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In a space of d Grassmann coordinates, two types of generators of Lorentz trans-
formations, one of spinorial and the other of vectorial character, define the rep-
resentations of the group SO(1, d − 1) for fermions and bosons, respectively. The
eigenvalues of commuting operators of the subgroups SO(1,3), SU(3), SU(2) and
U(1) can be identified with spins and Yang-Mills charges of either fermionic or
bosonic fields, which allows the unification of all the internal degrees of freedom,
separately for fermions and separately for bosons. When, accordingly, all interac-
tions are unified, the Yang-Mills fields, the Higgs fields and the Yukawa couplings
appear as a part of a gravitational field. The theory suggests four families of quarks
and leptons. The equal number of fermions and bosons assures supersymmetry.
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1. Introduction

Since Newton, the understanding of the laws of Nature has improved from
the laws leaving infinitely many parameters free (all possible masses as well as
forces to be determined by the experiment), to the unified quantum theory of
electromagnetic, weak and colour interactions, known as the electroweak standard
model, which only has around 20 free parameters. It has been discovered that we live
not only in four dimensional space-time of commuting coordinates, but also in the
internal space which defines spins and charges of fermionic and bosonic fields. It is
not yet known how the gravitational field enters into the unique quantum theory of
laws of Nature, or why ordinary space-time of only four dimensions is experienced,
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or why metric in this world is not Euclidean but Minkowski, or why the internal
space of spins and charges allows fermionic and bosonic degrees of freedom, while in
the ordinary space-time only bosonic degrees of freedom exist. Because systems with
many degrees of freedom can only be treated in an approximate way, and because
searching for solutions for such systems requires very sophisticated calculations,
many phenomena in matter are not yet understood. To understand the evolution
of the Universe, it has to be discovered also which properties make four-dimensional
space-time so special.

Not only has the standard model free parameters, it also has several assump-
tions: i) There are three families of quarks and leptons, which are massless. ii)
Quarks carry colour (SU(3)) and Y- (U(1)) charge. If left-handed, they carry also
weak (SU(2)) charge, if right-handed they are weak chargeless. Left-handed leptons
carry weak and Y -charge, right-handed leptons carry only Y -charge. iii) Y -charge
has to be chosen so that the electromagnetic charge corresponds to physical parti-
cles. Accordingly, right-handed chargeless leptons (neutrinos) carry no charge. iv)
Charges of fermions are described by the fundamental representations of the groups
SU(3), SU(2) and U(1), spins of fermions are described by the fundamental repre-
sentations of the Lorentz group SO(1,3). Gauge bosons are massless vectors with
respect to SO(1,3) and carry either colour or weak charge in the adjoint representa-
tions with respect to the corresponding groups. v) There exists a complex massive
field, which is a scalar with respect to SO(1,3), it is the weak doublet and carries the
Y -charge but no colour charge. Interacting with the gauge weak and Y -fields, the
scalar field causes the superpositions of these fields, which manifest as the massless
electromagnetic field and the massive weak fields. The massive scalar field makes
the fermionic fields massive by the interaction through the Yukawa couplings. Neu-
trinos don’t interact with the scalar field and stay accordingly massless. The (two)
parameters of the scalar field, the (two) qauge couplings and the Yukawa couplings
are the free parameters of the model, to be determined by the experiment.

The standard model does not say: i) Why SU(3)×SU(2)×U(1) has to be the in-
put symmetry of the model, which due to the Higgs fields breaks into SU(3)×U(1)?
ii) Why fermions are left-handed SU(2) doublets and right-handed SU(2) singlets,
that is, why at all the weak charge is connected with the spin? iii) Where do the
generations come from? Why there exist only three generations of fermions? iv)
Where do Yukawa couplings come from?

In the standard model, the Y -charges are free parameters of the model. Em-
bedding SU(3), SU(2) and U(1) in SU(5) fixes the Y -charge uniquely, but leaves
the connection between the handedness and charges undetermined. To connect
handedness and charges, spins and charges have to unify.

