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We study the chiral phase transition in the linear sigma model at nonzero temper-
ature and baryon density with Nf ≥ 3 quark flavours and Nc colours. One-loop
calculations for Nf = 3 predict a first-order phase transition at both µ = 0 and
µ /=0. We also compare the results with the already existing results for Nf = 2.

PACS numbers: 11.30.Qc 11.30.Rd 12.39.Fe 11.10.Wx UDC 539.126

Keywords: linear sigma model, restoration of chiral symmetry, temperature, baryon den-

sity, three flavours

Because of small quark masses, quantum chromodynamics (QCD) possesses the
approximative chiral SU(Nf )×SU(Nf ) symmetry for Nf = 2, 3. Since perturbative
QCD cannot give good quantitative predictions at low energies, it is convenient to
use various effective models. In this paper we study the chiral linear σ-model. In
this model, the chiral symmetry is spontaneously broken, but it restores at high
energies (i.e. temperatures). The aims of this paper are to describe the symmetry
breaking at the classical level, to investigate the phase transition after which the
symmetry restores and to determine the critical temperature and the order of the
phase transition. The results for Nf = 2 have already been published [1]. Here we
generalize some of the results to Nf ≥ 3, with special emphasis on Nf = 3, and
compare them with the results for Nf = 2.

Let us start with the σ-model at the classical level. Our approach is similar to
the approach of Ref. 2. For Nf ≥ 3, we introduce the matrix bosonic field

Φ(x) =

N2

f−1
∑

a=0

(σa(x) + iπa(x))
λa√

2
, (1)

FIZIKA B 8 (1999) 2, 401–406 401
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where λ0 =
√

2/Nf 1INf×Nf
, whereas λa, a = 1, 2, . . . , Nf , are the standard gener-

ators of the fundamental representation of the group SU(Nf ). The hermitian fields
πa represent the light pseudoscalar mesons, while the hermitian fields σa represent
the corresponding heavy scalar mesons.

The case Nf = 2 is special because the representations 2 and 2̄ of SU(2) are
equivalent. An irreducible representation is provided by the choice

Φ(x) =
1√
2
[σ(x)1I2×2 + iπ(x) · τ ] . (2)

The most general Lagrangian constructed from the fields Φ(x) which is
SU(Nf )×SU(Nf ) invariant and renormalizable for any Nf , in the Euclidean no-
tation takes the form

Lb =
1

2
Tr [∂µΦ∂µΦ†] + V (Φ,Φ†) , (3)

where

V (Φ,Φ†) =
m2

0

2
Tr (ΦΦ†) +

λ

4
(Tr ΦΦ†)2 +

γ

4
Tr (ΦΦ†)2 . (4)

The full symmetry of (3) is actually UA(1)×SU(Nf )×SU(Nf ) [3]. For Nf = 3, one
can also add a renormalizable term proportional to det Φ+det Φ†, whose symmetry
is SU(Nf )×SU(Nf ).

The interaction with fermions for Nf ≥ 3 takes the form

Lf = ψ̄

[

γµ∂µ + g

√

Nf

2

∑

a

(σa + iπaγ5)λa

]

ψ , (5)

whereas for Nf = 2 it becomes

Lf = ψ̄ [γµ∂µ + g(σ + iπ · τγ5)] ψ . (6)

The fermions in (5) and (6) are interpreted as constituent quarks with Nc = 3
colours [1,4,5].

Let us now consider the symmetry breaking at the classical level. The potential
for the SU(3)×SU(3) σ-model is given by

V (Φ,Φ†) =
m2

0

2
Tr (ΦΦ†) +

λ

4
(Tr ΦΦ†)2 +

γ

4
Tr (ΦΦ†)2 − τ(det Φ + det Φ†) . (7)

The expectation value 〈Φ〉 can be diagonalized and chosen to be real [6], so we find
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〈Φ〉=〈Φ†〉

