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Abstract—Various distance-based clustering algorithms have
been reported, but the core component of all of them is a
similarity or distance measure for classification of data. Rather
than setting the priority to comparison of the performance of
different clustering algorithms, it may be worthy to analyze
the influence of different similarity measures on the results of
clustering algorithms. The main contribution of this work is a
comparative study of the impact of 9 similarity measures on
similarity-based trajectory clustering using DBSCAN algorithm
for commercial flight dataset. The novelty in this comparison is
exploring the robustness of the clustering algorithm with respect
to algorithm parameter. We evaluate the accuracy of clustering,
accuracy of anomaly detection, algorithmic efficiency, and we
determine the behavior profile for each measure. We show that
DTW and Frechet distance lead to the best clustering results,
while LCSS and Hausdorff Cosine should be avoided for this
task.

Index Terms—similarity measure; clustering; comparison; avi-
ation.

I. INTRODUCTION

Clustering is a common data analysis method in the field
of statistics. Clustering algorithms identify distinct groups of
data, by grouping similar data sets into clusters depending on
the definition of a similarity function, or a pairwise distance.

In statistical data analysis, clustering is an essential tool
broadly implemented in different scientific areas such as data
mining [1], [2], [3], pattern recognition [4], geographic infor-
mation systems [5], information retrieval [6] or microbiology
analysis [7]. Moreover, it can be used as a form of feature
engineering [8], where one can map together existing and new
data points and relate with an already identified cluster. Some
specific applications of cluster analysis in machine learning
include market segmentation, image segmentation, medical
image processing and building a recommendation system. An
important application of clustering is anomaly detection, i.e.
by using some clustering methods, one may detect outliers [9].
Relevant representatives of algorithms for anomaly detection
include DBSCAN [10], HDBSCAN [11], OPTICS [12] and
IMS [13].

Classification of data into groups requires certain meth-
ods for computing the distance between objects. Techniques
providing distance information are known as similarity or
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distance measure - a measure of the distance between points
in multidimensional space [14]. The outcome of the com-
putation of (dis)similarity between each pair of objects is a
distance(similarity) matrix - the greater (dis)similarity of two
objects, the greater the value of the measure.

Distance-based clustering algorithms use distance measures
to cluster similar data points into the same clusters, while
distant data points are located in different clusters. The most
commonly used measures are based on distance functions such
as Euclidean distance, Manhattan distance, Cosine similarity,
Minkowski distance, Dynamic Time Warping (DTW). Several
studies were conducted on comparing and evaluating the
similarity functions.

There are numerous algorithms proposed for clustering of
data, but fundamentally they all depend on a similarity metric
for categorizing individual data.

Therefore, instead of focusing on comparison of the per-
formance of various clustering algorithms, it is interesting to
compare different similarity metrics and their influence on data
clustering.

Few studies have been reported that compared different
similarity metrics in various machine learning and data mining
applications [15], [16], [17], [18], [19]. In [20] six density
functions including Euclidean, DTW, PDTW, EDR, EPR,
and LCSS distances were analyzed for the measurement of
trajectory similarity by applying different transformations.

More recently, in [21] strategies of clustering algorithms
and similarity measures for general trajectories have been
discussed. Focusing on particular domain of vessel trajecto-
ries [22], a brief review on topic has been provided. Regarding
the performance of density functions in spatial trajectory
clustering, Besse et al. [23] evaluated the performance of their
suggested density function and some known density functions
in two clustering methods of hierarchical and affinity propaga-
tion. In [24] the authors have compared the efficiency of eight
similarity functions in density-based trajectory clustering on
three different datasets and proposed two modified validation
measures for density-based trajectory clustering. Here, we
focus on aviation trajectory dataset and compare the impact
of a set of similarity metrics on the robustness of clustering
task.

