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We construct (hybrid) baryons in the flux–tube model of Isgur and Paton. In the
limit of adiabatic quark motion, we build proper eigenstates of orbital angular
momentum and construct the flavour, spin and JP of hybrid baryons from the
symmetries of the system. The lowest-mass hybrid baryon is estimated at about
GeV.
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1. Introduction

Hybrid baryons are bound states of three quarks with an explicit excitation in
the gluon field of QCD. In Ref. 1 was detailed the construction of (hybrid) baryons
in a model motivated from the strong coupling expansion of the Hamiltonian formu-
lation of lattice QCD, the non–relativistic flux–tube model of Isgur and Paton [1].
This model predicts the adiabatic potentials of (hybrid) mesons at large interquark
separations, as well as the mass of the JPC = 1−+ hybrid meson, consistent with
recent estimates from lattice QCD [2,3]. In Ref. 1, we studied the detailed flux
dynamics and built the flux Hamiltonian. We restrict our discussion to cases where
the flux settles down in a Mercedez Benz configuration (as motivated by lattice
QCD [4]). A minimal amount of quark motion is allowed in response to flux mo-
tion, in order to work in the centre of mass frame. Otherwise, we make the so–called
“adiabatic” approximation, where the flux motion adjusts itself instantaneously to
the motion of the quarks. The main result is that the lowest flux excitation can
to a high degree of accuracy (about 5%) be simulated by neglecting all flux–tube
motions except the vibration of a junction. This result was obtained within the
small oscillation approximation. The junction acquires an effective mass Meff from

1Work done in collaboration with Simon Capstick.
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the motion of the remainder of the flux–tube and the quarks. The model is then
simple: a junction is connected via a linear potential to the three quarks. The
ground state of the junction motion corresponds to a conventional baryon and the
various excited states to hybrid baryons. The junction can move in three directions,
and correspondingly be excited in three ways, giving the hybrid baryons H1, H2

and H3. The junction motion is depicted in Fig. 1.

l2
l3

l1

Fig. 1. The junction connects strings coming from the three quarks. The vectors
r and li, respectively, point from the equilibrium position of the junction to its
current position and the quark positions.

The Hamiltonian for the junction motion in the Mercedez Benz configuration
is simply the kinetic energy of the junction added to the sum of the lengths from
the junction to the quarks multiplied by the string tension b,

Hflux =
1

2
Meff ṙ

2 + b

3∑

i=1

|li − r|. (1)

We shall be taking ansatz wave functions of the form

η̂
−
· r ΨB(r) (2)

for H1 hybrid baryons, where ΨB(r) is an exponential function. It is not difficult
to show that η̂

−
lies in the plane spanned by the three quarks (the “qqq plane”).

2. Quantum numbers of low–lying hybrid baryons

2.1. Angular momentum

The Hamiltonian in Eq. (1) is not invariant under rotations in the junction
position r, with fixed quark positions. When the junction wave function, which
is hence not an eigenfunction of angular momentum, is combined with the quark
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motion wave functions, which are eigenfunctions of angular momentum, it must be
done in such a way that the total angular momentum of the junction and quark
motion is well–defined. Obtaining a well–defined total angular momentum is a tech-
nically challenging problem that is an artifact of the adiabatic approximation, which
separates junction and quark motion. We here merely give an intuitive argument
why the total angular momentum L of the H1 baryons is expected to be 1.

The hybrid baryon wave function is proportional to η̂
−
· r, and since η̂

−
lies in

the qqq plane, it can be regarded as the x-axis, so that η̂
−
· r =

√
2π/3 r(−Y11(r̂)+

Y1−1(r̂)) in terms of spherical harmonics. If the mathematics of conservation of
angular momentum is followed through, it is found that if the angular momentum
of the quark motion is Lq = 0 (corresponding to the lowest energy quark motion
states), then the total angular momentum projection just equals the angular mo-
mentum projection of the junction wave functions, which in this case is ±1. Hence
the total angular momentum projection is ±1 so that L cannot be zero, and should
most likely be 1.

