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A truncation scheme for the Dyson–Schwinger equations of QCD in Landau gauge
is presented which implements the Slavnov–Taylor identities for the 3–point vertex
functions. Neglecting contributions from 4–point correlations such as the 4–gluon
vertex function and irreducible scattering kernels, a closed system of equations
for the propagators is obtained. For the pure gauge theory without quarks, this
system of equations for the propagators of gluons and ghosts is solved in an ap-
proximation which allows for an analytic discussion of its solutions in the infrared.
The gluon propagator is shown to vanish for small spacelike momenta whereas the
ghost propagator is found to be infrared enhanced. The running coupling of the
non–perturbative subtraction scheme approaches an infrared stable fixed point at
a critical value of the coupling, αc ≃ 9.5. The gluon propagator is shown to have no
Lehmann representation. The gluon and ghost propagators obtained here compare
favourably with recent lattice calculations. Results for the quark propagator in the
quenched approximation are presented.
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1. Introduction

Despite the remarkable success of perturbative QCD, the description of hadronic
states and processes based on the dynamics of confined quarks and gluons re-
mains the outstanding challenge of strong interaction physics. Especially, one has
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to explain why only hadrons are produced from processes involving hadronic initial
states, and that the only thresholds in hadronic amplitudes are due to the pro-
ductions of other hadronic states. To this end, one would like to understand how
singularities appear in the Green’s functions of composite hadron fields where, on
the other hand, they have to disappear in coloured correlations functions.

To study these aspects of QCD amplitudes, non–perturbative methods are re-
quired, and, since infrared divergences are anticipated, a formulation in the con-
tinuum is desirable. Both of these are provided by studies of truncated systems
of Dyson–Schwinger equations (DSEs), the equations of motion of QCD Green’s
functions. Typically, for their truncation, additional sources of information like the
Slavnov–Taylor identities, entailed by gauge invariance, are used to express vertex
functions in terms of the elementary two–point functions, i.e., the quark, ghost and
gluon propagators. Those propagators can then be obtained as selfconsistent solu-
tions to non–linear integral equations representing a closed set of truncated DSEs.
Some systematic control over the truncating assumptions can be obtained by suc-
cessively including higher n–point functions in selfconsistent calculations, and by
assessing their influence on lower n–point functions in this way. Until recently, all
solutions to truncated DSEs of QCD in the Landau gauge, even in the absence of
quarks, relyed on neglecting completely ghost contributions [1–4].

In addition to providing a better understanding of confinement based on stud-
ies of the behaviour of QCD Green’s functions in the infrared, DSEs have proven
successful in developing a hadron phenomenology which interpolates smoothly be-
tween the infrared non–perturbative and the ultraviolet perturbative regime [5].
For recent reviews see, e.g., Refs. 6 and 7. In particular, a dynamical description
of spontaneous breaking of chiral symmetry from studies of the DSE for the quark
propagator is well established in a variety of models for the gluonic interactions
of quarks [8]. For a sufficiently large low–energy quark–quark interaction, quark
masses are generated dynamically in the quark DSE in some analogy to the gap
equation in superconductivity. This in turn leads naturally to the Goldstone nature
of the pion and explains the smallness of its mass as compared to all other hadrons.
In this framework, a description of the different types of mesons is obtained from
Bethe–Salpeter equations for quark–antiquark bound states [9]. Recent progress to-
wards a solution of a fully relativistic three–body equation extends this consistent
framework to baryonic bound states (see, e.g., Ref. 10 and references therein).

Here a simultaneous solution of a truncated set of DSEs for the propagators
of gluons and ghosts in Landau gauge is presented [11,12]. An extension of this
selfconsistent framework to include quarks is subject to on–going research [13].
Preliminary results for the quark propagator in the quenched approximation have
been obtained and will be shown. The behaviour of the solutions in the infrared,
implying the existence of a fixed point at a critical coupling αc ≈ 9.5, is obtained
analytically. The gluon propagator is shown to vanish for small spacelike momenta
in the present truncation scheme. This behaviour, though in contradiction with
previous DSE studies [1–4], can be understood from the observation that, in our
present calculation, the previously neglected ghost propagator assumes an infrared
enhancement similar to what was then obtained for the gluon. In the meantime,
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such a qualitative behaviour of gluon and ghost propagators is supported by inves-
tigations of the coupled gluon ghost DSEs using bare vertices [14,15]. As expected,
however, the details of the results depend on the approximations employed.