In order to obtain the accurate clustering results, it is of
interest to explore the robustness of the clustering methods.
In particular, we focus on DBSCAN (density-based spa-
tial clustering of applications with noise) [10] algorithm. In
DBSCAN-like clustering methods the number of clusters nor
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the initial cluster centers are not required, and these types of
algorithms are efficient in detecting clusters of any shape. At
the same time, in this type of algorithms, problems may arise
in adjusting the parameters that determine neighborhood radius
and neighborhood density according to the density of clusters.

In datasets with clusters of different levels of density, if
the parameters are set up for clusters with low point density,
clusters with high point density might merge with one another.
On the other hand, when the parameters are adjusted for clus-
ters with high density, the clusters with low density could be
recognized as noise. From this perspective, one may conclude
that algorithms that are able to run correctly in a broad range
of change interval could be more powerful. Therefore, the
robustness of algorithm with respect to parameters provides
accurate classification for datasets with different densities.

The main contribution of this work is exploring the impact
of different similarity measures on similarity-based trajectory
clustering on the basis of commercial flight dataset. Moreover,
as the novelty of the research, we investigate the robustness
of clustering algorithm, evaluate the accuracy of clustering,
accuracy of anomaly detection, computational cost, and we
determine the behavior profile for each similarity measure. By
analyzing the experimental results, we provide an overview of
the validity of each measure in trajectory clustering task in
aviation domain.

The evaluation is performed on a dataset from Flightradar24
(www.flightradar24.com) which contains 32,459 flights over
Europe in a single day. A dataset is created by taking flights
of 10 most frequent routes in Europe, where we also took into
account the diversity of routes in order to cover different cases
of incorrect clustering.

The rest of the paper is organized as follows. Section II
describes published matter of this research area. Section III
gives an overview of similarity measures. The methodology
used in this work is explained in Section IV, with results
presented in Section V. Finally, a discussion and conclusion
are presented in Sections VI and VII, respectively.

II. RELATED WORK

Different types of clustering algorithms classified as hi-
erarchical or non-hierarchical clustering have been reported
in the literature, and they are mainly designed for clustering
of point data. Hierarchical clustering creates tree of clusters
by decomposing the given dataset on the basis of hierarchy.
The bottom-up decomposition approach is defined as the
agglomerative hierarchical clustering algorithm, while the top-
down decomposition method as the split hierarchical cluster-
ing algorithm. Some important representative algorithms are
DIANA [25], BIRCH [26], and CURE [27].

In non-hierarchical clustering approach, the relationship be-
tween clusters is undetermined. It encompasses partition based
method, density based method, grid based method, and model
based method. In partition based methods one determines the
count of clusters before processing. Common partition based
algorithms are k-means [28], [29] and k-medoids [30]. The
concept of density based methods is adding the area to the
cluster which is nearer to it, as long as the density of points

in the area is greater than the threshold. The representative al-
gorithms include DBSCAN [10] and OPTICS [12] algorithm.
Grid based methods are based on a multi-resolution grid data
structure where the data space is quantized to a limited number
of units, and one performs all clustering operations on the grid.
The typical algorithms are STING [31] and CLIQUE [32].
Finally, model based clustering algorithms assume a model for
each cluster, and tie to find the best fitting data for the given
model. Such algorithm locates clusters by building density
functions which indicate the spatial distribution of the data
points. They include neural network method and statistical
method, where the typical algorithm is COBWEB [33].

Regarding the anomaly detection, there are three differ-
ent categories of clustering-based anomaly detection tech-
niques [9]. In the first category, one assumes that normal data
instances are a part of cluster while anomalies are not. Anoma-
lies are considered as clustering outliers or noise. The most
important representatives are DBSCAN [10], HDBSCAN [11],
and OPTICS [12]. In the second category, it is assumed that
normal instances lie near their closest cluster centroid, while
anomalies lie far away from them. First, the algorithm clusters
the data and then one computes an anomaly score for each
data instance depending on the distance to its nearest cluster
centroid. An important example of this is IMS [13] algorithm.
The third category of algorithms deals with the problem when
clusters of anomalies are formed. In order to determine the
anomalies, the threshold is deduced by the cluster size or
density [9].

