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1. Introduction

The experimental evidence for heavy-quark bound states, like bb̄, cc̄, ..., shows
that all splittings are considerably less than the masses, suggesting that all dy-
namical energy scales of these systems are small with respect to the quark masses.
As a consequence, the quark velocities v are small and these systems can be con-
sidered as nonrelativistic. Hence, the hierarchy of the scales is then a typical one
of a nonrelativistic system. We denote the mass of the heavy quark m, the quark
momenta scale mv and the quark energies mv2. The situation in the gluon sector is
trickier, but the binding interaction is essentially characterized by the same energy
scale distribution. Therefore, the dominant gluon interaction among heavy quarks
appears “instantaneous”. A potential picture should hold, at least in the first ap-
proximation, and the energy levels can be obtained by solving the corresponding
Schrödinger equation. In particular, for infinitely heavy quarks, the spin splittings

1Plenary talk presented at “Nuclear and Particle physics with CEBAF at Jefferson Lab”,
Dubrovnik, November 3-10, 1998.
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vanish, and the system can be described only by means of a single static central
potential.

Indeed, potential models have been quite successful [1] in explaining the hadron
spectrum. However, since these models are phenomenological, their connection with
the QCD parameters is hidden, the scale at which they are defined is not clear, and
they cannot be systematically improved. In this paper, we outline the kind of
rigorous description of quarkonium that can be obtained from QCD.

Several perturbative evaluations of the quarkonium potential have been per-
formed in the last twenty years [2] and recently the complete α2

s corrections to the
levels have been calculated [3]. The main difficulty in these calculations is the inclu-
sion of nonperturbative contributions which not only set a bound on the reachable
precision, but turn out to be relevant for quantitative predictions even on the bot-
tomonium spectrum. A typical approach is to consider all nonperturbative physics
to be encoded into few local condensates. This corresponds to the assumption that
the typical length associated, for instance, with the nonperturbative gluodynamics
is larger than any other length scale of the system and can be put equal to infinity.
In a pure analytic calculation, this statement is also dictated by the necessity to
have a small number of nonperturbative parameters and to maintain predictability.
Even for the ground state, this assumption is doubtful, but surely it does not hold
for large-radii quarkonia (i.e. excited heavy mesons) where the nonperturbative
gluonic length cannot be considered large with respect to the size of the bound
state. Therefore, a proper treatment of nonperturbative effects includes non-local
condensates. Another way to say the same is that the contribution to the levels
associated with the local gluon condensate is proportional to n6〈αsF

2(0)〉. By in-
creasing the principal quantum number n beyond the ground state, it grows very
soon out of control.

A way of including nonperturbative effects in the evaluation of the quarkonium
spectrum is lattice QCD. This technique is becoming more and more successful and
in the near future it is expected to be the only competitive one (see for instance
Ref. 4 and references therein). There are different ways in which lattice QCD calcu-
lations can be performed. We mention lattice NRQCD [5] in which the quarkonium
spectrum is directly evaluated on the lattice using an effective action derived from
QCD by an expansion in the quark velocities. Very close is the approach we will
discuss in the following where the QCD Lagrangian is replaced by its effective
nonrelativistic formulation before doing any lattice evaluation. All nonperturbative
physics is encoded in this way in the Wilson loop made up by the quark trajectories
and in field strength insertions on it. These (nonlocal) objects are then evaluated
on the lattice. We call this the Wilson loop approach. The advantage of it is that
our expressions are safer to handle for lattice purposes, since they are less affected
by finite size effects, and easier to treat also for analytic purposes like the imple-
mentation of the vacuum models. In particular, we get an expression for the heavy
quark-antiquark potential. In the limit where the insertions of two field strengths
on the Wilson loop can be approximated by a local condensate, one gets back the
“improved” perturbative expression discussed above.