2. The set of truncated gluon and ghost DSEs

Besides all elementary 2–point functions, i.e., the quark, ghost and gluon prop-
agators, the DSE for the gluon propagator also involves the 3– and 4–point vertex
functions which obey their own DSEs. These equations involve successively higher
n–point functions. The gluon equation is truncated by neglecting all terms with 4–
gluon vertices. These are the momentum independent tadpole term, an irrelevant
constant which vanishes perturbatively in the Landau gauge, and explicit 2–loop
contributions to the gluon DSE. For all details regarding this truncation scheme we
refer the reader to Ref. 12.

The ghost and gluon propagators are parameterized by their respective renor-
malization functions G and Z,

DG(k) = −
G(k2)

k2
, Dµν(k) =

(

δµν −
kµkν

k2

)

Z(k2)

k2
. (1)

In order to arrive at a closed set of equations for the functions G and Z, we use a
form for the ghost–gluon vertex which is based on a construction from its Slavnov–
Taylor identity (STI) which can be derived from the usual Becchi–Rouet–Stora
invariance neglecting irreducible 4–ghost correlations in agreement with the present
level of truncation [12]. This together with the crossing symmetry of the ghost–
gluon vertex fully determines its form at the present level of truncation:

Gµ(p, q) = iqµ

G(k2)

G(q2)
+ ipµ

(

G(k2)

G(p2)
− 1

)

. (2)

With this result, we can construct the 3–gluon vertex according to procedures
developed and used previously [16] (for details see Ref. 12).

We have solved the coupled system of integral equations of the present trunca-
tion scheme numerically using an angle approximation. The infrared behaviour of
the propagators can, however, be deduced analytically. To this end, we make the
Ansatz that for x := k2 → 0 the product Z(x)G(x) → cxκ with κ /=0 and some con-
stant c. The special case κ = 0 leads to a logarithmic singularity for x → 0 which
precludes the possibility of a selfconsistent solution. In order to obtain a positive
definite function G(x) for positive x from an equally positive Z(x), as x → 0, we
obtain the further restriction 0 < κ < 2. The ghost DSE then yields,

G(x) →

(

g2γG
0

(

1

κ
−

1

2

))

−1

c−1x−κ ⇒ Z(x) →

(

g2γG
0

(

1

κ
−

1

2

))

c2x2κ ,
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where γG
0 = 9/(64π2) is the leading order perturbative coefficient of the anomalous

dimension of the ghost field. Using these relations in the gluon DSE, we find that the
3–gluon loop contributes terms proportional to xκ to the gluon equation for x → 0,
while the dominant (infrared singular) contribution arises from the ghost–loop,

Z(x) → g2γG
0

9

4

(

1

κ
−

1

2

)2(

3

2

1

2 − κ
−

1

3
+

1

4κ

)

−1

c2x2κ.

Requiring a unique behaviour for Z(x), we obtain a quadratic equation for κ with
a unique solution for the exponent in 0 < κ < 2:

κ =
61 −

√
1897

19
≃ 0.92 . (3)

The leading behaviour of the gluon and ghost renormalization functions, and thus
of their propagators, is entirely due to ghost contributions. The details of the
approximations to the 3–gluon loop have no influence on the above considerations.
Compared to the Mandelstam approximation, in which the 3–gluon loop alone
determines the infrared behaviour of the gluon propagator and the running coupling
in the Landau gauge [1–4], this shows the importance of ghosts. The result presented
here implies an infrared stable fixed point in the non–perturbative running coupling
of our subtraction scheme, defined by

αS(s) =
g2

4π
Z(s)G2(s) →

16π

9

(

1

κ
−

1

2

)

−1

≈ 9.5 , (4)

for s → 0. This is qualitatively different from the infrared singular coupling of the
Mandelstam approximation [4].