There are various methods in the literature to cluster flight
trajectories [34], [35], [36], [37], and the core of most of them
are density-based clustering algorithms such as DBSCAN [10].
For example, DBSCAN in [37], gives satisfactory results in
characterisation of traffic flows on the basis of the recorded
radar tracks. Moreover, [38] reported another framework based
on DBSCAN and k-means to examine the patterns of traffic.

In this work, in the context of trajectory clustering, we
focus on the particular algorithm DBSCAN among previously
explained clustering algorithms that use distance metrics. Next
subsection provides detailed explanation of distance metrics
we used, what is a foundation for correct clustering.

III. OVERVIEW OF DISTANCE METRICS USED FOR
CLUSTERING

Trajectories are mathematical objects used to characterize
the evolution of a moving object. They are described by the
state vector with parameters (x(t), y(t), . . .) evolving in time.
In practice, this state vector is only known at some sampled
times.

The measurement of trajectory similarity is one of the key
elements in trajectory clustering. Depending on the purpose of
clustering, different comparison strategies should be selected.
In this section, we give an overview of relevant distance
measures in order to provide deeper understanding of research
process.

A. Frechet Distance
A metric called Frechet distance [39], [40] takes into

account both the location and sequential relationship of the
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points along the trajectories. Frechet distance between two
curves corresponds to the maximum distance between two
point objects that traverse the trajectories with arbitrary non-
negative speeds.

B. Dynamic Time Warping Distance

Dynamic time warping [41], [42] (DTW) is one of well-
known distance measures between a pairwise of time series,
but any data that can be turned into a linear sequence can be
analyzed with DTW. It calculates an optimal match between
two given sequences with certain restrictions and rules. When
applied to compute the similarity between two trajectories, its
goal is to find the warping path between two trajectories with
the smallest warping cost, by using dynamic programming
technique.

C. Longest Common Sub-Sequence

Longest Common Subsequence [43], [44] (LCSS) denotes
the longest common subsequence existing in two trajectory
sequences. A subsequence is a sequence that appears in the
same relative order, but not necessarily contiguous. On one
hand, LCSS permits certain deviation existing in sampling
data, and consequently it is effective and efficient in practical
application. On the other hand, it uses two parameters - if
the location of moving object is recorded in 2 dimensions,
there is a distance threshold for each dimension. Therefore, the
determination of two optimal parameters might be a complex
problem.

D. Partial Curve Mapping

The partial curve mapping [45] method uses a combination
of arc-length and area to determine the best match between two
arbitrary curves. In original paper the steps of the algorithm
for computing the curve mismatch error are described on test
curve and computed curve. This methodology involves a curve
matching metric which is computed using the volume between
the test curve and the computed curve section.

E. Area between Two Curves

This curve similarity measure represents the area between
two curves [46], i.e. the amount of mismatch between the two
curves. If two curves would appear directly on top of each
other, this measure of similarity would return a zero distance.

F. Hausdorff Distance

The Hausdorff distance measures the degree of mismatch
between two sets by measuring the distance of the point of
the first set that is farthest from any point of the second set
and vice versa [47]. Intuitively, if the Hausdorff distance is d,
then every point of the first set must be within a distance d of
some point of the other set and vice versa. It is important
to note that Hausdorff distance is related to spatial point
sets where the distances between points are calculated, and
temporal component is not included in calculation. Therefore,
reversing the path does not change the Hausdorff distance [48].

The Hausdorff distance can be used in problems related
to image comparison, contour fitting, pattern recognition,
computer vision and many various fields, with the problems
of shape matching and comparison. Moreover, clustering of
trajectories based on Hausdorff distance has been reported
in [49], [50]. Distance function used to calculate the distance
can be Manhattan, Euclidean, Chebyshev, or Cosine similarity.

IV. TRAJECTORY CLUSTERING

This section describes the flight dataset and the methodol-
ogy used for trajectory clustering.