This work presents the approach which unifies spins and charges and might
answer to the open questions of the standard model. Assuming that the space has
d commuting and d anticommuting Grassmann coordinates, with the same metric
in both spaces, all the internal degrees of freedom, spins and charges are described
by the generators of the Lorentz transformations in Grassmann space, in which
there exist two types of generators of the Lorentz transformations and translations:
one is of spinorial character that determines properties of fermions, the other is of
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vectorial character that determines properties of bosons. Their representations can
be expressed as monomials of Grassmann coordinates θa. If d ≥ 14, the generators
of the subgroup SO(1,3) of the group SO(1,13) determine spins of fields, while
generators of the subgroups SU(3), SU(2), U(1) determine their charges, connecting
spins with the charges. The theory predicts four families of fermions.

The Lagrange function describing a particle on a supergeodesic requires the
momentum of the particle in Grassmann space to be proportional to the Grassmann
coordinate and brings accordingly the Clifford algebra and the spinorial degrees of
freedom into the theory.

The supervielbeins, transforming the supergeodesics from the freely falling to
the external coordinate system, define all gauge fields – gravitational, Yang-Mills,
the Higgs scalars and also the Yukawa couplings [1,2].

2. Coordinate Grassmann space and internal degrees of

freedom of fermions and bosons

We show in this section that Grassmann space can be used to describe all
internal degrees of freedom of all known fermionic and bosonic fields, that is of
quarks and leptons, Yang-Mills and Higgs fields and that spins and charges unify.

We define a d-dimensional Grassmann space of real anticommuting coordinates
{θa}, a = 0, 1, 2, 3, 5, 6, ..., d, satisfying the anticommutation relations θaθb+θbθa :=
{θa, θb} = 0, called the Grassmann algebra [2,3]. The metric tensor ηab =
diag(1, −1,−1, −1, ...,−1) lowers the indices of a vector {θa} = {θ0, θ1, ..., θd},

θa = ηabθ
b. Linear transformation actions on vectors (αθa + βxa), (αθ́a + βx́a)

= La
b(αθb+βxb), which leave forms (αθa+βxa)(αθb+βxb)ηab invariant, are called

the Lorentz transformations La
cL

b
dηab = ηcd.

A linear space spanned over a Grassmann coordinate space of d coordinates has
the dimension 2d. If monomials θα1θα2 ....θαn are taken as a set of basic vectors
with αi /=αj , half of the vectors have an even (those with an even n) and half of
the vectors have an odd (those with an odd n) Grassmann character. Any vector
in this space may be represented as a linear superposition of monomials

f(θ) = α0 +
d∑

i=1

αa1a2..ai
θa1θa2 ....θai , ak < ak+1, (2.1)

where constants α0, αa1a2..ai
are complex numbers.

In Grassmann space, the left derivatives have to be distinguished from the right
derivatives, due to the anticommuting nature of the coordinates [2,3]. We make use

of left derivatives
−→
∂θ

a :=
−→
∂ /∂θa,

−→
∂θa := ηab

−→
∂θ

b, on vectors of the linear space of

monomials f(θ), defined as follows:
−→
∂θ

a θbf(θ) = δb
af(θ)− θb

−→
∂θ

a f(θ). Here α is a
constant of either commuting (αθa − θaα = 0) or anticommuting (αθa + θaα = 0)
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character, and na∂ is defined as follows

nAB =

{
+1, if A and B have Grassmann odd character

0, otherwise
.

We define the following linear operators [1,2].

pθ
a := −i

−→
∂θ

a, ãa := i(pθa − iθa), ˜̃aa := −(pθa + iθa). (2.2)

According to the inner product defined in what follows, the operators ãa and
˜̃aa are either hermitian or antihermitian operators. We define the generalized com-
mutation relations (which follow from the corresponding Poisson brackets [1,2]):
{A,B} := AB − (−1)nAB BA, fulfilling the relation {A,B} = (−1)nAB+1{B,A}.
We find accordingly

{pθa, pθb} = 0 = {θa, θb}, {pθa, θb} = −iηab, (2.3)

{ãa, ãb} = 2ηab = {˜̃aa, ˜̃ab}, {ãa, ˜̃ab} = 0.

