
Tehnički vjesnik 30, 4(2023), 1241-1252 1241

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20230602000692
Original scientific paper

An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant
and Group Processing Features

Shuaipeng YUAN*, Bailin WANG, Tike LI

Abstract: This research paper addresses a novel parallel machine scheduling problem with re-entrant and group processing features, specifically motivated by the hot
milling process in the modern steel manufacturing industry. The objective is to minimize the makespan. As no existing literature exists on this problem, the paper begins by
analyzing the key characteristics of the problem. Subsequently, a mixed integer linear programming model is formulated. To tackle the problem, an improved iterated greedy
algorithm (IGA) is proposed. The IGA incorporates a problem-specific heuristic to construct the initial solution. Additionally, it incorporates an effective destruction and
reconstruction procedure. Furthermore, an acceptance rule is developed to prevent the IGA from getting stuck in local optima. The proposed approach is evaluated through
computational experiments. The results demonstrate that the proposed IGA outperforms three state-of-the-art meta-heuristics, highlighting its high effectiveness. Overall,
this research contributes to the understanding and solution of the parallel machine scheduling problem with re-entrant and group processing features in the context of the
hot milling process. The proposed algorithm provides insights for practical applications in the steel manufacturing industry.

Keywords: group processing; iterated greedy algorithm; parallel machine scheduling; programming model; re-entrant

1 INTRODUCTION

Scheduling is one of the core links of manufacturing
systems [1-3]. The main motivation of this study is a real-
life parallel machine scheduling problem with re-entrant
and group processing features, which is arisen from the hot
rolling process of steel plate products in the modern steel
manufacturing industry. Hot rolling is a key procedure in
the steel production process. However, as shown in Fig. 1,
unlike the conventional processing processes, the rolling
process of steel slab products has the following
characteristics: (1) for each slab, two operations, namely
rough and finishing rolling operations, need to be
performed in sequence on the same rolling mill; (2) due to
the specific process requirements, a certain waiting time is
required between the two operations to conform the rolling
temperature requirement and avoid uncontrollable
deformation of a slab (e.g., wave roll and sickle bend); (3)
a slab can temporarily release the rolling mill during the
waiting period, but after a certain waiting time, it must
immediately re-enter the mill for subsequent processing.
To make full use of the waiting time between the rolling
operations and thus improve the utilization rate of the mill,
decision-makers usually schedule two slabs for group
rolling. Therefore, for two adjacent slabs on the same
rolling mill, if the group rolling conditions are met, they
can be group rolling shown in Fig. 2a. That is, the former
slab, slab i, first preempts the rolling mill for rough rolling
until its completion and then temporarily releases the mill
and enters the back roller (buffer) area to wait. During the
waiting period, the latter slab, slab j, enters the rolling mill
at the right moment to complete its rough rolling. After the
waiting time specified for slab i is reached, it re-enters the
rolling mill to complete the finishing rolling. Finally, slab
j is sent back to the mill for finishing rolling. However, if
two adjacent slabs do not meet the conditions for group
rolling, they can only be rolled in a one-by-one manner,
denoted as non-group rolling, as shown in Fig. 2b. This will
result in long idle time on the rolling mill, which decreases
productivity and increases energy consumption.

Back rollerFront roller

Machine 1

……
Machine m

Figure 1 Hot rolling process

Figure 2 Schematic diagram for group rolling and non-group rolling

Combing the scheduling theory, the above-mentioned
rolling process of slabs can be regarded as a complex
parallel machine scheduling problem with re-entrant and
group processing features. The re-entrant feature means
that each slab (job) needs to visit the same machine (rolling
mill) repeatedly to perform two operations, and there is a
fixed waiting time between the two operations. The group
processing feature indicates that for any two adjacent jobs
processed on a machine, group processing is allowed if the
given conditions are met. This problem needs to determine
the assignment of jobs to machines, the sequence of jobs
assigned to each machine, and the processing manner of
adjacent jobs to maximize production efficiency. The
specific problem is discussed in Section 3.