A. Dataset

For the sake of clarity, we point out that, in this work, trajec-
tory refers to a sequence of recording related to an aircraft. The
dataset contains positions and altitudes of commercial flights
over Europe, including also additional metadata information
for more thorough analysis. In the following, we describe the
steps of data preprocessing. We use data contributed by Fligh-
tradar24 AB, a global flight tracking service which provides
real-time information about aircraft around the world. One
obtains the data from a network of receivers that capture ADS-
B (Automatic Dependent Surveillance-Broadcast) or mode-S
(Selective) transponder signals from aircraft. We combined
transponder data with Flightradar24’s reference database in
order to obtain a complete dataset with all important informa-
tion. The dataset consists of two parts, flight data and trajectory
data, as shown in Tables I and II.

We used the equipment and aircraft ID to remove the airport
ground vehicles and private aircraft, while the flight number
and call sign were used to find commercial flights. We used
the flight ID to identify flights uniquely and to map trajectory
data to them from Table II.

The update of aircraft positions was every 5 seconds during
take-off and landing. During steady flight the update was
increased to a maximum of 60 seconds. The initial dataset
used in this research consisted of 47,126 trajectories recorded
during a single day, namely 31 January 2018 over Europe.
In this dataset, 32,459 flights were identified as commercial
flights. Other non-commercial flights consist of ground vehi-
cles, private aircraft, flights without a call sign, UFOs, and
grounded flights.

In the next step, we eliminated flights where the flight took
off or landed outside the recording period. We grouped the
dataset by routes, i.e. flights which have the same combination
of ’scheduled from’ and ’scheduled to’, and sorted them by the
count as shown in Table III.

Finally, we chose the flights of 10 most frequent routes,
where we also took into account variety of routes in order to
describe different cases of incorrect clustering. Table IV shows
selected routes and associated number of flights.

Final dataset consists of 262 commercial flights, with a
total of 57,187 positions and their altitudes, which were used
for interpolation of flight trajectories. Figure 1 depicts the
trajectories of commercial flights from the described dataset.
There are occasionally minor inaccuracies presenting the noise
in Flightradar24 data. For example, transponders can generate
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TABLE I: METADATA OF THE DATASET SEGMENT CONTAINING THE FLIGHT DATA. ICAO, INTERNATIONAL CIVIL AVIATION ORGANIZATION.

Data Field Description Example

Flight ID Unique Identifier for the flight 246716779
Aircraft ID 24 bit mode-S identifier in hexadecimals 7538182
Registration Aircraft registration matched from the aircraft address EPAPF
Equipment ICAO aircsraft designator, mapped from the address A320
Call Sign Up to 8 characters as sent from the aircraft transponder IRC511

Flight number Commercial flight number, interpreted from the call sign EP511
Schd from IATA code for scheduled departure airport IST

Schd to IATA code for scheduled arrival airport IKA

TABLE II: METADATA OF THE DATASET SEGMENT CONTAINING THE TRAJECTORY DATA.

Data Field Description Example

Snapshot ID Time of position update in seconds since 1 Jan 1970 00:00:00 UTC 1504289296
Altitude Height above sea level, in feet 5040
Latitude Floating point format 60.39691

Longitude Floating point format 5.19971

TABLE III: ROUTES SORTED BY THE COUNT.

Scheduled from Scheduled to Number of flights

BGO OSL 32
DME SIP 30
SIP DME 30
OSL BGO 29
TRD OSL 29
OSL TRD 29
MAD PMI 27

...
...

...

TABLE IV: 10 SELECTED ROUTES.

Scheduled from Scheduled to Number of flights

BGO OSL 32
DME SIP 30
SIP DME 30
OSL BGO 29
TRD OSL 29
MAD PMI 27
SAW AYT 27
IST ADB 26
SVG OSL 26
SAW ADB 24

errors by transmitting random or incorrect position. However,
our dataset is small and specific, and we assume that for our
analysis, the noise can be neglected.

