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We briefly discuss the quark-antiquark Bethe-Salpeter equation and the quark
Dyson-Schwinger equation derived in preceding papers. We also consider the qq̄
quadratic mass operator M2 = (w1 + w2)

2 + U obtained by a three-dimensional
reduction of the BS equation and the related approximate centre-of-mass Hamilto-
nian or linear-mass-operator HCM ≡ M = w1 + w2 + V + . . .. We review previous
results on the spectrum and the Regge trajectories obtained by an approximate di-
agonalization of HCM and report new results similarly obtained for the original M2.
We show that in both cases we succeed to reproduce fairly well the entire meson
spectrum in the cases in which the numerical calculations were actually practica-
ble and with the exception of the light pseudoscalar states (related to the chiral
symmetry problematic). A small rearrangement of the parameters and the use of a
running coupling constant is necessary in the M2 case.
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1. Introduction

In preceding papers [1,2] (cf. also Ref. 3), using a Feynmann-Schwinger type of
path integral representation and an appropriate ansatz for the Wilson loop correla-
tor, we have obtained a Bethe-Salpeter (BS) and a Dyson-Schwinger (DS) equation
for certain “second-order” quark-antiquark and single-quark Green functions.

In principle, to solve the qq̄ bound state problem, one should solve the DS equa-
tion and use the resulting quark propagator in the BS equation. In practice, even
an approximate treatment of such a problem in its full four-dimensional form seems
to be extremely hard, and we have to resort to the use of the free propagator and of

1Presented at the Dubrovnik ’98 Conference by G. M. Prosperi
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a three-dimensional reduction of the BS equation (instantaneous approximation).
Such reduction takes the form of the eigenvalue equation for an effective squared-
mass operator M2 = (w1 + w2)

2 + U , w1 and w2 being the relativistic free energies
of the quarks and U an interaction related to the BS kernel.

In more conventional terms, one can also consider a centre-of-mass Hamiltonian
HCM ≡ M = w1 + w2 + V + . . ., where in the lowest order, V differs from U only
for kinematic factors. This last form can be more directly compared with the usual
relativistic and non-relativistic potential models and V turns out to have various
significant limit expressions. In the static limit, V takes the Cornell form

V = −4

3

αs

r
+ σr . (1)

In the heavy-masses limit, by an 1/m expansion (and an appropriate Foldy-Wout-
huysen transformation), it reproduces the semi-relativistic potential discussed in
Refs. 4 and 2. If the spin-dependent terms are neglected, it becomes identical (apart
from a question of ordering) to the potential corresponding to the relativistic flux-
tube model [5], up to the first order in the coupling constant αs and the string
tension σ.

In Ref. 6, we have solved numerically the eigenvalue equation for HCM, as
we shall explain later, neglecting the spin-orbit terms but including the hyperfine
separation. We have succeeded to reproduce fairly well the entire heavy-heavy, light-
light and light-heavy quarkonium spectrum and Regge trajectories when the actual
calculations were feasible. The only real exception was the case of the ground light
pseudoscalar mesons, for which the three-dimensional reduction of the BS equation
does not seem to be appropriate, due to the chiral-symmetry-breaking problem.

Concerning the choice of the constants, the light-quark masses were fixed on
typical current values, mu = ms = 10 MeV, ms = 200 MeV and only the heavy
quark masses, the strong-coupling constant and the string tension were used as
fitting parameters. Good agreement with the data was found for mc = 1.40 GeV,
mb = 4.81 GeV, αs = 0.363 and σ = 0.175 GeV2.

In spite of the success attained, it turns out that the quantity 〈V 2〉 is not
negligible, bringing, e.g., to corrections ranging between few tens MeV, and 150
MeV in the cc̄ case. For this reason, we have repeated the calculations for the more
complex operator M2, and present the results in this paper. A good agreement is
obtained again at the price of a small rearrangement of the parameters and of using
a running coupling constant given by the usual perturbative expression

αs(Q) =
4π

(11 − 2
3Nf) ln Q2

Λ2

, (2)

cut at a maximum value αs(0).

We have taken Nf = 4, Λ = 200 MeV, αs(0) = 0.35 and σ = 0.2 GeV2, where
the last two values have been chosen in order to reproduce the correct J/Ψ − ηc

separation and the Regge trajectory slope. We have also chosen mc = 1.394 GeV
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and mb = 4.763 GeV in order to reproduce exactly the masses of J/Ψ and Υ;
contrary to these changes, we have left unchanged the masses of the light quarks.
Our results should be compared with the classic analysis made in Ref. 9 in the
framework of the relativized quark model by using a phenomenological potential
depending on nine parameters and adjusted constituent masses even for the light
quarks.