We see that θa and pθa form a Grassmann odd Heisenberg algebra, while ãa

and ˜̃aa form the Clifford algebra.

We define two kinds of operators [2]. The first ones are binomials of operators
forming the Grassmann odd Heisenberg algebra

Sab := (θapθb − θbpθa). (2.4a)

The second ones are binomials of operators forming the Clifford algebra

S̃ab := −
i

4
[ ãa, ãb ],

˜̃
Sab := −

i

4
[ ˜̃aa, ˜̃ab ], (2.4b)

with [A,B] := AB − BA and Sab = S̃ab +
˜̃
Sab, {S̃ab,

˜̃
Scd} = 0 = {S̃ab, ˜̃ac} =

{ãa,
˜̃
Sbc}. Either Sab or S̃ab or

˜̃
Sab fulfil the Lie algebra of the Lorentz group

SO(1, d − 1) in the d-dimensional Grassmann space: {Mab,M cd} = −i(Madηbc +

M bcηab −Macηbd −M bdηac), with Mab equal either to Sab or to S̃ab or to
˜̃
Sab and

Mab = −M ba.

By solving the eigenvalue problem (see below)we find that operators S̃ab, as well

as the operators
˜̃
Sab, define the fundamental or the spinorial representations of the

Lorentz group, while Sab = S̃ab +
˜̃
Sab define the vectorial representations of the

Lorentz group SO(1, d − 1).

Group elements are in any of the three cases defined by: U(ω) = ei 1
2
ωabMab

,
where ωab are the parameters of the group. We assume that differentials of
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Grassmann coordinates dθa fulfill the Grassmann anticommuting relations [2,3]
{dθa, dθb} = 0 and we introduce a single integral over the whole interval of dθa∫

dθa = 0,
∫

dθaθa = 1, a = 0, 1, 2, 3, 5, .., d, and the multiple integral over d co-

ordinates
∫

ddθ0θ1θ2θ3θ4...θd = 1, with ddθ := dθd...dθ3dθ2dθ1dθ0 in the standard
way.

We define [2,3] the inner product of two vectors < ϕ|θ > and < θ|χ >, with
< ϕ|θ >=< θ|ϕ >∗ as follows:

< ϕ|χ >=

∫
ddθ(ω < ϕ|θ >) < θ|χ >, (2.5)

with the weight function ω =
∏

k=0,1,2,3,..,d(
∂

∂θk + θk), which operates on the first

function <ϕ|θ> only, and we define (αa1a2...ak
θa1θa2 ...θak)+ =

(θak).....(θa2)(θa1)(αa1a2...ak
)∗. According to the above definition of the inner prod-

uct, it follows that ãa+ = −ηaaãa and ˜̃aa+ = −ηaa˜̃aa. The generators of the
Lorentz transformations (Eqs.(2.4)) are accordingly self adjoint or antiself adjoint
operators.

According to Eqs.(2.2) and (2.4), we find

Sab = −i

(
θa ∂

∂θb

− θb ∂

∂θa

)
ãa =

(
∂

∂θa

+ θa

)
, ˜̃aa = i

(
∂

∂θa

− θa

)
, (2.6)

S̃ab =
−i

2

(
∂

∂θa

+ θa

) (
∂

∂θb

+ θb

)
,

˜̃
Sab =

i

2

(
∂

∂θa

− θa

)(
∂

∂θb

− θb

)
, if a /=b.

To find eigenvectors of any operator A, we solve the eigenvalue problem

< θ|Ãi|ϕ̃ >= α̃i < θ|ϕ̃ >, < θ|Ai|ϕ >= αi < θ|ϕ >, i = {1, r}, (2.7)

where Ãi and Ai stand for r commuting operators of spinorial and vectorial charac-
ter, respectively. To solve equations (2.7), we express the operators in the coordinate
representation and write the eigenvectors as polynomials of θa. We orthonormalize
the vectors according to the inner product, defined in Eq.(2.5).