B. Methodology

Density-Based Clustering is an unsupervised machine learn-
ing method which determines distinctive clusters in the data,
grounded on the concept that a cluster in data space is a dense
region, divided from other clusters by regions of lower density
of points. Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [10], a basic algorithm for density-
based clustering, can discover clusters of different shapes
and sizes from a large amount of data, containing noise and
outliers. There are two parameters required for this algorithm,
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65

Fig. 1. Trajectories of selected commercial flights.

eps(ϵ), the maximum distance between two samples for them
to be considered as in the same neighborhood, and minPts,
the minimum number of points clustered together within ϵ ra-
dius. Depending on these parameters, the algorithm determines
whether particular values in the dataset are outliers or not.

In the first step, for each similarity measure, one constructs
similarity matrix from the trajectory dataset generated in
the preprocessing phase. Then, we perform the DBSCAN
algorithm that divides the dataset into clusters and determines
the outliers. The output of the algorithm is a set of trajectory
clusters and the set of outliers, trajectories which could not be
allocated to a cluster and therefore demonstrate some degree of
abnormality. DBSCAN algorithm is applied for a range of the
density parameter ϵ, and the minimum sample size minPts,
with the aim to examine the behavior of trajectory clustering
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TABLE V: RELATIONSHIP BETWEEN FLIGHTS.

Name Description

anomaly outlier flight

younger brother
flight belonging to smaller cluster when

flights of one route are divided in few clusters

step brother outnumbered flights in a group of flights
where one point is the same

twin outnumbered flights when cluster contains
flights of opposite routes

wrongly clustered outnumbered flights in a cluster which
contains flights of completely different routes

task. The ground truth set has 10 clusters, i.e. there are 10
different relations.

Anomalies are outlier flights detected as noise in DBSCAN
algorithm. In the case where the flights of one route are divided
in more clusters, younger brother denotes flights which ended
up in smaller cluster. When a cluster contains flights with
different routes where one point is the same, outnumbered
flights are called step brothers. In the case where cluster
contains flights of opposite routes, the outnumbered flights
are denoted as twins. If a cluster contains flights of completely
different routes, outnumbered flights are wrongly clustered. In
Table V these relations are presented systematically.

We want to emphasize that we are looking at the complete
flight paths, rather than the first and last lat/long/altitude points
in paths. Namely, our goal is to compare complete paths
and find a similarity between them in order to cluster them
correctly and group those belonging to the same route. As a
consequence, this approach can serve as anomaly detection
because it can potentially detect unusual paths in common
routes.

V. EXPERIMENTAL RESULTS

In this section, we apply the methodology described in
the previous section on our dataset and present the results.
The following framework is implemented in Python 3 with
function DBSCAN from Python package ’sklearn.cluster’,
distance functions from packages ’hausdorff’ and ’Similari-
tyMeasures’, and module metrics from package ’tslearn’.

A. Similarity Matrices

Figure 2 shows the similarity matrices computed for 9
distance measures quantifying the similarity between the tra-
jectories. The following methods are used: Frechet distance,
Dynamic Time Warping, Longest Common Sub-Sequence,
Partial Curve Mapping, Area between two curves, Hausdorff
Manhattan Distance, Hausdorff Euclidean distance, Hausdorff
Chebyshev distance and Hausdorff Cosine distance. Moreover,
the time cost for each measure is shown in Table VI. Ac-
cording to similar research and their analysis [24], [17], we
considered the time cost as a computational cost, i.e. the pa-
rameter to compare algorithms. Time cost, i.e. computational
cost, denotes the time needed to execute the algorithm.

Distance matrix is a 262x262 image from a 2-dimensional
numpy array, where one square represents the value of similar-
ity between two specific trajectories. The color of each square
is determined by the value of the corresponding distance
matrix element, ranging from dark blue to yellow. The bottom
of the color map corresponds to very similar trajectories, and
ascends to top denoting very different trajectories. Since the
dataset is sorted according to the frequency of the routes,
category axis labels show the names of the routes. We expect
that distance matrix is divided in squares of specific colors.
Namely, flights belonging to certain route should have compa-
rable similarity with flights belonging to some other specific
route, resulting in a square of specific color. Moreover, as
the flights of the same route are expected to be very similar, a
diagonal of the distance matrix should be placed on the bottom
of the color map. To summarize, different colors of similarity
matrix display relationships between flight trajectories.