In Sect. 2, we review the BS and the DS equations and in Sect. 3, the three-
dimensional reduction. In Sect. 4, we report and discuss the results obtained in
Ref. 6 for HCM and the new results for M2.

2. Bethe-Salpeter and Dyson-Schwinger equations

The gauge invariant “second order” Green functions considered in Refs. 1, 2
and 3 were defined as

Hgi(x1, x2; y1, y2) = −1

3
TrC〈U(x2, x1)∆

σ
1 (x1, y1;A)U(y1, y2)∆̃

σ
2 (x2, y2;−Ã)〉 , (3)

Hgi(x − y) = iTrC〈U(y, x)∆σ(x, y;A)〉 , (4)

where the tilde and TrC denote the transposition and the trace, respectively, over
the colour indices alone; U is a path-ordered gauge string joining a to b (Schwinger

string), U(b, a) = P exp

{
ig

b∫
a

dxµ Aµ(x)

}
; while ∆σ(x, y;A) stands for the “second

order” quark propagator in an external gauge field Aµ, defined by the iterated Dirac
equation

(DµDµ + m2 − 1

2
g σµνFµν)∆σ(x, y;A) = −δ4(x − y) , (5)

with σµν = (i/2)[γµ, γν ]; finally, the angle brackets in (3) and (4) denote average
over the gauge variables alone (weighted in principle with the determinant Mf (A)
resulting from the explicit integration of the fermionic fields).

The quantities Hgi(x1, x2; y1, y2) and Hgi(x−y) are simply related to their ordi-
nary “first order” counterparts and can be equivalently used for the determination
of the bound state. The advantage they offer is that of admitting path-integral rep-
resentations in terms of quark world lines which derive from the similar Feynman-
Schwinger representation for ∆σ(x, y;A). Such representations depend on the gauge
field only through the Wilson correlators W [Γ] = 1

3 〈TrP exp{ig
∮
Γ

dxµAµ}〉 , associ-
ated to loops Γ made by the quark and antiquark world lines closed by “Schwinger
strings”.

In principle, as a consequence, the above correlators should determine the whole
dynamics. Unfortunately, due to confinement and the consequent failure of a purely
perturbative approach, a consistent analytic evaluation of W from the Lagrangian
alone is not possible today, and one has to rely on models based on incomplete
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theoretical arguments and lattice simulation information. The most naive, but at
the same time less arbitrary assumption, consists in writing i lnW as the sum of
its perturbative expression and an area term (modified area-law (MAL) model)

i lnW = i (ln W )pert + σSmin , (6)

where the first quantity is supposed to give correctly the short-range limit and the
second the long-range one. Notice that, in principle, any more sophisticated model
could be used under the condition that it preserves certain general properties of
functional derivability of the exact expression. In practice, not even (6) can be
treated exactly. Actually, one has to replace the minimal surface Smin by its “equal-
time straight-line approximation”, defined as the surface spanned by straight lines
joining equal-time opposite points of the loop Γ in the qq̄ centre-of-mass frame.

The path integral representations obtained in such a way could be used directly
for numerical calculations or for analytic developments. In the latter context, it
is convenient to consider another type of second-order functions, H(x1, x2, y1, y2)
and H(x−y), obtained from Hgi(x1, x2, y1, y2) and Hgi(x−y) by omitting in their
path-integral representation the contributions to i lnW , coming from gluon lines
or straight lines involving points of the Schwinger strings. In the limit of vanishing
x1−x2, y1−y2 or x−y, such new quantities coincide with the original ones and are
completely equivalent to them for what concerns the determination of the bound
states, effective masses, quark condensates, etc.

By an appropriate recurrence method, an inhomogeneous BS equation and a
DS equation can be derived for H(x1, x2, y1, y2) and H(x− y), respectively. In the
momentum space, the corresponding homogeneous BS equation can be written (in
a 4 × 4 matrix representation)

ΦP (k) = −i

∫
d4u

(2π)4
Îab

(
k − u,

1

2
P +

k + u

2
,
1

2
P − k + u

2

)

Ĥ1

(1

2
P + k

)
σaΦP (u)σbĤ2

(
− 1

2
P + k

)
, (7)

where ΦP (k) denotes an appropriate wave function and the centre-of-mass frame
has to be understood; i.e., P = (mB ,0), mB being the bound state mass. Similarly,

in terms of the irreducible self-energy defined by Ĥ(k) = Ĥ0(k)+ iĤ0(k)Γ̂(k)Ĥ(k) ,
the DS equation can be written also

Γ̂(k) =

∫
d4l

(2π)4
Îab

(
k − l;

k + l

2
,
k + l

2

)
σaĤ(l)σb . (8)

Notice that, in principle, (7) and (8) are exact equations. However, the kernels

Îab are generated in the form of an expansion in αs and σ. In the lowest order in
both such constants, we have explicitly
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Î0;0(Q; p, p′) = 16π 4
3αsp

