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The phenomenological application of Dyson-Schwinger equations to the calculation
of meson properties observable at TJNAF is illustrated. Particular emphasis is
given to this framework’s ability to unify long-range effects constrained by chiral
symmetry with short-range effects prescribed by perturbation theory, and to inter-
polate between them.
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1. Dressed quarks

The Dyson-Schwinger equations (DSEs) [1] provide a nonperturbative approach
to studying the continuum formulation of QCD, making accessible phenomena such
as confinement, dynamical chiral symmetry breaking (DCSB) and bound state
structure. However, they also provide a generating tool for perturbation theory
and hence their phenomenological application is tightly constrained at high-energy.
This is the particular feature of the phenomenological application of DSEs: their
ability to furnish a unified description of high- and low-energy phenomena in QCD.
It is elucidated in Refs. 1 and 2 and here only this aspect is illustrated, using as
primary exemplars the electromagnetic pion form factor and the γ∗π → γ transition
form factor, which are particularly relevant to the TJNAF community.

A key element in the description of hadronic observables is the dressing of the
quark propagator, which is described by the quark DSE:

Sf (p)−1 := iγ · pAf (p2) + Bf (p2) = Af (p2)
(
iγ · p + Mf (p2)

)
(1)

= Z2(iγ · p + mbm
f ) + Z1

Λ∫

q

g2Dµν(p − q)
λa

2
γµSf (q)Γfa

ν (q, p). (2)
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Here f is a flavour label, Dµν(k) is the dressed-gluon propagator [5,6], Γfa
ν (q, p) is

the dressed-quark-gluon vertex, mbm
f is the Λ-dependent current-quark bare mass

and
Λ∫
q

:=
Λ∫

d4q/(2π)4 represents mnemonically a translationally-invariant regulari-

sation of the integral, with Λ the regularisation mass-scale. The quark-gluon-vertex
and quark wave function renormalisation constants, Z1 and Z2, depend on the
renormalisation point, ζ, and the regularisation mass-scale.

The qualitative features of the solution of Eq. (2) are known. In QCD the
chiral limit is defined by m̂ = 0, where m̂ is the renormalisation-point-independent
current-quark mass. For m̂ = 0, there is no mass-like divergence in the perturbative
evaluation of the quark self energy, and hence for p2 > 20GeV2 the solution of
Eq. (2) is [6]

M0(p
2)

large−p2

=
2π2γm

3

(
−〈q̄q〉0

)

p2
(

1

2
ln

[
p2/Λ2

QCD

])1−γm

, (3)

where γm = 12/(33 − 2Nf ) is the gauge-independent mass anomalous dimension
and 〈q̄q〉0 is the renormalisation-point-independent vacuum quark condensate. The
momentum-dependence is a model-independent result. The existence of DCSB
means that 〈q̄q〉0 /=0, however, its actual value depends on the long-range behaviour
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Fig. 1. Quark mass function obtained as a solution of Eq. (2) using Dµν(k) and

Γfa
ν (q, p) from Ref. 6, and mζ

u,d = 3.7 MeV, mζ
s = 82 MeV, mζ

c = 0.58 GeV and

mζ
b = 3.8 GeV (ζ = 19 GeV). The indicated solutions of M2(p2) = p2 define the

Euclidean constituent-quark mass, ME
f , which takes the values: ME

u,d = 0.56 GeV,

ME
s = 0.70 GeV, ME

c = 1.3 GeV, ME
b = 4.6 GeV.
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of Dµν(k) and Γ0a
ν (q, p), which is modelled in contemporary DSE studies. Requiring

a good description of light-meson observables necessitates 〈q̄q〉0 ≈ −(0.24GeV)3.

In contrast, for m̂f /=0,

Mf (p2)
large−p2

=
m̂f(

1

2
ln

[
p2/Λ2

QCD

])γm

. (4)

An obvious qualitative difference is that, relative to Eq. (4), the chiral-limit solution
is 1/p2-suppressed in the ultraviolet.