A number of studies have considered the hot rolling
scheduling problem in the steel manufacturing field, but
the existing research has been mainly focused on the basic
rolling process constraints, such as heating temperature,
roll change, and wide-to-narrow constraints [4]. In
addition, one of the basic assumptions in the previous

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

1242 Technical Gazette 30, 4(2023), 1241-1252

studies has been that each slab is not allowed to leave a mill
before the entire operation is completed. Thus, re-entrant
and group processing features have not been considered,
which deviates from the actual production of the
enterprises. To the best of the authors' knowledge, there has
been no published literature that addresses this problem.
Designing an effective scheduling method for this problem
is crucial to guiding workshop management of the modern
iron and steel industry. Therefore, we are motivated to
investigate such a problem and develop an effective
solution method. The objective is to minimize the
makespan.

The main contributions of this paper can be
summarized as follows. First, some important
characteristics of the studied problem are analyzed, which
lays a solid foundation for the design of algorithm. Second,
a mixed integer linear programming model is designed to
formulate the considered problem. Third, a simple but
efficient meta-heuristic algorithm, the iterated greedy
algorithm (IGA), is developed to solve the studied
problem. In the IGA, a series of efficient techniques,
including a problem-specific initialization strategy, a
destruction and reconstruction (DR) procedure and a local
search strategy based on tailored variable neighborhood
descent procedures, are used to achieve a balanced trade-
off between the solution quality and computation time.
Finally, the effectiveness of the proposed IGA is
demonstrated by extensive numerical comparisons.

The remainder of this paper is structured as follows. In
Section 2, the literature review relevant to this study is
provided. Section 3 presents the formal descriptions of the
problem, the properties of the problem and a mixed integer
linear programming model. The developed IGA is then
presented in Section 4. Computational results are carried
out in Section 5. Finally, Section 6 concludes the paper and
suggests areas for future study.

2 RELATED WORK

The related studies on the parallel machine scheduling,
re-entrant scheduling, group scheduling, and IGA are
briefly reviewed.

Parallel machine scheduling problems have been
widely studied due to the ubiquity in practical industrial
applications [5]. Bitar et al. [6] presented an unrelated
parallel machine scheduling problem with auxiliary
resources in a semiconductor plant. A memetic algorithm
was proposed with two objective functions including the
maximization of the number of produced wafers and the
minimization of the weighted completion times. A series
of experiments were conducted to determine the best
configurations of the proposed algorithm. However, the
results were not compared with other works or reference
values. Chen et al. [7] investigated an unrelated parallel
machine scheduling problem with sequence-dependent
setup times and job release times, which was arisen from
the ion implantation process of wafer fabrication. The
objective was first to maximize the number of processed
jobs and then minimize the makespan, and finally
minimize the maximum completion times of non-
bottleneck machines. A mixed integer programming model
was proposed as a solution approach to satisfy the first two
objectives. Using the obtained solution, a hybrid tabu

search algorithm was further developed to satisfy all the
three objectives. For the same problem, Soares et al. [8]
designed a biased random-key genetic algorithm
hybridized with variable neighborhood descent method.
Abu-Marrul et al. [9] dealt with a problem arising from the
oil industry, and regarded it as an identical parallel machine
scheduling problem where jobs were composed of
intersecting sets of operations. Three integer linear
programming formulations were designed to solve the
problem. On the basis of this research, Abu-Marrul et al.
[10] further addressed a batch scheduling problem with
identical parallel machines and non-anticipatory family
setup times to minimize the total weighted completion
time. A greedy randomized adaptive mate-heuristic was
developed using a constructive heuristic. Zhang et al. [11]
studied a parallel machine scheduling problem with
machine health conditions and preventive maintenance,
which was derived from the semiconductor manufacturing.
Two mixed integer linear programming models and a
general variable neighborhood search algorithm were
presented. Chung et al. [12] addressed a resource-
constrained parallel machine scheduling problem with
setup times in microelectronic components manufacturing,
where a mathematical model and three effective
constructive heuristics were presented. To assess the
quality of the proposed methods, a discrete particle swarm
optimization algorithm and a variable neighborhood search
method were additionally presented.