αp′βD̂αβ(Q) (9)

+4σ
∫

d3ζe−iQ·ζ |ζ|ǫ(p0)ǫ(p
′
0)

1∫
0

dλ{p2
0p

′2
0 − [λp′0pT + (1 − λ)p0p

′
T]2} 1

2

Îµν;0(Q; p, p′) = 4πi 43αs(δ
α
µQν − δα

ν Qµ)p′βD̂αβ(Q)

−σ
∫

d3ζ e−iQ·ζǫ(p0)
ζµpν−ζνpµ

|ζ|
√

p2

0
−p2

T

p′0

Î0;ρσ(Q; p, p′) = −4πi 43αsp
α(δβ

ρ Qσ − δβ
σQρ)D̂αβ(Q)

+σ
∫

d3ζ e−iQ·ζp0
ζρp′

σ−ζσp′

ρ

|ζ|
√

p′2

0
−p′2

T

ǫ(p′0)

Îµν;ρσ(Q; p, p′) = π 4
3αs(δ

α
µQν − δα

ν Qµ)(δα
ρ Qσ − δα

σ Qρ)D̂αβ(Q)

where in the second and in the third equation, ζ0 = 0 has to be understood. Notice
that the use of (2) in (9) would amount to include higher-order contributions in αs.

3. Three-dimensional reduction of the BS equation

To obtain from (7) a three-dimensional equation, we can perform on such equa-
tion the so-called instantaneous approximation. This consists in replacing in (7)

Ĥ
(j)
2 (p) with the free-quark propagator -i/(p2 − m2) and the kernel Îab with

Î inst
ab (k,k′), obtained from Îab setting k0 = k′

0 = (1/2)[η2(w1 + w′
1) − η1(w2 + w′

2)]

with wj =
√

m2
j + k2 and w′

j =
√

m2
j + k′2. Then, by performing explicitly the

integration over k′
0 and further integrating the resulting expression in k0, we obtain

(w1 + w2)
2ϕmB

(k) (10)

+

∫
d3k′

(2π)3

√
w1 + w2

2w1w2
Î inst
ab (k,k′)

√
w′

1 + w′
2

2w′
1w

′
2

σaϕmB
(k′)σb = m2

BϕmB
(k) ,

with ϕP (k) =
√

(2w1w2)/(w1 + w2)
∞∫

−∞

dk0ΦP (k).

Eq. (10) is the eigenvalue equation for the squared mass operator,

M2 = M2
0 + U (11)

with M0 =
√

m2
1 + k2 +

√
m2

2 + k2 and

〈k|U |k′〉 =
1

(2π)3

√
w1 + w2

2w1w2
Î inst
ab (k,k′)

√
w′

1 + w′
2

2w′
1w

′
2

σa
1σb

2 . (12)
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The quadratic form of Eq. (11) obviously derives from the second-order character
of the formalism we have used.

In more usual terms, one can also write

HCM ≡ M = M0 + V + . . . , (13)

with

〈k|V |k′〉 =
1

w1 + w2 + w′
1 + w′

2

〈k|U |k′〉 =
1

(2π)3
1

4
√

w1w2w′
1w

′
2

Î inst
ab (k,k′)σa

1σb
2 .

(14)
In (13), the dots stand for higher-order terms in αs and σ, and kinematic factors
equal to 1 on the energy shell have been neglected.

From Eqs. (12) and (9), one obtains explicitly

〈k|U |k′〉 =

√
(w1 + w2)(w′

1 + w′
2)

w1w2w′
1w

′
2

{[
− 4

3

αs

π2

1

Q2

(
q10q20 + q2 − (Q · q)2

Q2

)

+
i

2Q2
k × k′ · (σ1 + σ2) +

1

2Q2
[q20(α1 · Q) − q10(α2 · Q)] (15)

+
1

6
σ1 · σ2 +

1

4

(
1

3
σ1 · σ2 −

(Q · σ1)(Q · σ2)

Q2

)
+

1

4Q2
(α1 · Q)(α2 · Q)

]

+
1

(2π)3

∫
d3reiQ·rJ inst(r,q, q10, q20)

}

with

J inst(r,q, q10, q20) =
σr

q10 + q20

[
q2
20

√
q2
10 − q2

t + q2
10

√
q20 − q2

T (16)

+
q2
10q

2
20

|qT|
(arcsin

|qT|
q10

+ arcsin
|qT|
q20

)
]

−σ

r

[
q20√

q2
10 − q2

T

(r × q · σ1 + iq10(r · α1)) +
q10√

q2
20 − q2

T

(r × q · σ2 − iq20(r · α2))

]
.