=
1√
2











√

2

3
〈σ0〉+〈σ3〉+ 1√

3
〈σ8〉

√

2

3
〈σ0〉−〈σ3〉+ 1√

3
〈σ8〉

√

2

3
〈σ0〉− 2√

3
〈σ8〉











≡





v1

v2

v3



 , vi ∈ R . (8)

Therefore, the vacuum part of the potential (7) can be written as

V =
m2

0

2

∑

i

v2

i +
λ

4

(

∑

i

v2

i

)2

+
γ

4

∑

i

v4

i − 2τv1v2v3 . (9)

The τ -term in (7) leads to a first-order phase transition and this term should be
included if we want to incorporate the UA(1) anomaly [3]. However, from now on we
work with the approximation τ = 0, because this choice simplifies the calculations
and provides a unique theoretical framework for all numbers of flavours Nf ≥ 3.
It is also interesting to see whether the order of the transition will change by
the omittion of the τ -term. Note also that the choice τ = 0 does not violate the
renormalizability, because the presence of τ changes the symmetry of the potential.

With τ = 0, (9) is valid also for Nf ≥ 3. The simplest minimum of the potential
is obtained by putting 〈σ0〉 /=0, 〈σi〉 = 0, i = 1, 2, . . . , N2

f − 1, which means that all
vi are equal. This leads to

〈σ0〉2 ≡ σ2 = f2

π =
−m2

0

λ +
γ

Nf

. (10)

By the redefinition σ0(x) → σ + σ′
0
(x) in the Lagrangian, we find the masses

m2

~σ = m2

0
+

(

λ +
3γ

Nf

)

f2

π =
2γ

Nf

f2

π ,

m2

σ0
= m2

0
+ 3

(

λ +
γ

Nf

)

f2

π = 2

(

λ +
γ

Nf

)

f2

π ,

m2

π = m2

0
+

(

λ +
γ

Nf

)

f2

π = 0 ,

mF = g fπ , (11)

where ~σ ≡ {σ1, σ2, . . . , σN2

f
−1}.
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For Nf = 2, we take γ = 0, because (Tr ΦΦ†)2 = (σ2 + π
2)2 = 2Tr (ΦΦ†)2.

The ~σ degrees of freedom are absent for Nf = 2, because of (2). If we omit the
first equation in (11), the relations (10) and (11) are valid also for Nf = 2 when
γ = 0 [1]. In later numerical calculations we take fπ = 92.4 MeV, mσ = 1000 MeV,
mF = 340 MeV, as in Ref. 1, and m~σ = 1300 MeV.

Let us now study quantum and thermal fluctuations in the σ-model. This has
already been studied for Nf = 2 in Ref. 1, where the saddle-point method has been
used. It has also been shown in Ref. 1 that the saddle-point method is equivalent
to the standard approach [7–9]. Technical details for Nf ≥ 3 are similar to those
for Nf = 2. Therefore, using the same notation as in Ref. 1, we just give the main
results in the standard approach for Nf ≥ 3. The results are equivalent to the
results which would be obtained using the saddle-point method.

After the redefinition σ0(x) → σ+σ′
0
(x) in the Lagrangian, we find the effective

potential

Ω(σ, T, µ) =

(

λ +
γ

Nf

)

σ4

4
+

m2

0

2
σ2 + Ω0(σ, T, µ) + ΩI(σ, T, µ) , (12)

where

Ω0 = ΩF + Ωσ0
+ Ω~σ + Ωπ , (13)

ΩF = −NcNf

1

β

∑

l

∫

d3p

(2π)3
Tr ln [β(−i/p + mF )] ,

Ωσ0
=

1

2β

∑

n

∫

d3k

(2π)3
ln

[

β2(k2 + m2

σ0
)
]

,

Ω~σ = (N2

f − 1)
1

2β

∑

n

∫

d3k

(2π)3
ln

[

β2(k2 + m2

~σ

]

,

Ωπ = N2

f

1

2β

∑

n

∫

d3k

(2π)3
ln

[

β2(k2 + m2

π)
]

. (14)