3. Comparison to lattice results

It is interesting to compare our solutions to recent lattice results available for the
gluon propagator [17] and for the ghost propagator Ref. 18, using lattice versions
to implement the Landau gauge condition. We would like to refer the reader to
Ref. 19 where this has been done in some detail. It is very encouraging to observe
that our solution fits the lattice data at low momenta rather well, especially for the
ghost propagator. Therefore, we conclude that present lattice calculations confirm
the existence of an infrared enhanced ghost propagator of the form DG ∼ 1/(k2)1+κ

with 0 < κ < 1. This is an interesting result for yet another reason: In the
calculation of [18], the Landau gauge condition was supplemented by an algorithm
to select gauge field configurations from the fundamental modular region which is
to avoid Gribov copies. Thus, our results suggest that the existence of such copies
of gauge configurations might have little effect on the solutions to the Landau gauge
DSEs.
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Here we want to add a remark concerning the comparison of the running cou-
pling obtained in our calculation to lattice results. Recent lattice calculations of
the running coupling are reported in Refs. 20 and 21 based on the 3–gluon vertex,
and Ref. 22 on the quark–gluon vertex. The non–perturbative definitions of these
couplings are related but manifestly different from the one adopted here. One of
the most recent results from the 3–gluon vertex is shown in the left graph of Fig. 1
and compared to the three–loop expression which is for the momenta displayed
almost identical to our expression (4) for the running coupling. This lattice result
is obtained from an asymmetric momentum subtraction scheme. This corresponds
to a definition of the running coupling ḡ2

3GV as which can explicitly be related to
the present one (ḡ2(t, g) with t = lnµ′/µ and g := g(µ)),

ḡ2(t, g2)3GV as = ḡ2(t, g2) lim
s→0

G2(s)

G2(µ′2)

(

1 −
β(ḡ(t, g))

ḡ(t, g)

)2

. (5)

An inessential difference in these two definitions of the running coupling is the last
factor in brackets in Eq. (5) which can be easily accounted for in comparing the
different schemes. However, the crucial difference is the ratio of ghost renormaliza-

tion functions G(s → 0)/G(µ′2). These considerations show that the asymmetric
scheme can be extremely dangerous if infrared divergences occur in vertex functions
as our calculation indicates. Clearly, from the infrared enhanced ghost renormal-
ization function, this scale dependence could account for the infrared suppressed
couplings which seem to be found in the asymmetric schemes.
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Fig. 1. Lattice results of the running coupling from the 3–gluon vertex (left, together
with a 3–loop fit, Fig. 1 of Ref. 21), and from the quark–gluon vertex for β = 6.0
on a 163 × 48 lattice (right, c.f. Fig. 2 of Ref. 22).

Similarly, the results from the quenched calculation of the quark–gluon vertex of
Ref. 22 which are compared in the right graph of Fig. 1 to our solution are obtained
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from an analogous asymmetric scheme. Thus, it is expected to have the same
problems in taking the possible infrared divergences of the vertices into account
which arise in both the 3–gluon and the quark–gluon vertex, as a result of the
infrared enhancement of the ghost propagator.

Furthermore, definitions of the coupling which lead to extremes at finite values
of the scale correspond to double valued β–functions with artificial zeros. If the
maxima in the couplings of the asymmetric schemes at finite scales are no lattice
artifacts, these results seem to imply that the asymmetric schemes are less suited
for a non–perturbative extension of the renormalization group to all scales. In-
deed, the results for the running coupling from the 3–gluon vertex obtained for
the symmetric momentum subtraction scheme in Ref. 21 differ from those of the
asymmetric scheme, in particular, in the infrared. These results would be better to
compare to the DSE solution, however, they unfortunately seem to be much noisier
thus far (see Ref. 21).

The ultimate lattice calculation to compare to the present DSE coupling would
be obtained from a pure QCD calculation of the ghost–gluon vertex in the Landau
gauge with a symmetric momentum subtraction scheme. This is unfortunately not
available yet.