In the above-mentioned parallel machine scheduling
studies, each job visits each machine at most once.
Nevertheless, in some manufacturing processes, a job may
be processed by the same machine twice or more due to the
high cost of processing equipment and the repeated sets of
processes. Such a processing environment is called "re-
entrant" in the scheduling area [13, 14]. Wang et al. [15]
considered a novel surgery scheduling problem in
outpatient procedure centers to minimize the average
recovery completion time of all patients. The problem was
regarded as a no-wait re-entrant hybrid flow shop
scheduling problem with fuzzy service times. A new
hybrid meta-heuristic, integrating genetic algorithm and
variable neighborhood search, was developed to schedule
outpatients for surgical services. Wu et al. [16] studied a
re-entrant hybrid flow shop scheduling problem with batch
processing machines, which was arisen from the
production process of the cold-drawn seamless steel pipe
in steel manufacturing sector. To minimize the makespan
and the energy consumption of the batch processing
machines, a mathematical model was formulated at first,
and then an improved multi-objective evolutionary
algorithm based on decomposition technique was
developed. Frihat et al. [17] addressed a realistic re-entrant
hybrid job-shop problem with time lags and sequence-
dependent setup times, which was derived from the tannery
industries. Two different models based on mixed integer
programming and constraint programming were proposed.
For both models, a problem-oriented optimization
technique was proposed to reduce the problem size. Xu et
al. [18] considered a re-entrant permutation flowshop
scheduling problem to minimize the makespan. A memetic
algorithm was developed to solve the problem.

As for the re-entrant scheduling problem with parallel
machine environment, there are few related studies. Shin

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

Tehnički vjesnik 30, 4(2023), 1241-1252 1243

[19] addressed a re-entrant parallel machine scheduling
problem with process quality, due dates, and sequence-
dependent setup times from a viewpoint of process stability
as well as on-time delivery. A dispatching algorithm called
quality and rework with due dates was proposed.
Chakhlevitch et al. [20] explored a two stage re-entrant
workshop with parallel machines at the first stage and a
single machine at the second stage. A heuristic based on a
simple strategy of initializing jobs in batches on the
primary machines was developed. Computational
experiments on a broad range of benchmark problem sets
indicated that the algorithm can find optimal or near
optimal schedules in different production scenarios.

Another topic related to our problem is the group
scheduling. Although a lot of studies can be found in the
literature [21], they all assume that the group formation
problem (i.e., the assignment of jobs to groups) is known,
and mainly focus on other two sub-problems, namely the
sequence of groups and the sequence of jobs within each
group. However, in this work, the group formation problem
is an important decision item, even though there are only
two jobs in a group. Thus, there is a great difference
between the classical group scheduling problem and the
studied problem.

Meta-heuristic algorithm has been proven to be an
effective method for solving scheduling problems [22-26].
The IGA is a simple and efficient meta-heuristic algorithm
[27]. It always records two solutions including the current
solution and the best solution found so far. In each
iteration, it starts from an initial solution and then tries to
improve the current solution by DR operation. To improve
the global search ability, an acceptance rule is usually
adopted. Compared with other meta-heuristic algorithms,
the IGA has a simpler structure and fewer parameters, and
thus is easy to code and implement. Some studies have
used the IGA to solve scheduling problems, and good
results were achieved [28-30]. In view of this, the idea of
proposing an IGA with problem-specific search strategies
to solve the studied problem seems promising and thus is
one of the main goals of this work.

3 RESEARCH PROBLEM
3.1 Problem Description

The problem considered in this work can be described
as follows. A set of n jobs { }1 2, ,..., nJ J J J= need to be
processed on a set of m identical parallel machines

1 2{ , ,..., }mM M M M= . Each job iJ is composed by two

operations ()1 2, i iO O , respectively with associated

processing times 1ip and 2ip . Two operations within a job
have to be assigned sequentially to the same machine,
which means that the operation 1iO must precede the
operation 2iO . For each job, there is a certain waiting time,
denoted as iw , between the two operations. During the
waiting period, the job can be temporarily released from
the machine, but after the waiting time is reached, it must
re-enter the machine immediately to complete the second
operation. Therefore, the re-entrant properties (i.e., jobs
may visit a machine more than once) exit in this problem.
In addition, as shown in Section 1, for any two jobs iJ and

jJ processed on the same machine, if the conditions for
group processing are met, it is allowed to process them in
a group. In this case, the processing order is

1 1 2 2, , , i j i jO O O O ; otherwise, they can only be processed
one by one, where the processing order is