The (Wegner)-Wilson loop formalism has a long story. It was first suggested by
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K. Wilson [6] that the object called after him Wilson loop would be the relevant
one in order to describe confinement. The strong coupling expansion suggested an
area law behaviour, further confirmed by lattice simulations, which were born with
this pioneering work. In Ref. 7, it was shown how to relate rigorously the static
Wilson loop with the static quark-antiquark potential. A few years later, also spin-
dependent corrections to the potentials where expressed in terms of Wilson loop
and chromoelectric and chromomagnetic field insertions [8]. In particular, it was
proven that a nonperturbative behaviour in the static potential must also give rise to
nonperturbative spin-dependent corrections. Non spin-dependent corrections were
treated in the same framework some time later [9]. This was the situation at the
beginning of the ’90 (see Ref. 1). Several problems were still open. No relativistic
formulation in terms of the Wilson loop was available. There was an apparent
mismatch between the Eichten–Feinberg–Gromes expression for the spin dependent
sector of the potential (analytic in the quark masses) and the perturbative one-
loop estimate (containing logarithms of the quark masses). The inclusion of non-
potential terms was not understood. While not all these problems have been solved,
some remarkable progress has been achieved in the last years. Attempts in the
direction of a relativistic formulation have been done in Ref. 10. In Ref. 11, it
was shown that, by performing properly the matching between the effective theory
and QCD, Wilson coefficients carrying logarithms of the quark masses appear in
the Eichten–Feinberg–Gromes expression for the potential. The inclusion of non-
potential contributions in this framework is now underway [12] and the way to
precision calculations in quarkonium seems finally to be open. Here we only mention
that this goal is met by a new effective theory built from NRQCD, where explicitly
potential and non-potential terms have been separated [13]. Finally, all the Wilson-
loop averages relevant for the potential have been calculated on the lattice and the
bottomonium and charmonium spectra have been calculated with good agreement
with the data [14,15].

In the meantime there has been considerable progress in the building of a non-
relativistic effective theory from QCD, mainly due to the success of heavy-quark
effective theory (HQET) in describing heavy-light systems [15]. Wilson coefficients
have been calculated to higher order and the role played by reparameterization
invariance has been better understood.

Here, we summarize the present level of understanding of the heavy-quark po-
tential which contributes to the energy levels of quarkonium to the order v4. The
framework is NRQCD, the tool of the Wilson approach.

2. NRQCD

In order to define an effective theory, we typically need three ingredients: an
effective Lagrangian, a regularization scheme and therefore a matching scale, and
a power counting set of rules. The effective theory we will use is NRQCD [5]. Let
us discuss its key ingredients.

The NRQCD Lagrangian is obtained from QCD by expanding with respect
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to the heavy-quark masses. The matching with QCD is performed like in HQET
[17,18]. We emphasize that in order to build up the effective Lagrangian from
the QCD Lagrangian, we have to ignore the specific dynamical problem we are
dealing with and expand with respect to the heavy-quark masses which are explicit
parameters of QCD. Typically, the effective Lagrangian turns out to be the sum of
a pure gauge part Lg plus two, four, ... fermion terms (L2f , L4f , ...). Since we are
interested in two-body bound states, we will take into account only two- and four-
fermion terms (terms involving more fermions will contribute only in intermediate
states). Therefore, the NRQCD Lagrangian obtained from QCD by expanding with
respect of the mass m1 of a heavy quark and the mass m2 of a heavy antiquark is
given by [17,18]

L = L2f + L4f + Lg, (1)

where to the order 1/m2 and up to the field redefinitions

L2f = Q†
1

(

iD0 + c
(1)
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+ c
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+ c
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)
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(
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D2
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(2)
F g

σ · B

2m2
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(2)
D g

D · E − E · D

8m2
2

−ic
(2)
S g

σ · (D × E − E × D)

8m2
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)

Q2 + O

(

1

m3
2

)

, (2)

Qj are the heavy-quark fields and the covariant derivative is defined as Dµ =
∂µ + igAa

µT a. The explicit form of L4f is given in Ref. 18. Lg is the SU(3) Yang–
Mills Lagrangian modified in order to give rise to an effective αs running with 2
(heavy) flavours less.

The effective Lagrangian (1) is not renormalizable. Therefore, it is necessary
to regularize it. In a given regularization scheme, the reproduction of the correct
ultraviolet regime of QCD is obtained by means of the Wilson coefficients. The
effective Lagrangian is complete only once these coefficients are given. The Wilson
coefficients are evaluated at a matching scale where perturbation theory still holds.
They encode the ultraviolet regime of QCD up to a given scale µ, order by order
in the coupling constant αs. Renormalization group (RG) transformations should
be used in order to resum leading log contributions (∼ lnm/µ). The matching
coefficients are known in the literature to different levels of precision (i.e. to different
orders in the coupling constant) (see Refs. 17, 18 and 19). Here we remember
only that reparameterization invariance [17] (i.e. the invariance of the effective

Lagrangian with respect a variation of v) fixes c
(j)
2 = c

(j)
4 = 1.