The algebra of the group SO(1,d-1) or SO(d) contains [1] n subalgebras defined
by operators τAi, A = 1, n; i = 1, nA, where nA is the number of elements of each
subalgebra, with the properties

[τAi, τBj ] = iδABfAijkτAk, (2.8)

if operators τAi can be expressed as linear superpositions of operators Mab, τAi =
cAi

abM
ab, cAi

ab = −cAi
ba, A = 1, n, i = 1, nA, a, b = 1, d. Here fAijk

are structure constants of the (A) subgroup with nA operators. According to the

two types of operators Mab, one of spinorial and the other of vectorial character,
there are two types of operators τAi defining subalgebras of spinorial and vectorial
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character, respectively, those of spinorial types being expressed with either S̃ab

or
˜̃
Sab and those of vectorial type being expressed by Sab. All these operators are,

according to Eq.(2.8), defined by the same coefficients cAi
ab and the same structure

constants fAijk. From Eq.(2.8) the following relations among constants cAi
ab follow

[2]: −4cAi
abc

Bjb
c − δABfAijkcAk

ac = 0.

Solving [2] the eigenvalue problem for the Casimirs of the subgroups SO(1,3),
SU(3),SU(2) and U(1), we find the representations of these subgroups expressed
as polynomials of θa. In the subspace of θ0, .., θ3, we find four times two spinors
(24 = 4 × 2 × 2), suggesting that there are four families of quarks and leptons. We
also find a scalar, a pseudoscalar and (two) three vectors and (two) four vectors.
In the subspace of SU(2), we find in the spinorial sector two doublets and four
singlets (of either even or odd Grassmann character), while in the vectorial sector
we find five singlets, one triplet (of Grassmann even character) and four doublets

(of Grassmann odd character). We find that the operator S̃mh, if m = 0, 1, 2, 3
and h determines the space of θh , defining the representations of the SU(2) group,
transforms the left-handed SU(2) doublets to right-handed SU(2) singlets, connecting
left-handed weak doublets and right-handed weak singlets into the same multiplet. In
the space of SU(3) subgroup, we find in the spinorial sector triplets and singlets, in

the vectorial sector we find singlets and octets and also triplets. The operator S̃mk,
if m = 0, 1, 2, 3 and k determines the space of the SU(3) sector, transforms left-
handed triplets into right-handed antitriplets or antisinglets, putting left-handed
fermions and right-handed antifermions in the same multiplet.

The representations which are the direct product of the representations of the
SO(1,3), SU(3) and SU(2) subgroups, with well defined Y -charge, carry all the
quantum numbers needed in the standard model to describe four families of quarks
and leptons (left-handed weak doublets in the same multiplet with the right-handed
weak singlet), all Yang-Mills fields and the Higgs scalar. We also find vectorial repre-
sentations which are the SU(3) triplets, but we don’t find spinorial representations,
which are the SU(3) octets, which means that in spite of the fact that the super-
symmetry is guaranteed due to equal number of spinorial and vectorial degrees of
freedom, the ordinary supersymmetry in this approach is not possible.

3. Lagrange function for a free particle and for a particle

in gauge fields

In this section, we derive the Dirac-like equation for a particle which lives in d-
dimensional ordinary and Grassmann space. The gravitational field in d dimensions
manifests in four-dimensional subspace as the ordinary gravity, the Yang-Mills fields
and the Higgs field and takes also care of the Yukawa couplings.