1 2 1 2, , , i i j jO O O O . For the convenience of the description
below, the former processing manner is defined as group
processing, and the latter as non-group processing.
Obviously, arranging group processing for two jobs can
make full use of the idle times of machines, thereby
improving production efficiency. For any two jobs iJ and

jJ , the sufficient conditions for group processing are

1i jw p≥ and 2i jp w≤ .
To illustrate the scheduling problem more clearly, a

simple instance with two machines and five jobs is given
in the following. The processing times of operations and
waiting time between the operations are shown in Tab. 1.
Fig. 3 plots three different scheduling schemes. For scheme
1 shown in Fig. 3a, jobs 1 2,J J , and 3J are processed on

1M , where jobs 1J and 2J are group processing. Jobs 4J
and 5J are processed on machine 2M and are non-group
processing. The makespan of this scheme is 31. For scheme
2 shown in Fig. 3b, jobs 1 2,J J , and 3J are still processed
on 1M , where jobs 2J and 3J are arranged for group
processing. On machine 2M , the job sequence is changed
to 5 4J J→ , and they are group processing. The makespan
is reduced to 25. Regarding scheme 3 shown in Fig. 3c, the
sequence on machine 1M is changed to 3 1 2J J J→ → ,
and jobs 3J and 1J are group processing.

Table 1 Job information of the example instance
Job index 1ip iw 2ip

1 2 3 4
2 3 5 5
3 2 7 3
4 4 5 6
5 6 7 3

2

5

time

Group processing

2

43 5 2 7 3

27

time

2 3 4 3 52 3

22 25

(a) Solution 1

(b) Solution 2

time

1M

1M

2M

2M

1M

2M

1 2[,]J J

4J 5J

1J 2 3[,]J J

5 4[,]J J

3 1[,]J J

5 4[,]J J

2J

3J

Figure 3 Gantt charts for three scheduling schemes

The scheduling information on machine M2 is consistent
with scheme 2. In this way, the makespan is 29. Therefore,
even if the assignment scheme of jobs to machines is the

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

1244 Technical Gazette 30, 4(2023), 1241-1252

same, different scheduling sequences and the processing
manner can impact the Cmax value.

3.2 Mathematical Model

Except for the notations mentioned above, the
following indices and notations are used throughout the
study.

(1) Indices and notations:
,i i′ Job index, , 0,1,2,...,i i n′ = .

k Machine index, 1,2,...,k m= .

iP Sum of processing time and waiting time for job iJ
, having 1 2i i i iP p w p= + + .

M A large positive value.
(2) Decision variables and objective:

ijλ Auxiliary decision binary variable, equal to 1 if iJ

and jJ meet the group processing conditions; otherwise,
equal to 0.

ijkx Binary variable, equal to 1 if job iJ immediately

precedes job jJ on machine k ; otherwise, equal to 0.

ijy Binary variable, equal to 1 if jobs iJ and jJ are
arranged for group processing; otherwise, equal to 0.

1 2,i iC C Completion time for the first, second
operation of job iJ , respectively.

maxC Objective of makespan.
A mixed integer linear programming model is

formulated as follows.

maxmin C (1)

0, 1
1, 1, 2,...,

n m

ijk
i i j k

x j n
= ≠ =

= =∑ ∑ (2)

0, 1
1, 1, 2,...,

n m

jik
i i j k

x j n
= ≠ =

= =∑ ∑ (3)

1 1
() 1 1, 2,...,

n m

ijk jik
i k

x x j n
= =

+ ≤ =∑∑ (4)

0
1

1, 1, 2,..,
n

ik
i

x k m
=

= =∑ (5)

, 1, 2,..., , 1, 2,...,ij ijy i n j nλ≤ = = (6)

1
, 1, 2,..., , 1, 2,...,

m

ij ijk
k

y x i n j n
=

≤ = =∑ (7)

1
() 1, 1, 2,...,

n

ij ji
i

y y j n
=

+ ≤ =∑ (8)

1 1, 1, 2,...,j jC p j n≥ = (9)

2 1 2 , 1, 2,...,j j j jC C w p j n= + + = (10)

1 1 2
1

(1), , 1, 2,...,
m

j j i ijk ij
k

C p C M x y i j n
=

− ≥ − ⋅ − + =∑ (11)