Here αk
j denote the usual Dirac matrices γ0

j γk
j , σk

j the 4 × 4 Pauli matrices(
σk

j 0

0 σk
j

)
and obviously q = (k + k′)/2 , Q = k − k′ , qj0 = (wj + w′

j)/2.

Notice that, due to the terms in αk
j , such U is self-adjoint only with reference to

the undefined metric operator γ0
1γ0

2 .

Due to (14), the potential V can be obtained from U as given by Eqs. (15) and

(16), by the kinematic replacement

√
(w1 + w2)(w

′
1 + w′

2)
w1w2w

′
1w

′
2

→ 1
2
√

w1w2w
′
1w

′
2

.
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4. Determination of the spectrum

In Ref. 6, we have evaluated the eigenvalues of the operator HCM for the poten-
tial V discussed above, omitting the spin-orbit terms and including only the hyper-
fine splitting. The numerical procedure we have followed is very simple. It consists
in solving first the eigenvalue equation for the static potential (1) by the Rayleigh-
Ritz method [7] using the three-dimensional harmonic oscillator basis, diagonalizing
a 30×30 matrix. Then, we have evaluated the quantities 〈ψν |HCM|ψν〉 for the eigen-
functions ψν obtained in the first step, choosing the scale parameter occurring in
the basis in order to make minimum the ground-state mass 〈ψ1S |HCM|ψ1S〉. Notice
that the determination of 〈ψν |V |ψν〉 for the exact V is not trivial, since, in general,
one should evaluate five-dimensional integrals of highly singular functions. For this
reason, we used two different expansions for high and low transversal momentum
(angular momentum) that allows to reduce to the three-dimensional integrals and
treated the singularity with the method suggested in Ref. 8.

The procedure we have followed for the determination of the eigenvalues of M2

is essentially the same. Again, we solve first the eigenvalue equation for HCM with
the static potential, and then we evaluate the quantities 〈ψν |M2|ψν〉. In this case,
the hyperfine splitting is determined by the equation

(3Mnl)
2 − (1Mnl)

2 =

32

9π

∞∫

0

dk k2

∞∫

0

dk′ k′2Ψ∗
nl(k)Ψnl(k

′)

√
w1 + w2

w1w2

√
w′

1 + w′
2

w′
1w

′
2

1∫

−1

dξ αs(Q)Pl(ξ) , (17)

which is more complicated than the corresponding equation in the case of HCM [6].

Both the new results based on M2 (crosses in Figs. 1, 2 and 3 and dashed lines in
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Fig. 1. Heavy-heavy quarkonium spectra.
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Fig. 4) and the old ones based on HCM (circlets in Figs. 1, 2 and 3 and dotted lines in
Fig. 4) are reported in the figures for the parameters discussed in the Introduction.
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Fig. 2. Light-light quarkonium spectra. Question marks indicate states whose as-

signment to a multiplet is not obvious. Position of ηS is derived from η and η′, by

standard mixture assumption.
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Fig. 3. Light-heavy quarkonium spectra.

For the l > 0 cases, masses represent the centre-of-mass of the multiplets. In both
cases, the agreement with the data is on the whole good, not only for bottonium
and charmonium (as in ordinary potential models), but also the light-light and
light-heavy systems. Notice that the quadratic formulation seems to give a better
low angular momentum light-light spectrum, while perhaps the linear formulation
gives better Regge trajectories. The Regge trajectories in the quadratic case can
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Fig. 4. uū and us̄ Regge trajectories.

be improved rising the value of σ at the price, however, of making more difficult
the fitting of the light-heavy states (perhaps the MAL model is too naive). As
mentioned, the only serious disagreement remains that of the light pseudoscalar
mesons.
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BETHE-SALPETEROVA I DYSON-SCHWINGEROVA JEDNADŽBA I
WILSONOVA PETLJA U QCD, UČINKOVIT OPERATOR MASE I qq̄

SPEKTAR

Kratko se raspravlja Bethe-Salpeterova jednadžba za sustav kvark-antikvark i
Dyson-Schwingerova jednadžba za kvarkove koje su ranije izvedene, qq̄ kvadratični
operator mase M2 = (w1 + w2)

2 + U koji je izveden iz BS jednadžbe te približna
Hamiltonova funkcija za centar mase odnosno linearni operator mase HCM ≡ M =
w1 + w2 + V + . . .. Izlažu se raniji ishodi računa za spektar mezona i Reggeove
putanje koji su dobiveni približnom dijagonalizacijom HCM, te navode novi ishodi
koji su slično postignuti za izvorni M2. Pokazuje se kako se u oba slučaja prilično
dobro postiže cjelokupan spektar mezona za slučajeve kada su numerički računi
provedivi i uz isključenje lakih pseudoskalarnih stanja (povezanih s problematikom
kiralne simetrije). U slučaju M2 potrebna su mala podešavanja parametara i jedna
stalnica vezanja.
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