of a general method formulated to
calculate the wave functions of light systems up to a rather large number of particles.
This method combines the main ideas of the HH expansion, the pair-correlation
ansatz and the Faddeev approach. The actual application of it is made possible
by the use of a very efficient recursive algorithm to construct the antisymmetric
A-particle state containing hyperspherical harmonics. We have applied the method
to calculate the binding energies of 6- and 8-nucleon systems with central local
potentials. The results we have obtained are very encouraging. For some potentials
(VV, 6 particles and MTV, 8 particles), we have reached the convergence region
with Kmax = 8 which is the maximum value allowed by our present computer
facilities (workstations). The 6Li result for the VV potential is slightly higher than
the SVM result. Even if in other cases we have not yet reached the convergence in
the HH expansion, our results for the binding energies are close to the TICI results.
For the eight–body case, they are higher for all potentials where variational results
were available for a comparison.

The method presented here for the solution of the few-body Schrödinger equa-
tion can be easily extended to solve the Schrödinger-like equation with a source,
necessary for the application of the Lorentz-integral-transform method. Work in
this direction is in progress.
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HIPERSFERIČNE VALNE FUNKCIJE OSNOVNOG STANJA JEZGRI S A > 4

Predstavlja se opća formulacija tehnički pobolǰsane metode za nalaženje rješenja os-
novnog stanja Schrödingerove jednadžbe u konfiguracijskom prostoru, za sustave s
brojem čestica većim od 4. Valna se funkcija razvija po parovno-koreliranim hipers-
feričnim harmonicima, te računa u Faddeevom pristupu. Primjenjuje se nedavna
učinkovita rekurzivna metoda za slaganje antisimetričnih hipersferičnih harmonika
za A čestica. Točnost računa se provjerava za energije vezanih osnovnih stanja jez-
gri s A = 6 do 12 primjenom V4 potencijala. Uspjeh dobivenih ishoda računa vidi
se usporedbom s drugim pristupima.
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