In view of this, Figure 2 demonstrates that Frechet method
gives the most distinct squares, indicating that this measure
finely recognizes different routes, and one expects that cluster-
ing algorithm will cluster the flights correctly. Similar results
come from Hausdorff Manhattan, Hausdorff Euclidean, and
Hausdorff Chebyshev metrics. Hausdorff Cosine metric gener-
ally follows this behavior, but gives greater similarity between
trajectories. Yellow parts of the distance matrix correspond to
most distant routes. It is predicted that clustering will give
comparable outcome for these metrics.

According to results, DTW metric gives the clearest dis-
tinction between flights of the same route. LCSS, PCM and
Area between two curves also show clear difference between
trajectories belonging to the same route. It is also important
to note that LCSS shows greater relative distance measure
between trajectories belonging to different routes. On the
contrary, PCM displays smaller relative distance measure for
such trajectories.

Time cost during one run is shown in Table VI for all simi-
larity measures. Frechet measure clearly obtains the highest
time cost. Dynamic Time Warping and Area between two
curves also have high time cost, Partial Curve Mapping is
slightly easier to run. Computation times of Longest com-
mon Sub-Sequence Hausdorff Manhattan Distance, Hausdorff
Euclidean Distance, Hausdorff Chebyshev distance and Haus-
dorff Cosine distance are of the same order and have the lowest
values.

B. Correctness of Clustering

Here we show the results of the DBSCAN clustering algo-
rithm which divides the original trajectory dataset into clusters
for the range of ϵ values. The result is presented in a form of a
stack plot in order to show how each part makes up the whole.
The ϵ range is taken so that it presents characteristic behavior
of the stack plot for each particular measure. Constituents
of the stack plot are flights classified as anomalies (blue),
step brother (orange), twin (green), younger brother (purple),
wrongly clustered (red), or correctly clustered (dotted). The
blue line shows the number of clusters for each measure for
the range of ϵ values. Transparent yellow area shows the range
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Fig. 2. Similarity matrices for different similarity measures: (a) Frechet distance (b) DTW (c) LCSS (d) PCM (e) Area between two curves (f) Hausdorff
Manhattan distance (g) Hausdorff Euclidean distance (h) Hausdorff Chebyshev distance (i) Hausdorff Cosine distance.

of 10-11 clusters, corresponding to the ground-truth number
of clusters for this dataset. Namely, there are 10 different
routes and one cluster of anomalies. One has to determine the
appropriate ϵ value in order to obtain good clustering results.
We adopted the standard approach [51] for determination of
optimal ϵ value for DBSCAN algorithm. Dashed black line
represents the calculated result.

Figure 3 shows the stack plots computed for 9 similarity
measures.

We can observe the general behavior of the stack plot.
Anomalies (blue) are present for smaller ϵ values. For very
small ϵ, the number of anomalies is very large. This is expected
since ϵ represents the radius of neighborhood around a point.
Since the radius is very small, distance between most of the
points is larger than this threshold, and they are considered
to be outliers, i.e. anomalies. As ϵ increases, the number of

anomalies rapidly decreases and there are no anomalies above
optimal ϵ value.

Flights incorrectly clustered as younger brothers appear for
low ϵ values since the radius of formed clusters is small.
Consequently, flights belonging to the same route may be
separated into more clusters leading to the significant number
of younger brothers. One should expect that twin flights
emerge easily by increase of ϵ values, i.e. the radius of clusters,
considering that they correspond to the reverse routes and are
expected to be similar. Step brothers should also manifest
with the rise of ϵ. Namely, for larger radius, flights with
one coinciding point may be located into the same cluster.
Obviously, if ϵ is significantly high, flights with completely
different routes may arrive at the same cluster, manifesting in
large portion of wrongly clustered (red) flights.