There is some quantitative model-dependence in the p2-evolution of Mf (p2)
into the infrared. However, for any forms of Dµν and Γfa

ν that provide an accurate
description of fπ,K and mπ,K , one obtains profiles like those illustrated in Fig. 1.
The evolution to coincidence between the chiral-limit and u, d-quark mass functions,
apparent in this figure, makes clear the transition from the perturbative to the
nonperturbative domain. The chiral limit mass-function is nonzero only because
of the nonperturbative DCSB mechanism, whereas the u, d-quark mass function
is purely perturbative at p2 > 20GeV2, where Eq. (4) is accurate. The DCSB
mechanism thus has a significant effect on the propagation characteristics of u, d, s-
quarks, and this is fundamentally important in QCD with observable consequences.

2. Bound states

A meson is a bound state of a dressed-quark and -antiquark, and its internal
structure is described by a Bethe-Salpeter amplitude obtained as the solution of

[ΓP (k;Q)]tu =

Λ∫

q

[χP (q;Q)]sr Krs
tu (q, k;Q) , (5)

where χP (q;Q) = S(q+)ΓP (q;Q)S(q−); S(q) = diag(Su(q), Sd(q), Ss(q), . . .); q+ =
q + ηQ Q, q− = q− (1− ηQ)Q, with Q the total momentum of the bound state and
ηQ ∈ [0, 1] the relative-momentum partitioning parameter; and r,. . . ,u represent
colour-, Dirac- and flavour-matrix indices. For a pseudoscalar meson, such as the
pion, the solution has the general form

ΓP (k;Q) = TP γ5

[
iEP (k;Q) + γ · QFP (k;Q) (6)

+ γ · k k · QGP (k;Q) + σµν kµQν HP (k;Q)

]
,

where TP is a flavour matrix identifying the meson; e.g., Tπ+

= 1

2

(
λ1 + iλ2

)
, with

{λj , j = 1 . . . N2
f − 1} the Gell-Mann matrices of SU(Nf ).
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In Eq. (5), K is the renormalised, fully-amputated, quark-antiquark scattering
kernel. Important in the successful application of DSEs is that K has a systematic
skeleton expansion in terms of the elementary dressed-particle Schwinger functions;
e.g., the dressed-quark and -gluon propagators. The expansion introduced in Ref. 7
provides a means of constructing a kernel that, order-by-order in the number of ver-
tices, ensures the preservation of vector and axial-vector Ward-Takahashi identities;
i.e., current conservation. Only with such a truncation is an accurate description
of the light-quark mesons possible.

In QCD, the leptonic decay constant of a pseudoscalar meson is [6]

fP Qµ = TrZ2

Λ∫

k

(TP )Tγ5γµ χP (k;Q), (7)

where the trace is over colour, Dirac and flavour indices. Equation (7) is exact: the
Λ-dependence of Z2 ensures that the right-hand-side (r.h.s.) is finite as Λ → ∞, and
its ζ- and gauge-dependence is just that necessary to compensate that of χP (k;Q).

In the chiral limit, the axial-vector current is conserved, and employing any
Ward-Takahashi identity preserving truncation of K one obtains

fP EP (k; 0) = B0(k
2) , FR(k; 0) + 2 fP FP (k; 0) = A0(k

2) ,

GR(k; 0) + 2 fP GP (k; 0) = 2A′

0(k
2) , HR(k; 0) + 2 fP HP (k; 0) = 0 ,

(8)

where FR, GR and HR are calculable functions in the dressed axial-vector ver-
tex, ΓH

5µ(k;Q). These identities are associated with Goldstone’s theorem and in
fact one can show [6] that when chiral symmetry is dynamically broken: 1) the
flavour-nonsinglet, pseudoscalar BSE has a massless solution; 2) the Bethe-Salpeter
amplitude for the massless bound state has a term proportional to γ5 alone, with
the momentum-dependence of EP (k; 0) completely determined by that of B0(k

2),
in addition to terms proportional to other pseudoscalar Dirac structures that are
nonzero; and 3) ΓP

5µ(k;Q) is dominated by the pseudoscalar bound state pole for

Q2 ≃ 0. The converse is also true. Hence, in the chiral limit, the pion is a mass-
less composite of a quark and an antiquark, each of which has an effective mass
ME ≈ 0.5GeV.