Heavy-quark bound states are characterized by a dynamical dimensionless pa-
rameter, the quark velocity v. As explained in the Introduction, this parameter is
small. From phenomenological potential models [20] and from lattice studies [14],
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we get the usually accepted values of 〈v2
b 〉 ≈ 0.07 for the bottomonium system and

〈v2
c 〉 ≈ 0.24 for the charmonium system. This allows the ordering of the energy

scales of the problem, m, mv and mv2. The first scale has been explicitly inte-
grated out in the Lagrangian (1) and, as discussed above, the contributions coming
from it are carried order by order in αs by the Wilson coefficients. The last two
scales, sometimes known by the names “soft” and “ultrasoft”, respectively, are still
mixed up. The relation between v and the QCD parameters is generally unknown.
It is expected to be the result of the perturbative and nonperturbative effects. For
infinitely heavy quarks, v coincides with αs like in QED where, for instance in the
hydrogen atom, the hyperfine structure constant α is equal to the electron velocity.
The main point is that the existence of this small dynamical parameter allows to
set up power counting rules for the operators in the effective Lagrangian. For the
sake of simplicity, we reproduce here the rough power counting argument of Ref.
5, keeping in mind that an exact power counting cannot be done until soft and
ultrasoft degrees of freedom have not been completely disentangled. Noticing that

the number operator for heavy quarks,

∫

d3x Q†(x)Q(x), does not depend on v,

one gets Q ∼ (mv)3/2. The kinetic energy

∫

d3x Q†(x)
D2

2m
Q(x) is by definition of

the order mv2 and, therefore, D ∼ mv (i.e. the contribution of D to the levels is of
order mv). Finally, using the equation of motion, one gets the other counting rules
D0 ∼ mv2, gA0 ∼ mv2 gA ∼ mv3, gE ∼ m2v3 and gB ∼ m2v4. With respect to
these rules, the Lagrangian of Eq. (2) is accurate up to the order O(v4) of the levels
(or up to O(v2) with respect to the leading contribution). This should guarantee a
rough 10% accuracy on the absolute value of the levels.

Concluding this section, we stress that the NRQCD power counting defined
above is not the same as that one used in HQET. In particular, in HQET, the kinetic
energy D2/2m is suppressed by a factor ΛQCD/m with respect to the operator D0,
while in NRQCD, the two operators are of the same order. As a consequence,
the heavy-quark propagator contains in NRQCD a kinetic part which is absent in
HQET where the heavy-quark propagator is static. In a very general way one can
say that these differences are due to the fact that, even if the effective Lagrangian
is essentially the same, the physical problem is different, and it is the physical
problem which defines the counting rules.

3. The Wilson loop formalism

The next step is to derive the heavy-quark interaction in the so-called Wilson-
loop formalism. In this context, the use of the effective Lagrangian (2) (with tree
level matching) was first suggested by L. S. Brown and W. I. Weisberger [7], later
by E. Eichten and F. Feinberg [8]. A one loop RG improved calculation was done
in Ref. 11. In those papers, an expansion is performed around the static solution.
Here, we adopt the approach of Ref. 9, where the kinetic energy was kept during
all calculations.
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The 4-point gauge-invariant Green function G associated with the Lagrangian
(1) is defined as

G(x1, y1, x2, y2) = 〈0|Q†
2(x2)φ(x2, x1)Q1(x1)Q

†
1(y1)φ(y1, y2)Q2(y2)|0〉,

where φ(x2, x1) ≡ exp







−ig

1
∫

0

ds (x2 − x1)
µAµ(x1 + s(x2 − x1))







is a Schwinger

line added to select the singlet-state contribution. For large time separations the

string vanishes. After integrating out the heavy-quark fields, Qj and Q†
j , G can be

expressed as a quantum-mechanical path integral over the quark trajectories [10]:

G=

x1
∫

y1

Dz1Dp1

x2
∫
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Dz2Dp2 exp











i

T/2
∫

−T/2

dt
2
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p2

j

2mj
+

p4
j

8m3
j

− i

T/2
∫

−T/2

dt U











where zj = zj(t) and y0
2 = y0

1 ≡ −T/2, x0
2 = x0

1 ≡ T/2. The function U describes
the heavy-quark interaction. Since the kinetic energy has been properly isolated,
it is consistent with the counting rules given in the previous section to expand
the interaction around the static quark trajectories z1 = (t, r) and z2 = (t,0).