Let us consider stack plots from points of view of cor-
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TABLE VI: TIME COST AND USED METHODS FOR DIFFERENT SIMILARITY MEASURES.

Similarity Measure Method Time Cost (s)

Frechet distance package ‘SimilarityMeasures’ 29599.660
Dynamic Time Warping package ‘SimilarityMeasures’ 2181.287

Longest Common Sub-Sequence module tslearn.metrics 26.719
Partial Curve Mapping package ‘SimilarityMeasures’ 316.308

Area between two curves package ‘SimilarityMeasures’ 3414.910
Hausdorff Manhattan Distance package ’hausdorff’ 16.701
Hausdorff Euclidean distance package ’hausdorff’ 16.585
Hausdorff Chebyshev distance package ’hausdorff’ 16.407

Hausdorff Cosine distance package ’hausdorff’ 42.545
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Fig. 3. Stack plots for different similarity measures: (a) Frechet distance (b) DTW (c) LCSS (d) PCM (e) Area between two curves (f) Hausdorff Manhattan
distance (g) Hausdorff Euclidean distance (h) Hausdorff Chebyshev distance (i) Hausdorff Cosine distance.

rectness of the clustering and robustness with respect to
parameter ϵ. The correctness of the algorithm is measured by
the proportion of the dotted part of the stack plot, while the
robustness is measured by the constancy of the result without
substantial change.

We can observe that clustering using Frechet metric is very
robust with respect to parameter ϵ. Moreover, we notice that it
is also the most accurate measure according to the portion of
the dotted part. Dashed line falls in the range of great accuracy.
Number of clusters is in the yellow range around the optimal
ϵ value.

DTW is another metric manifesting good clustering results.
It is very robust for a large range of epsilon values, namely ϵ
values can be taken within the range up to 300, still providing
a good clustering result. However, calculated optimal ϵ value is

very high, and falls deep within wrongly clustered trajectories.
It is interesting to note that DTW similarity is a ’non-metric’
distance as shown in [52], where Frechet distance has been
preferred since it is a metric distance. However, despite of
this fact, here we still find DTW useful as it achieves a good
result for clustering task.

We can conclude that Frechet and DTW metrics give
both the most accurate and most robust clustering results
for DBSCAN algorithm. DTW provides the largest range of
robustness. Moreover, there is a narrow range with completely
correct result. Frechet metrics also produces a very satisfactory
result, however, the range of robustness is significantly smaller
than the range for DTW. On the other hand, here the method
for determination of optimal ϵ can be safely applied since
it produces the best clustering result. Nevertheless, when

184 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 2, JUNE 2023



applying DTW, one cannot use this standard method for
optimal ϵ since it gives value much larger than the range of
interest. Considering the execution time, Frechet distance has
convincingly largest execution time among all measures, while
the execution time for Dynamic Time Warping is around 10
times smaller.

Hausdorff Manhattan, Hausdorff Euclidean and Hausdorff
Chebyshev measures provide similar results. First, we notice
that the shapes of the curves for number of clusters are
comparable. The clustering results are good for a narrow ϵ
range around optimal ϵ value. Correct number of clusters also
appears for a narrow ϵ range. These metrics can be used for
a small range around optimal ϵ value, but these methods do
not produce very precise results. Robustness of the results
is also limited. However, the method for determination of
optimal ϵ value points to the value with satisfactory clustering
result for all three metrics. Moreover, these metrics have
lowest execution time among all measures. Therefore, we may
suggest that they can be used for a quick result providing an
approximate insight into division of flights into clusters.

PCM metric gives quite good clustering result for a signif-
icant ϵ range, namely for ϵ range up to 20. The correctness is
reduced for larger ϵ values. Since our method for calculation of
optimal ϵ gives very high value, this method is not applicable
for PCM measure. The result for this metric is not robust, and
it should not be used for larger ϵ values due to the increase
of incorrectly clustered flights. Regarding the time cost, it is
of the middle value.