For a free particle which lives in a d-dimensional ordinary space of commuting
coordinates and in a d-dimensional Grassmann space of anticommuting coordinates
Xa ≡ {xa, θa}, and has its geodesics parametrized by an ordinary Grassmann
even n parameter (τ) and a Grassmann odd n parameter (ξ), we define the dy-
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namics by choosing the action [1,4] I = 1

2

∫
dτdξEEi

A∂iX
aEj

B∂jX
bηabη

AB , where

∂i := (∂τ ,
−→
∂ ξ), τ

i = (τ, ξ), while Ei
A determines a metric on a two dimensional

superspace τ i , E = Det(Ei
A). We choose ηAA = 0, η12 = 1 = η21, while ηab is

the Minkowski metric. The action is invariant under the Lorentz transformations
of supercoordinates: X ′a = La

bX
b and is locally supersymmetric.

Taking into account that either xa or θa depend on an ordinary time parameter
τ and that ξ2 = 0, the geodesics can be described as a polynomial of ξ as follows:
Xa = xa + εξθa. We choose ε2 to be equal either to + i or to - i so that it defines
two possible combinations of supercoordinates, and we choose the metric Ei

A :
E1

1 = 1, E1
2 = −εM,E2

1 = ξ, E2
2 = N − εξM , with N and M Grassmann even

and odd parameters, respectively. We write Ȧ =dA/dτ , for any A.

After integrating the above action over the Grassmann odd coordinate dξ, the
action for a superparticle follows:

∫
dτ(

1

N
ẋaẋa + ε2θ̇aθa −

1

N
2ε2M ẋaθa). (3.1)

Defining the two momenta pθ
a :=

−→
∂ L/∂θ̇a = ǫ2θa, pa := ∂L/∂ẋa = 2

N
(ẋa−Mpθa),

the first declairing that the coordinate in Grassmann space is proportional to its
conjugate momentum, the two Euler-Lagrange equations follow: ṗa = 0, ṗθa =
1

2
ε2 M pa.

Variation of the action (3.1) with respect to M and N gives two constraints:

χ1 := paaθ
a = 0, χ2 = papa = 0, aθ

a := ipθ
a + ε2θa, (3.2)

while χ3
a := −pθ

a + ǫ2θa = 0,

and is the third type of constraints of the action (3.1). For ε2 = − i, we find

(Eq.(2.2)), that aθ
a = ãa, χ3

a = ˜̃aa = 0.

We find the generators of the Lorentz transformations for the action (3.1) to be
(see also Eq. (2.4)) Mab = Lab + Sab , Lab = xapb − xbpa , Sab = θapθb − θbpθa =

S̃ab +
˜̃
Sab, which shows that parameters of the Lorentz transformations are the

same in both spaces.

Canonical quantization [1,2] of the action (3.1) determines the algebra of Eq.
(2.3), while the constraints lead to the Dirac-like and the Klein-Gordon equations

paãa|Ψ̃ >= 0 , papa|Ψ̃ >= 0, with paãapbãb = papa. (3.3)

We further see that although the operators ãa fulfill the Clifford algebra, they
cannot be recognized as the Dirac γ̃a operator, since having an odd Grassmann char-
acter they transform Grassmann odd polynomials to Grassmann even polynomials,
that means fermions into bosons, which is not the case with the Dirac γa matrices.

We, therefore, define [1] as Dirac γm operators: γ̃m = −˜̃a
0

ãm; m = 0, 1, 2, 3.
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Multyplying the first equation in Eqs. (3.3) by ˜̃a
0

, we recognize the equation

(γ̃mpm)|ψ̃ >= 0 , m = 0, 1, 2, 3. (3.3a)

as the Dirac equation. It can be checked that γ̃m fulfill the Clifford algebra

{γ̃m, γ̃n} = ηmn , while S̃mn = −i 1
4
[γ̃m, γ̃n]−,m ∈ {0, 3}. We must say, that

the constraint ˜̃a
a

= 0 can only be taken into account in the expectation value form.

The dynamics of a point particle in gauge fields, the gravitational and the
Yang-Mills fields, can be obtained by transforming vectors from a freely falling
to an external coordinate system [5]. To do this, supervielbeins ea

µ have to be
introduced, which in our case depend on ordinary and on Grassmann coordinates,
as well as on the two parameters τ i = (τ, ξ). The index a refers to a freely falling
coordinate system (a Lorentz index), the index µ refers to an external coordinate
system (an Einstein index). Vielbeins with a Lorentz index smaller than five will
determine ordinary gravitational fields. Those with a Lorentz index higher than
three will define, according to what we have said in Sect. 2, the Yang-Mills fields.