For nonzero values of the current-quark mass, whether small or large, instead
of Eqs. (8) one obtains [6]

f2
P m2

P = −MP 〈q̄q〉Pζ , (9)

where MP = Trf

[
M(ζ)

{
TP ,

(
TP

)T
}]

e.g., for the π: Mπ+ = mζ
u + mζ

d , and

−〈q̄q〉Pζ = fP TrZ4

Λ∫

q

(
TP

)T
γ5χP (q;Q). (10)
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Equation (9) is an exact mass formula for flavour non-singlet mesons and I note that
the r.h.s. does not involve a difference of massive quark propagators: a phenomeno-
logical assumption often employed. 〈q̄q〉Pζ in Eq. (10) is an “in-hadron” condensate.
It is gauge-independent and its renormalisation point dependence is exactly that
required to ensure that the r.h.s. of Eq. (9) is renormalisation-point independent.

For small current-quark masses, m̂q ≈ 0, Eq. (9) yields what is commonly called
the Gell-Mann–Oakes–Renner relation; i.e., m2

P ∝ m̂q, because

lim
m̂→0

〈q̄q〉Pζ = 〈q̄q〉0ζ . (11)

However, it also has an important corollary when the current-mass, m̂Q, of one or
both constituents becomes large, predicting [8]

mP ∼ m̂Q , (12)

which follows because 〈q̄q〉Pζ is m̂Q-independent for large-m̂Q and fP ∼ m
−1/2
P . The

transition from the quadratic to the linear mass-relation occurs at m̂q ≈ 2 m̂s [9],
at which point explicit chiral symmetry breaking overwhelms DCSB.

Two other important model-independent results can be obtained [6] from Eq. (5)
and the systematic construction of K. The scalar functions in Eq. (6) depend on
three invariants; e.g., EP (k;Q) = EP (k2, k ·Q,Q2). The zeroth Chebyshev moment
of these functions; e.g.,

0EP (k2, Q2) :=
2

π

π∫

0

dx
√

1 − x2 EP (k;Q) , k · Q := x
√

k2Q2 (13)

are dominant in the description of bound-state properties, and

0EP (k2, Q2)
large−k2

∼ M0(k
2) , (14)

with 0FP (k2, Q2), k2 0GP (k2, Q2) and k2 0HP (k2, Q2) behaving in precisely the same
way. Further,

k2 0GP (k2, Q2)
large−k2

= 2 0FP (k2, Q2) . (15)

These results determine the asymptotic form of the electromagnetic pion form fac-
tor.

The impulse approximation to the electromagnetic pion form factor is [10]

(p1 + p2)µ Fπ(q2) := Λµ(p1, p2) (16)

= 2Nc TrD

Λ∫

k

Γ̄π(k;−p2)S(k++) iΓγ
µ(k++, k+−)S(k+−) Γπ(k0−; p1)S(k−−),
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where Γ̄π(q;−P )T := C−1 Γπ(−q;−P )C with C = γ2γ4, the charge conjugation
matrix, and kαβ := k + αp1/2 + βq/2, p2 := p1 + q. No renormalisation constants
appear explicitly in Eq. (16) because the renormalised dressed-quark-photon ver-
tex, Γγ

µ, satisfies the vector Ward-Takahashi identity. This also ensures current
conservation: (p1 − p2)µ Λµ(p1, p2) = 0.
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Fig. 2. Upper panel: calculated pion form factor compared with data at small-q2.
Lower panel: the large-q2 comparison, with the two solid lines showing the range
of model-dependent uncertainty. In both panels, the dashed line [13] assumes that
Fπ = 0 = Gπ = Hπ, and the data are taken from Refs. 12.
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The calculation of Fπ(q2) is simplified by using a model algebraic parametri-
sation of the dressed-quark propagator that efficiently characterises the essential
elements of the solution of the quark-DSE and determines the pion Bethe-Salpeter
amplitude via Eqs. (8) and (15), and an efficacious Ansatz [11] for Γγ

µ in which the
vertex is completely determined by the dressed-quark propagator. The result is de-
picted in Fig. 2. The current uncertainty in the experimental data at intermediate
q2 is apparent in the lower panel, as is the difference between the results calculated
with or without the pseudovector components: F , G, of the pion Bethe-Salpeter
amplitude. These components provide the dominant contribution to Fπ(q2) at large
pion energy [10] because of the multiplicative factors: γ · Q and γ · k k · Q, which
contribute an additional power of q2 in the numerator of those terms involving F 2,
FG and G2 relative to those proportional to E. Including them, one finds

Fπ(q2)
large−q2

∼
α(q2)

q2

(−〈q̄q〉0q2)2

f4
π

; (17)

i.e., q2Fπ(q2) ≈ const., up to calculable ln q2-corrections, in agreement with the
expectations raised by perturbative QCD. If the pseudovector components of Γπ

are neglected, the additional numerator factor of q2 is missing and one obtains [13]
q4Fπ(q2) ≈ const..