1 1 1
1

(2), , 1, 2,...,
m

j j i ijk ij
k

C p C M x y i j n
=

− ≥ − ⋅ − − =∑ (12)

2 2 2
1

(2), , 1, 2,...,
m

j j i ijk ij
k

C p C M x y i j n
=

− ≥ − ⋅ − − =∑ (13)

max 2 1, 2,...,iC C i n≥ = (14)

, {0,1} 0,1,2,..., , 0,1, 2,...,ijk ijx y i n j n∈ = = (15)

1 2, 0, 1, 2,...,j jC C j n≥ = (16)

Objective (1) is to minimize the makespan. Eq. (2) and
Eq. (3) represent that each job should be assigned to
exactly one machine, and have exactly one predecessor and
one successor (including the dummy job 0J). Eq. (4)
ensures that the predecessor and the successor cannot be
same. Eq. (5) indicates that on each machine, the dummy
job 0J must be arranged at the first position. Eq. (6) and
Eq. (7) represent the preconditions for any two jobs to
perform group processing. One is the time relation
mentioned in Section 3.1, and the other is the sequence
relation, i.e., the two jobs are on the same machine and
adjacent. Eq. (8) indicates that a job can be assigned for
group processing at most once. Eq. (9) and Eq. (10) restrict
the completion time of the first operation and second
operation, respectively, for each job. Eq. (11) suggests the
temporal relationship between a job and its predecessor
when they are non-group processing. That is, a job cannot
start processing until its predecessor has completed all the
two operations. Eq. (12) and Eq. (13) relate the starting
times of a job and the completion times of its predecessor
on two operations, respectively, when they are group
processing. Specifically, for an arbitrary job iJ , the
starting times of the two operations are no less than the
completion times of the two operations for its predecessor.
Eq. (14) indicates that the makespan is equivalent to the
maximum completion time of all jobs. Eq. (15) and
Eq. (16) represent the types and value ranges of decision
variables.
The above model has been verified by CPLEX solver
12.10. However, due to the complexity and existence of the
big-M constraints, only very small scale instances can be
solved, resulting in a low practicability.

3.3 Property Analysis

The classical parallel machine scheduling problem
max||mP C has been proven to be strongly NP-hard when

2m ≥ ; so, the problem max| , |mP rcrc group C is also
strongly NP-hard and more complex. To improve solution
efficiency, theorem 1presents the properties of the
problem. To facilitate the description, the following two
definitions are first given.

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

Tehnički vjesnik 30, 4(2023), 1241-1252 1245

Definition 1. If jobs iJ and jJ are two jobs processed
on the same machine and arranged for group processing,
they are defined as a block, and one is called partner of
another.

Definition 2. If there is a job iJ that does not meet the
group processing conditions with all other jobs, i.e.,

() 0ij jij
λ λ

∀
+ =∑ , iJ is defined as a non-active job;

otherwise, it is defined as an active job.
Theorem 1. On each parallel machine, if the jobs

assigned to the machine are identified, there exists at least
one optimal job sequence, where the processing manner
(group or non-group processing) of adjacent jobs satisfies
the following greedy rule. Starting from the first position
of the sequence, if the job at the current position and its
successor meet the conditions for group processing, they
can be arranged directly for group processing without
considering the processing manner of jobs in the
subsequent sequence.

Proof of Theorem 1. It is proven by a contradiction
way. Suppose that there exists an optimal schedule
containing subsequence { , , }i j kπ J J J′ = that does not

satisfy the above greedy rule. That is, although job jJ and

its predecessor iJ meet the group processing conditions,
they are arranged for non-group processing. It suffices to
conclude that jJ is processed either independently or

together with its successor kJ as a group. ① If jJ is
processed independently, it can always be processed with

iJ as a group, constructing a more optimal sub-sequence
that satisfies the greedy rule, which contradicts the
optimality assumption. ② If jJ is processed together with

kJ as a group，then iJ must be processed independently.
We can always move iJ to the end of the sequence,

making jJ and kJ process preferentially, and constructing

a schedule satisfying the greedy rule. Since iJ is processed
independently before moving, the movement does not
increase the maxC value. This completes the proof. 