We write the transformation of vectors as follows ∂iX
a = ea

µ∂iX
µ , ∂iX

µ =
fµ

a∂iX
a , ∂i = (∂τ , ∂ξ). From this, it follows that ea

µf
µ

b = δa
b , fµ

ae
a

ν = δµ
ν .

We make a Taylor expansion of vielbeins with respect to ξ: ea
µ = ea

µ +
εξθbea

µb , fµ
a = fµ

a − εξθbfµ
ab. Both expansion coefficients again depend on

ordinary and on Grassmann coordinates. Having an even Grassmann character,
ea

µ will describe the spin 2 part of a gravitational field. The coefficients εθbea
µb

have an odd Grassmann character. They define the spin connections [1,2]. It follows
that ea

µfµ
b = δa

b , fµ
aea

ν = δµ
ν , ea

µbf
µ

c = ea
µfµ

cb. We find the metric tensor
gµν = ea

µeaν , gµν = fµ
af

νa.

Rewriting the action for a free particle in terms of an external coordinate sys-
tem, using the Taylor expansion of supercoordinates Xµ and superfields ea

µ and
integrating the action over the Grassmann odd parameter ξ, the action

∫
dτ{

1

N
gµν ẋµẋν −

1

N
ǫ2 2Mθaea

µẋµ + ε2 1

2
(θ̇µθa − θaθ̇µ)ea

µ

+ ε2 1

2
(θbθa − θaθb)ea

µbẋ
µ}, (3.1a)

follows, which defines the two momenta of the system pµ = ∂L/∂ẋµ = p0µ +
1

2
S̃abeaµb, pθ

µ = −iθaea
µ = −i(θµ + −→e a

ν,µθ
eaαθνθα). Here p0µ are the covariant

(canonical) momenta of a particle. For pθ
a = pθ

µfµ
a, it follows that pθ

a is proportional

to θa. Then, ãa = i(pθ
a − iθa), while ˜̃aa = 0. We may further write

p0µ = pµ −
1

2
S̃abeaµb = pµ −

1

2
S̃abωabµ, (3.4).

ωabµ =
1

2
(eaµb − ebµa), with eaµb = fν

a,µebν ,
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which is the usual expression for the covariant momenta in gauge gravitational
fields [5]. One can find the two constraints

pµ
0p0µ = 0 = p0µf1µ

aãa. (3.5)

To see how Yang-Mills fields enter into the theory, the Dirac-like equation (3.5)
has to be rewritten in terms of components of fields which determine the ordinary
gravitation in the four dimensional subspace and of components, which determine
gravitation in higher dimensions, assuming that the coordinates of ordinary space
with indices higher than four stay compacted to unmeasurable small dimensions.
Since Grassmann space manifests itself through average values of observables only,
compactification in the Grassmann part of space has no meaning. However, since
parameters of the Lorentz transformations in a freely falling coordinate system for
both spaces have to be the same, no transformations to the fifth or higher coor-
dinates should occur at measurable energies. Therefore, the four dimensional sub-
space of Grassmann space with the generators defining the Lorentz group SO(1,3)
is (almost) decomposed from the rest of the Grassmann space with the generators
forming the (compact) group SO(d-4).