3. γ
∗
π → γ transition form factor

The impulse approximation to this form factor is

T 3
µν(k1, k2) :=

1

4π2
iεµνρσ k1ρk2ρT̂ (k2

1, k1 · k2, k
2
2) (18)

= Tr

Λ∫

q

S(q1) Γπ(q̂;−P )S(q2) iQΓγ
µ(q2, q12)S(q12) iQΓγ

ν(q12, q1) ,

where Q = ((1/3)I + τ3)/2 = diag(2/3,−1/3), and k1, k2 are the photon momenta
[on-shell: k2

1 = 0 = k2
2, 2k1 · k2 = P 2], q is the loop-momentum, and q1 := q − k1,

q2 := q + k2, q̂ := 1

2
(q1 + q2), q12 := q − k1 + k2. The manner in which the “triangle

anomaly” is recovered with no dependence on model parameters is described in
Ref. 10, and this same mechanism applies to all anomalous pion and photopion
processes [14]. It is a unique feature of the DSE framework.

Using this expression, one can calculate [15,16] T̂ (k2
1, k1·k2, k

2
2) when one or both

of the photons is off shell and also determine the asymptotic behaviour analytically.
The formal character of that derivation is presented in Ref. 16 but, in neglecting
essential aspects of renormalisation, it is imprecise. That is remedied here for the
illustrative case of one photon off-shell: k2

1 = Q2.

At large-Q2, k1 · k2 ≈ −Q2/2, and in Eq. (18) the pion Bethe-Salpeter ampli-
tude focuses the integration support at q̂ = 0. As a consequence, the asymptotic
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behaviour of the integral can be determined using

S(q12) ≈
1

Z2

1

Q2
iγ · (k1 − k2) , Γγ

µ ≈ Z1 γµ , (19)

which follow from Eq. (2) and the DSE for the quark-photon vertex, so that

T 3
µν(k1, k2) ≈ i

1

Q2
(k1 − k2)σ TrZ2

Λ∫

q

1

6
τ3 χπ(q̂;−P )γµγσγν , (20)

where I have used the Ward identity: Z1 = Z2. Hence, the transition form factor

1

4π2
iεµνρσ k1ρk2σ T (Q2) := T 3

µν(k1, k2) + T 3
νµ(k2, k1)

≈ −
1

Q2
iεµνρσ (k1 − k2)ρ

2

3
TrZ2

Λ∫

q

1

2
τ3 χπ(q̂;−P )γ5γσ (21)

= iεµνρσ k1ρk2σ
4

3

fπ

Q2
, (22)

where the last line follows from Eq. (7); i.e.,

T (Q2)
large−Q2

≈
4

3

4π2fπ

Q2
, (23)

in agreement with the expectations raised by perturbative QCD. Thus, as with
Eq. (16), one equation unifies the small- and large-Q2 results and predicts the
evolution between them [15–17].

4. Epilogue

There are many other applications of interest to the community of Jefferson
Lab associates, among them the diffractive electroproduction of neutral vector
mesons [18], the electromagnetic form factors of their charged states [19] and the
unification of light- and heavy-meson observables [8]. The most pressing contem-
porary challenge relevant to this community is the extension of the framework to
the calculation of baryon observables, which is underway.
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DYSON-SCHWINGEROVE JEDNADŽBE: SPAJANJE MALIH I VELIKIH
DUŽINSKIH LJESTVICA

Daju se primjeri fenomenoloških primjena Dyson-Schwingerovih jednadžbi za
izračunavanje svojstava mezona koji se mogu istraživati u TJNAF. Posebna se
pažnja pridaje mogućnostima ovog pristupa da ujedini efekte dugog dosega koji su
ograničeni kiralnom simetrijom s učincima kratkog dosega koje propisuje teorija
smetnji, te interpolaciji med–u njima.
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