Moreover, we define the heavy quark-antiquark potential as V = lim
T→∞

1

T

T/2
∫

−T/2

dt U ,

with the warning that, since the soft and ultrasoft degrees of freedom have not been
disentangled in NRQCD, non-potential terms could still contribute to some extent
to V .

Working out this expression [9,10], we get
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S(j) = σ
(j)/2 and L(j) = r × pj are the spin and orbital angular-momentum

operators, respectively. The matching coefficients dℓ come from the 4-fermion sector

L4f [18] and 2c±F,S ≡ c
(1)
F,S ± c

(2)
F,S . The static potential V0 is

V0(r) = lim
T→∞

i

T
ln〈W (Γ0)〉, W (Γ) ≡ P exp

{

−ig

∮

Γ

dzµAµ(z)

}

. (4)

where Γ is the loop made up by the quark trajectories z1 and z2 and the endpoint
Schwinger strings, and the static loop Γ0 is a r×T rectangle. The bracket means the
colour trace of the average over the gauge fields weighted by the gluon Lagrangian
Lg. The “potentials” V1, V2, ... are scale-dependent gauge field averages of electric
and magnetic field-strength insertions in the static Wilson loop (see Refs. 14 and
19).

Since the spin-independent corrections come from the terms D0 and D2/2m
of the Lagrangian (2), whose matching coefficients are protected by reparame-
terization invariance, they are scale independent. An evaluation of the so-called
momentum-dependent corrections can be found in Ref. 9. Terms involving loga-
rithms of the quark masses are present. As a consequence of the matching proce-
dure, they are all encoded in the matching coefficients. Therefore, as argued in Ref.
11, the correct handling of the matching allows finally the agreement between the
potential derived here, evaluated in the perturbative regime, with the traditional
QCD one-loop perturbative calculation [3,21]. For a careful discussion of this point
see Ref. 19.

The “potentials” are known exactly (up to a given order in αs) only in the
perturbative regime, i.e. in the short-range behaviour. Nevertheless, there exist
some exact relations between them which hold at any range. For instance, from
Lorentz invariance it follows that [8]

V ′
0(r) + V ′

1(r) − V ′
2(r) = 0. (5)

Since for reparameterization invariance c
(j)
S = 2c

(j)
F − 1 [17], equation (5) holds at

any scale µ. Similar relations exist for the momentum dependent “potentials” of
Ref. 9. Moreover, the scale independence of the potential (3) (i.e. µdV/dµ = 0)
establishes several relations between quantities at different renormalization scales
[14].

The potentials V0, V1, ... are suitable for direct lattice computation and for ana-
lytic evaluation inside a QCD vacuum model. The first possibility relies on the fact
that all dynamical quantities are expressed in terms of field-strength insertions on
a static Wilson loop which is an object traditionally measured on the lattice. Such
an analysis has been performed in Ref. 14. All “potentials” have been measured on
the lattice and the previously mentioned exact relations have been used to check
the accuracy of the results. Using the parameterized form obtained in this way for
the “potentials”, the bound state equation has been solved and the bottomonium
and charmonium spectra evaluated. The agreement with the experimental data is
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found to be quite good. On the other hand, an analytic evaluation of the heavy-
quark potential inside a QCD vacuum model turns out to be very convenient in
this framework since by means of functional derivatives, all averages of the field-
strength insertions on the Wilson loop can be expressed in terms of the average
of the non-static Wilson loop alone. This is usually a quantity provided by QCD
vacuum models. A study of different models in this framework has been done in
Refs. 15 and 22, where a comparison with the existing lattice data has also been
provided. Up to now, they are not accurate enough to really discriminate between
different models. More precise lattice measurements will be performed in the near
future providing in this way strong constraints on all the infrared QCD models with
predictability on the long-range quarkonium interaction.