2.2. Exchange symmetry

Exchange symmetry transformations Sij exchange the positions of the quarks
li ↔ lj . Since the physics does not depend on the quark position labelling con-
vention, the junction Hamiltonian should be exchange symmetric, as can be seen
explicitly in Eq. (1), noting that the junction position r is not determined by the
positions of the quarks.

We now argue that the junction wave functions of (hybrid) baryons should trans-
form either totally symmetrically or totally anti–symmetrically under exchange
symmetry. Since the Hamiltonian is invariant under exchange symmetry we have
the commutation relation [Hflux, Sij ] = 0. Combining this with the Schrödinger
equation

HfluxΨ = V (l1, l2, l3)Ψ gives Hflux(SijΨ) = V (l1, l2, l3)(SijΨ), (3)

so that SijΨ is degenerate in energy with Ψ. Now, since the baryon and each of the
hybrid baryons Hi have different energies (except when l1 = l2 = l3) it follows that
SijΨ must be a multiple of Ψ, i.e. that SijΨ = ςΨ, where ς is complex number. Now
note that the product of two exchange symmetry transformations is the identity,
i.e. that

SijSij = 1, which implies that ς2 = 1, (4)

or ς = ±1. Hence SijΨ = ±Ψ.

Assume that S12Ψ = ςΨ. We now show2 that S23Ψ = S13Ψ = ςΨ, i.e. that Ψ
is either totally symmetric or totally anti–symmetric under label exchange. This

2This result also follows by noting that [Hflux, Sij ] = 0 what implies that Ψ must be an
irreducible representation of the exchange symmetry group, i.e. totally symmetric, anti–symmetric
or of mixed symmetry. But since we already showed that SijΨ = ±Ψ, it follows that Ψ is in either
the totally symmetric or anti–symmetric irreducible representation.
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follows by the two identities

S12S23S13S23 = 1, which implies that S12Ψ = S13Ψ, (5)

S23S12S13S12 = 1, which implies that S23Ψ = S13Ψ.

For each of the hybrid baryons Hi, there are hence two varieties: the junction
wave function is totally symmetric (S) or totally anti–symmetric (A) under quark
label exchange, denoted by HS

i and HA
i .

2.3. Parity

The inversion of all coordinates li → −li and r → −r, called “parity”, is a
symmetry of the junction Hamiltonian in Eq. (1).

η̂
−

is a vector in the qqq plane and is a linear combination of the l̂i, which
span the plane, with coefficients which are functions of li. The lengths li remain

invariant under parity. However, l̂i → −l̂i under parity. It follows that η̂
−

is odd

under parity.

The junction wave function in Eq. (2) is thus even under parity, since η̂
−
→ −η̂

−

and r → −r. For a low–lying hybrid the quark motion wave function is even under
parity, so that the full hybrid baryon wave function has even parity.

Since quarks are fermions, the wave function should be totally antisymmetric
under quark label exchange, called the Pauli principle. Since our philosophy is
that (hybrid) baryon dynamics is dominated by (non–perturbative) long-distance
physics, we consider the colour structure of the (hybrid) baryon to be motivated
from the long-distance limit, i.e. from the strong-coupling limit of the Hamiltonian
formulation of lattice QCD [2]. Here, the quarks are sources of triplet colour, which
flows along the string connected to the quarks into the junction, where an ǫijk

neutralizes the colour. The colour wave function ǫijk is hence totally antisymmetric
under exchange of quarks for both the conventional and hybrid baryon.