Area between two curves produces a satisfactory clustering
result for a very narrow ϵ range. Incorrectly clustered flights
emerge easily for higher ϵ values. The calculated value of
optimal ϵ is much higher than the ϵ values of interest, meaning
that this method does not work for this metric. Moreover,
time cost is high, and standard method for determination of ϵ
does not produce correct result. Therefore, this metric is not
recommended.

Next, longest common subsequence gives good clustering
result for a very small ϵ range around calculated optimal ϵ
value. However, the clustering result is not robust with respect
to ϵ and wrongly clustered flights appear even for low ϵ values.
Compared to other metrics, the portion of incorrectly clustered
flights is extremely large for most of ϵ values. Small execution
time cost does not justify the usage of this metric for DBSCAN
algorithm. Finally, Hausdorff Cosine metric gives the worst
clustering result. Namely, correctly clustered flights exist for
extremely narrow ϵ range and wrongly clustered flights are
present for a complete ϵ range, taking over the largest part
of the clustered flights. Moreover, the calculated value of
optimal ϵ is almost zero. We can conclude that this metric
should be avoided for DBSCAN algorithm in case of trajectory
clustering.

VI. DISCUSSION

The dataset used in this research included 10 different
routes for a single day, which were chosen so that vari-
ous relationships between them are included, i.e. anomalies,
younger brothers, step brothers, twins. Our aim was to explore

the impact of different similarity measures on correctness
of clustering, with the emphasis on fineness of clustering
task. Obviously, different result would be obtained for another
choice of routes having different relationships between them.
There would be different percentages of anomalies, younger
brothers, step brothers and twins, according to the chosen set.
However, our results still give valuable insights into influence
of each measure on clustering task with DBSCAN algorithm
which can be mapped onto another dataset. For a larger flight
dataset, we assume that the result would be more precise.

Since this dataset includes only one day, we could improve
this analysis by including more flights for another days in
a week. Generally, this methodology can be extended over
air traffic to different types of trajectories where the spatial
similarity is examined. For example, it can be used to analyze
maritime traffic or animal movement trajectories with different
similarity measures.

This study can be used to find the correct similarity metrics
when using DBSCAN or similar density-based algorithms for
trajectory clustering. It gives an overview of the robustness of
clustering result for particular metrics, and therefore enables
one to choose the appropriate ϵ. For example, if the analysis
is aimed to determine trajectory anomalies, one should select
ϵ which is small enough so that anomalies are present, but
big enough so that anomalies indeed represent outliers. This
analysis also points out which metric supports the standard
method for determination of optimal ϵ value, and where one
should look for another approach.

Next step would be to investigate another densely clustering
models, which classify trajectories by distance metrics. For
example, one could use some modifications of DBSCAN
algorithm such as HDBSCAN [11], or TRACLUS [53] or
autoencoders [54]. We could also extend this comparative
study by including other similarity measures which take into
account only spatial dimension, such as SSPD [23].

VII. CONCLUSION

In this paper, we have conducted a comparative study of
impact of 9 similarity measures on trajectory clustering task
in air traffic, by using DBSCAN algorithm. We examined the
correctness of the clustering and robustness of the result with
respect to ϵ parameter of the algorithm.

This research has shown that DTW and Frechet distance
give the best results. The advantage of DTW is reasonable
time cost, since high computational cost of Frechet distance
weakens its ability compared to other measures. Hausdorff
Manhattan, Hausdorff Euclidean, and Hausdorff Chebyshev
measures produce worse results, but computational time is
significantly smaller, suggesting that these measures can be
used as a first step in a clustering task. PCM metrics produces
to some extent acceptable result for moderate range. Area
between two curves gives satisfactory result in the very narrow
range, but has high computational cost. LCSS and Hausdorff
Cosine are convincingly not competent for the task.

For future work, we aim at applying this methodology for
larger aviation dataset obtained for more days or more routes.
Furthermore, this methodology can be extended over air traffic
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to some other trajectory types such as ship trajectories. It
would be of interest to examine other similarity measures, as
well as different methods for optimal ϵ estimation.
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