Finally, we emphasize that until soft and ultrasoft degrees of freedom have
are not disentangled, an exact value in v cannot be assigned to each term of the
effective Lagrangian and the power counting has to be interpreted at the leading

order. For instance, the O(1) NRQCD Lagrangian, L = Q†
1

(

iD0 + ∂2/2m1

)

Q1 +

Q†
2

(

−iD0 + ∂2/2m2

)

Q2, does not contribute to (3) only with the static potential

V0. Since the corresponding Wilson loop P exp

{

−ig

∮

Γ

dz0A0(z)

}

is a function of

the non-static loop Γ, its expansion produces also spin independent terms of the
order O(v).

4. Comments and outlook

In the framework of NRQCD, we have shown how to get the complete or-
der O(v4) expression of the heavy quark-antiquark potential in terms of the field-
strength insertions on a static Wilson loop. This has several advantages. Non-
perturbative contributions can be evaluated by means either of traditional lattice
calculations or of different QCD vacuum models. Having worked out the matching
procedure, we find that the potential of Eq. (3) is consistent in the short range
with the existing perturbative calculations and with the lattice data [19]. These
are sensitive to one loop and in some cases to the next to leading correction, too.
We stress here that terms proportional to the static potential in Eq. (3) have to
be protected from the running. For instance, using Eq. (5) and reparameterization
invariance, the spin-orbit interaction term ∼ 2C+

F V ′
1 + C+

S V ′
0 can be written as

2C+
F V ′

2 −V ′
0 where it is apparent that no Wilson coefficient multiplies the static po-

tential. Moreover, we can draw the following consequence about V ′
2 : either V ′

2 does
not contain any nonperturbative contribution at all (as present lattice data seem to
suggest) or, if V ′

2 contains some nonperturbative contributions, they have to satisfy

the RG equation
d

dµ
C+

F V ′
2 = 0. The same argument suggests for the Darwin term

that ∆V E
a = −∆V0+ perturbative contributions. This gives some constraints on

the QCD vacuum models which, introducing at some point some approximations,
lose scale invariance.

All corrections to the effective Lagrangian discussed here are relevant in order
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to obtain the quarkonium spectrum with an accuracy of O(v4). For some Wilson
coefficients, only the leading αs contribution needs to be taken into account. This
is not the case if we aim to reach a 10% accuracy in the quarkonium spin splittings.
Since these quantities are an order O(v4) effect, a 10% accuracy is achievable only
if O(v6) and O(αsv

4) effects are calculated as well. Therefore, operators of the
order O(v6) should be added to the effective Lagrangian [5]. The inclusion of such
operators in Eq. (3) in terms of (two and three) field-strength insertions on a static
Wilson loop, is only a technical problem, but has not be done so far. The main
reason is that non-potential contributions are expected to become even more im-
portant. Ultrasoft gluonic degrees of freedom, characterized by a time scale 1/mv2,
exist. In perturbative QCD, they are responsible, for instance, for the Lamb-shift
(which is an αsv

4 effect). In the language of the Wilson loop, this means that the
interaction U (see Sect. 3) can be affected by non-potential contributions which
have to be subtracted from V in order to define properly a heavy-quark potential.
Since αs is not a small parameter at the ultrasoft scale, these non-potential terms
could be an effect of the order O(v4). Therefore, precision studies of quarkonium
have to take into account it. An approach was recently proposed in Refs. 12 and
13. The ultrasoft degrees of freedom are integrated out directly from the NRQCD
Lagrangian giving rise to another effective theory, called potential NRQCD, where
all energy scales of the bound state are disentangled explicitly. The advantages are
enormous, since in the new theory, potential and non-potential contributions are
clearly separated. The novel feature is that the matching this time takes place in a
energy region dominated by the non-perturbative physics.
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KVARKONIUM U FORMALIZMU WILSONOVE PETLJE: NOVI IZGLEDI

Daje se pregled današnjeg znanja o med–udjelovanju teških kvarkova. Efektivna se
nerelativistička QCD teorija i med–udjelovanje izražavaju pomoću kromoelektričnih
i kromomagnetskih umetaka Wilsonove petlje.
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