This imposes constraints on the combination of flavour and non–relativistic spin
S of the three quarks that is allowed. For a totally symmetric hybrid baryon junc-
tion wave function, the flavour–spin wave functions must be totally symmetric. This
is because we are interested in the low–lying hybrid baryons which have the quark
motion wave function in the ground state, i.e. totally symmetric. If the flavour is ∆,
which is totally symmetric, this implies that the spin must be totally symmetric,
i.e. S = 3

2
. Similarly for flavour N the spin must be 1

2
. For a totally antisymmetric

junction wave function, the flavour–spin wave function must be totally antisymmet-
ric. For ∆ flavour this implies that the spin must be totally antisymmetric, which
is not realizable. Hence there are no ∆ hybrid baryons with totally antisymmetric
junction wave functions. The N flavour is found to have spin 1

2
.

The quantum numbers of the lowest–lying states that can be constructed on
the H1 adiabatic surface are indicated in Table 1.

The total angular momentum J = L + S. Since L = 1 for the ground state H1
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hybrid baryon, J = 1

2
, 3

2
for S = 1

2
, and J = 1

2
, 3

2
, 5

2
for S = 3

2
. These assignments

are indicated in Table 1.

One notes from Table 1 that amongst the HS
1 hybrid baryons, there are N1

2

+

and ∆3

2

+
states which have identical quantum numbers to the conventional N and

∆ baryons.

TABLE 1. Quantum numbers of low–lying hybrid baryons for the adiabatic surface
H1. In the absense of spin-dependent forces, all these states are degenerate. N,∆
are the flavour structure of the wave function (i.e. those of the conventional baryons
N,∆, respectively) and P the parity.

Hybrid baryon L S (N,∆)2S+1JP

HS
1 1 1

2
, 3

2
N2 1

2

+
, N2 3

2

+
, ∆4 1

2

+
, ∆4 3

2

+
, ∆4 5

2

+

HA
1 1 1

2
N2 1

2

+
, N2 3

2

+

It is interesting to compare our hybrid baryons to the predictions of the bag
model. Out of all the states listed under HS

1 and HA
1 in Table 1, only one pair of

N2 1

2

+
, N2 3

2

+
states have the same flavour, spin S, total angular momentum and

parity as the low–lying hybrid baryons in the bag model [5]. In fact, for the HS
1

hybrid baryons, the bag model swaps the N and ∆ flavours from our assignments,
keeping other quantum numbers the same. Both our model and the bag model have
seven low–lying hybrid baryons [5].

3. Numerical estimate of the hybrid baryon mass

The difference between the hybrid and conventional baryon adiabatic potentials
(or junction energies) as a function of quark positions, VH1

(l1, l2, l3)−VB(l1, l2, l3),
was determined numerically from the first part of Eq. (3) by using the Hamiltonian
in Eq. (1), and were displayed in Ref. 6.

Now define the hybrid baryon potential as

V̄H1
(l1, l2, l3) ≡ V̄B(l1, l2, l3) + VH1

(l1, l2, l3) − VB(l1, l2, l3) (6)

where V̄B(l1, l2, l3) is the phenomenologically successful relativized baryon Hamilto-
nian with Coulomb and linear potential terms of Ref. 7 (with spin–spin, spin–orbit
and tensor interactions neglected); and the parameters are also those of Ref. 7. Note
that the Coulomb interaction of the conventional and hybrid baryon is assumed to
be identical.

We solve the Schrödinger equation for the Hamiltonian in Eq. (6) with 95 spin–
space basis states incorporating Lq = 0, 1, 2 harmonic oscillator wave functions
for the J = 1

2
case, i.e. construct 95 × 95 dimensional matrices. These matrices
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are subsequently diagonalized. The differences between the energies for the hybrid
and the conventional baryon is then added to the experimental mass of the lowest
baryon, taken as the spin–averaged mass of the N and ∆, i.e. 1085 MeV [8]. The
first three quark orbital excitations Lq = 0, 1, 2 of hybrid baryons composed of up
and down quarks are found to have masses 1976, 2341 and 2619 MeV, respectively.

Hence, for the lowest hybrid baryon level, with the quantum numbers in Table
1, we obtain that MH1

− MB = 891 MeV, giving a mass estimate of MH1
= 1976

MeV.