We shall assume accordingly the case in which only some components of fields
differ from zero:




em
α 0

0 eh
σ


 , α,m ∈ (0, 3), σ, h ∈ (5, d), i ∈ (1, 2), (3.6)

while vielbeins em
α, ek

σ depend on θa and xα, α ∈ {0, 3} only. Accordingly, we
have only ωabα /=0. We recognize, as in the freely falling coordinate system, that
Grassmann coordinates with indices from 0 to 3 determine spins of fields, while
Grassmann coordinates with indices higher than 3 determine charges of the fields.
We shall take expectation values of ph = 0, a ≥ 5. We find

γ̃afµ
ap0µ = γ̃mfα

m(pα −
1

2
S̃mnωmnα + Aα), where Aα =

∑

A,i

τ̃AiAAi
α , (3.7)

with
∑

A,i τ̃AiAAi
α = − 1

2
S̃hkωhkα, h, k = 5, 6, 7, ..d.

For fα
m = δα

m and fσ
h,µ is nonzero for µ = α and is zero for µ = σ, we find the

usual Dirac equation in the presence of the gauge fields AAi
α only. If, however, we

assume that fσ′

h,σ is also nonzero, the additional nonzero term γ̃hfσ
hp0σ appears in

Eq. (3.7), which according to what was said in Sect. 2, behaves as Yukawa couplings,

since the operator ˜̃a
0

ãh, h = 5, 6, .. transforms left-handed weak doublets to right-
handed weak singlets, if h concerns the SU(2) part of the Grassmann space.

We learn in this section that the Dirac-like equation follows from the action
for a particle living in ordinary and Grassmann space. The operators fulfilling the
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Clifford algebra appear because spinors ”see” the Grassmann coordinates to be
proportional to the conjugate momenta. The operators for γa matrices have to
be defined as a product of two Grassmann odd operators, so that when acting
on spinors they do not change their Grassmann character. Supervielbeins deter-
mine the ordinary gravity, the Yang-Mills fields, the Higgs field and the Yukawa
couplings. Since the dynamical break of symmetries have not yet been treated, it
stays as an unsolved problem, why some components of vielbeins and accordingly of
spin connections are zero, while the others are not, as well as whether the Yukawa
couplings are different from the Planck mass.

4. Concluding remarks

We have presented the approach in which space has d (d ≥ 14) ordinary and d
Grassmann coordinates. In Grassmann space, two kinds of generators of the Lorentz
transformations, one of spinorial and the other of vectorial character, define spins
and charges of fermions and bosons, unifying spins and charges and offering all
known degrees of freedom.

The action for a spinning particle leads to the Dirac-like equation, in which
gravity in d dimensional space manifests in four-dimensional subspace as ordinary
gravity, the Yang-Mills fields, the Higgs field and the Yukawa couplings.

The representations of the group SO(1,13), which contains subgroups SO(1,3),
SU(3), SU(2) and U(1) suggest four families of quarks and leptons as well as mul-
tiplets with left-handed weak doublets and right-handed weak singlets. Although
the number of fermionic and bosonic degrees of freedom is the same, the approach
does not support the ordinary supersymmetric models: it predicts bosons which
are SU(2) doublets and SU(3) triplets, but not fermions, which are SU(2) triplets
and SU(3) octets.

The approach shows the way beyond the standard model offering the answers
to the open questions of the standard model. Dynamical breaks of symmetries have
not yet been done.
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UJEDINJENJE SPINOVA I NABOJA SJEDINJUJE SVA MED– UDJELOVANJA

U prostoru Grassmanovih koordinata, dvije vrste generatora Lorentzovih transfor-
macija, jedna spinornog a druga vektorskog značaja, definiraju reprezentacije grupe
SO(1,d− 1) za fermione odnosno bozone. Svojstvene vrijednosti komutirajućih op-
eratora podgrupa SO(1,3), SU(3), SU(2) i U(1) mogu se poistovjetiti sa spinovima
i Yang-Mills nabojima bilo fermionskih ili bozonskih polja, što omogućuje sjedi-
njenje svih unutarnjih stupnjeva slobode, posebno za fermione i za bozone. Kada
se, prema tome, ujedine sva med–udjelovanja, tada Yang-Millsovi naboji, Higgsova
polja i Yukawina vezanja postaju dio gravitacijskog polja. Teorija ukazuje na četiri
obitelji kvarkova i leptona. Jednak broj fermiona i bozona osigurava supersimetriju.
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