The chiral condensate σ(T, µ) is determined by ∂Ω/∂σ = 0, which, after dividing
it by λσ, neglecting the multi-loop contributions, discarding the infinite vacuum
contributions [10] and using 〈σ′〉 = 0, leads to

σ2 = f2

π − 4NfNcg
2

λ + γ
Nf

∫

d3q

(2π)3
1

2ωF

nF (ωF )

−Nfλ + 3γ

Nfλ + γ
(N2

f − 1)

∫

d3q

(2π)3
1

ω~σ

nB(ω~σ)

−3

∫

d3q

(2π)3
1

ωσ0

nB(ωσ0
) − N2

f

∫

d3q

(2π)3
1

ωπ

nB(ωπ) . (15)
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From the results obtained for Nf = 2 [1], we conclude that (11) generalizes to

mπ = 0 ,

m2

σ0
= 2

(

λ +
γ

Nf

)

σ2 ,

m2

~σ =
2γ

Nf

σ2 ,

mF = gσ , (16)

for T, µ ≤ Tc, µc, where Tc and µc are the critical temperature and the critical
chemical potential, respectively. We solve (15) numerically for Nf = 3, the results
being depicted in Fig. 1. The results look qualitatively similar to the analogous
results for Nf = 2 [1]. In particular, we find again that the phase transition is of
the first order. However, the critical temperature for Nf = 3 is smaller than that
for Nf = 2.

Fig. 1. Chiral condensate as a function of temperature at µ = 0 and µ = 160 MeV,

for Nf = 3. The vertical line corresponds to the first-order phase transition. The

dashed line corresponds to a physically unstable solution. σ and T are in MeV.

Finally, let us draw the conclusions. The results of Ref. 1 for Nf = 2 can be easily
generalized to Nf ≥ 3, providing that we choose a vacuum in which only 〈σ0〉 is
different from zero. The first-order phase transition for Nf = 3 (with τ = 0) occurs
at a lower temperature than that for Nf = 2, which confirms the conclusion of Ref.
1 that the nuclear matter produced in heavy-ion collisions is close to or slightly
above the chiral-phase-transition line. It is hard to say whether the prediction of
the first-order transition is in agreement with present lattice simulations, because
some lattice calculations predict a second-order transition (e.g. Ref. 11), while
others predict a first-order one (e.g. Ref. 12).
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1) N. Bilić and H. Nikolić, Eur. Phys. J. C 6 (1999) 513;

2) A. J. Paterson, Nucl. Phys. B190 (1981) 188;

3) R. D. Pisarski and F. Wilczek, Phys. Rev. D29 (1984) 338;

4) S. Contreras and M. Loewe, Int. J. Mod. Phys. A5 (1990) 2297;

5) A. Gocksch, Phys. Rev. Lett. 67 (1991) 1701;

6) J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford University
Press, 1996;

7) L. R. Ram Mohan, Phys. Rev. D14 (1976) 2670;

8) J. D. Anand, R. Basu, S. N. Biswas, A. Goyal and S. K. Sony, Phys. Rev. D34 (1986)
2133;

9) A. Bochkarev and J. Kapusta, Phys. Rev. D54 (1996) 4066;

10) J. I. Kapusta, Finite-Temperature Field Theory, Cambridge University Press, Cam-
bridge, UK, 1989;

11) F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong, W. Schaffer, L. I. Ungar
and A. Vaccarino, Phys. Rev. Lett. 65 (1990) 2491;

12) Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, T. Yoshié, Phys. Rev. D54 (1996) 7010.

OBNAVLJANJE KIRALNE SIMETRIJE U LINEARNOM SIGMA MODELU

Proučava se kiralni fazni prijelaz u linearnom sigma modelu pri konačnoj temper-
aturi i barionskoj gustoći sa Nf ≥ 3 kvarkovska okusa i Nc boja. Računi s jednom
petljom za Nf = 3 predvid–aju prijelaz prve vrste za µ = 0 i µ /=0. Svoje rezultate
uspored–ujemo s objavljenim rezultatima za Nf = 2.
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