This mass estimate is substantially higher than other mass estimates in the
literature: ≈ 1.5 GeV in the bag model [5] and 1.5 ± 10% GeV in QCD sum rules
[9].

There are two crucial assumptions that were made in the early work on (hybrid)
meson masses in the flux–tube model: the adiabatic motion of quarks and the small
oscillation approximation for flux motion [2]. It was later shown that when the
adiabatic approximation is lifted, the masses go up, and when the small-oscillation
approximation is lifted, the masses go down [2]. In our study of (hybrid) baryons,
we have partially lifted the adiabatic approximation by working in the centre of
mass frame. We have fully lifted the small oscillation approximation. The effects
on the masses of (hybrid) baryons when the various approximations are lifted, are
the same as those found for (hybrid) mesons.

In our simulation, we obtain the average values
√
〈ρ2〉 =

√
〈λ2〉 = 2.12, 2.52

GeV−1 for the low–lying baryon and H1 hybrid baryon, respectively. 〈ρ2〉 = 〈λ2〉
is expected since the spatial parts of the wave functions of the low–lying states are
totally symmetric under exchange symmetry. The hybrid baryon is 20% larger than
the conventional baryon.

4. Phenomenology

The sign of the the Coulomb interaction is expected to be the same for both
conventional and hybrid baryons [5]. This means that the hyperfine interaction has
the same sign in both situations, so that the ∆ hybrid baryons are always heavier
than the N hybrids. This implies that only four of the original seven low–lying
baryons, the N hybrids, are truly low–lying.

We expect a priori the most phenomenologically interesting decay of the low–
lying hybrid baryons to be the P-wave decay to Nρ and Nω, simply because the
phase space is favourable and ρ and ω are easily isolated experimentally. The Nρ
decay would be especially relevant to the electro– and photoproduction of hybrid
baryons at TJNAF via the vector-meson-dominated coupling of the photon to the ρ.
Indeed, a search for excited N∗ resonances with mass less than 2.2 GeV is currently
underway in Hall B [10]. Given the mass estimate for the low–lying hybrid baryons,
the detection of hybrid baryons in Nρ or Nω is feasible at TJNAF. There are also
planned experiments in πN scattering by Crystal Ball E913 at the new D–line at
Brookhaven with the capability of searching for states in N{η, ρ, ω}, which would
isolate states in the mass region about 2 GeV [11].
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The decay ψ → pp̄ω has been observed with a branching ratio of (1.30 ±
0.25) 10−3 and ψ → pp̄η′ with branching ratio (9 ± 4) 10−4 [8]. Since gluonic
hadron production is expected to be enhanced above conventional hadron produc-
tion in the glue–rich decay of the ψ, it is possible that a partial-wave analysis of the
pω or pη′ invariant masses would yield evidence for hybrid baryons. Future work
at BEPC and an upgraded τ–charm factory would be critical here.

5. Conclusions

The spin and flavour structure of the low–lying hybrid baryons have been spec-
ified, and differ from their structure in the bag model. Exchange symmetry con-
strains the spin and flavour of the (hybrid) baryon wave function. The orbital
angular momentum of the low–lying hybrid baryon is argued to be unity, with the
parity even, contrary to conventional baryons where L = 1 would imply the parity
to be odd. The low–lying hybrid baryon adiabatic potential and mass has been
estimated numerically. The mass estimate is considerably higher than bag model
and QCD sum-rule estimates.
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SIMETRIJE I MASE (HIBRIDNIH) BARIONA

Na osnovi Isgur–Patonovog modela cijevi toka razvijaju se modeli (hibridnih) bari-
ona. U granici adijabatskog gibanja kvarkova grade se svojstvena stanja impulsnog
momenta, te se slažu okus, spin i JP hibridnih bariona primjenom simetrija sustava.
Najniža se masa hibridnog bariona ocjenjuje na oko 2 GeV.
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