4. Quark propagator

We have solved the quark DSE in quenched approximation [13]. In a first step,
we have specified the quark–gluon vertex from the corresponding Slavnov–Taylor
identity. It contains explicitely a ghost renormalization function,

Γµ(p, q) = G(k2)Γµ
CP

(p, q) , (6)

where Γµ
CP

is the Curtis–Pennington vertex (for its definition see, e.g., Ref. 7). It
is obvious that this leads to an effective coupling very different from the one in
Abelian approximation, especially in the infrared: This effective coupling vanishes
in the infrared and is similar to the lattice result of Ref. 22 shown in the right
graph of Fig. 1, the main difference being that the maximum occurs at lower scale,
µ ≈ 220 MeV. This leads to a kernel in the quark DSE which is only very slightly
infrared divergent. This allows, e.g., to use the Landshoff–Nachtmann model for
the Pomeron in our approach. With our solution, we obtain as Pomeron intercept
2.7/GeV as compared to the value 2/GeV deduced from phenomenology (see, e.g.,
Ref. 23).

We have found dynamical chiral symmetry breaking in the quenched approxi-
mation. Using a current mass, m(1GeV) = 6 MeV we obtain a constituent mass of
approximately 170 MeV. In the Pagels–Stokar approximation, the calculated value
for the pion decay constant is 50 MeV. These numbers are quite encouraging, es-
pecially for proceeding with the self–consistent inclusion of the quark DSE into the
gluon–ghost system.

Considering the quark loop in the gluon DSE, one realizes that the quark loop
will produce an infrared divergence which is, however, subleading as compared
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to the one generated by the ghost loop. In the latter, there appear three ghost
renormalization functions in the numerator and one in the denominator leading
effectively to an infrared divergence of the order (k2)−2κ. In the quark loop term,
there is only one factor G and thus a divergence of type (k2)−κ. Due to this sub-
leading divergence, the infrared analysis has to be redone completely before one
will be able to draw conclusions whether or not and how quark the confinement is
implemented in our set of truncated DSEs.

5. Summary

In summary, we presented a solution to a truncated set of coupled Dyson–
Schwinger equations for gluons and ghosts in the Landau gauge. The infrared
behaviour of this solution, obtained analytically, represents a strongly infrared en-
hanced ghost propagator and an infrared vanishing gluon propagator.

The Euclidean gluon correlation function presented here can be shown to vio-
late reflection positivity [12], which is a necessary and sufficient condition for the
existence of a Lehmann representation. We interpret this as representing confined
gluons. In order to understand how these correlations can give rise to confinement of
quarks, it will be necessary to redo the infrared analysis including self–consistently
the quark propagator. Nevertheless, we found dynamical chiral symmetry breaking
in the quenched approximation.

The existence of an infrared fixed point for the coupling is in qualitative dis-
agreement with previous studies of the gluon DSE neglecting ghost contributions
in the Landau gauge [1–4]. On the other hand, our results for the propagators, in
particular for the ghost, compare favourably with recent lattice calculations [17,18].
This shows that ghosts are important, in particular at low energy scales relevant
to hadronic observables.
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INFRACRVENA SVOJSTVA PROPAGATORA GLUONA, KVARKOVA I
DUHOVA U QCD LANDAUOVE BAŽDARNOSTI

Opisuje se odrezna shema za Dyson-Schwingerovu jednadžbu u Landauovoj baž-
darnosti koja zaprima Slavnov–Taylorove identitete za čvornu funkciju 3 točke.
Zanemarujući doprinose 4-čvornih korelacija, kao što su 4-gluonska čvorna funkcija
i ireducibilne jegre raspršenja, dobiva se zatvoren sustav jednadžbi za propagatore.
Za čistu baždarnu teoriju bez kvarkova, taj se sustav jednadžbi za propagatore
gluona i duhova rješava u približenju koje dozvoljava analitičku raspravu njegovih
rješenja u dalekom infracrvenom području. Pokazuje se kako gluonski propaga-
tor nestaje za male prostorne impulse, dok se nalazi da je propagator duhova
infracrveno pojačan. Promjenljivo se vezanje neperturbativne sheme oduzimanja
približava infracrvenoj stabilnoj točki za kritičku vrijednost vezanja, αc ≈ 9.5.
Pokazuje se da gluonski propagator nema Lehmannovu reprezentaciju. Izvedeni
propagatori gluona i duhova povoljno se uspored–uju s nedavnim računima na
rešetki. Daju se ishodi računa za kvarkovski propagator u gušenom približenju.
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