4 THE PROPOSED IGA

To solve the problem max| , |mP rcrc group C , this
paper proposes an improved IGA. In the IGA, a simplified
encoding-decoding strategy is designed to deal with the
three sub-problems, which can effectively control the
search regions of optimal solution space. A problem-
specific heuristic is used to construct an initial solution
with high quality. To guide the search, an innovative DR
strategy, a local search strategy and an acceptance rule, are
developed. All the steps of the IGA are explained in the
following subsections.

4.1 Encoding and Decoding

For the problem max| , |mP rcrc group C , three sub-
problems, including the assignment of jobs to machines,
the sequences of jobs on each machine, and the processing

manner of adjacent jobs, should be determined. It can be
known from Theorem 1 that for any one instance, there
exists at least one optimal schedule where the processing
manner of adjacent jobs on each machine satisfies the
greedy rule. Therefore, to improve the search efficiency,
only other two sub-problems are considered in the
encoding phase, and a decoding method based on greedy
rule is presented to map a coding scheme to a feasible
solution. The specific encoding and decoding strategies are
as follows. A permutation-based vector σ ranging from
one to ()1n m+ − is used to represent the considered
problem. In σ , the 1m − elements that are greater than n
divide the σ into m sub-sequences, denoted as

, 1, 2,...,k k mσ = . In the decoding phase, jobs in kσ are
assigned to machine kM and processed in the order of their
position. Furthermore, the greedy rule presented in
Theorem 1 is used to determine whether adjacent jobs are
arranged for group processing or not.

4.2 Initialization

To promote the algorithm to evolve to the dominant
region at a faster rate, an effective approach is to design a
problem-specific heuristic to construct an initial solution
with higher quality [31]. Regarding the studied problem,
the following heuristic is introduced to construct the initial
solution.

Step 1: Initialize related information, including the job
set J , the machine set M , and the earliest available time
of each parallel machine.

Step 2: Calculate the reduction value ijs for any two
jobs iJ and jJ while they are arranged for group
processing, and generate a reduction matrix S . If iJ and

jJ do not meet the group processing conditions, set ijs =0.
Step 3: Identify the element with the largest reduction

value, denoted as i js ′ ′ , from S and schedule the
corresponding jobs iJ ′ and jJ ′ to the parallel machine
with the earliest available time. Simultaneously, update the
earliest available time of the selected machine.

Step 4: Remove the selected jobs iJ ′ and jJ ′ from set
J , and reset the related elements in S to zero, i.e., set

(, :) 0S i′ = , (, :) 0S j′ = , (:,) 0S i′ = , and (:,) 0S j′ = .
Step 5: Repeat Step 3 and Step 4 until J = ∅ or all

elements in S are equal to 0. If there are unscheduled jobs,
i.e., J ≠ ∅ , proceed to Step 6; otherwise, proceed to Step
9.

Step 6: For unscheduled jobs in J , sort them in
decreasing order of their total processing time iP .

Step 7: Extract one job from J at a time according to
the sorting results, and assign it to the machine with the
earliest available time.

Step 8: Repeat Step 7 until all jobs in J are scheduled,
and proceed to Step 9.

Step 9: Construct a complete schedule according to the
sub-sequence kσ on each machine.

Given an instance with 9 jobs and 3 machines (see Tab.
2), the construction process of the initial solution is shown
in Fig. 4. It can be known from the matrix S that jobs 6J

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

1246 Technical Gazette 30, 4(2023), 1241-1252

and 3J have the largest reduction value when they are
arranged for group processing; so, they are preferably
scheduled to machine 1M . Among the remaining jobs, 5J
and 2J become the largest contributors and thus are
scheduled to machine 2M . Next, jobs 4J and 8J win and
are assigned to machine 3M . Further, jobs 9J and 1J are
selected and assigned to machine 1M that has the earliest
available time. Afterword, only job 7J is left, which can
only be processed by Non-group processing; so it is
assigned to machine 2M according to the assignment
rules. Finally, the initial schedule with an objective value
of 38 is obtained. The corresponding scheduling Gantt
chart is shown in Fig. 5a.

Table 2 Job information for an example instance
iJ 1ip

iw .
2ip

1 3 2 3
2 6 3 8
3 5 5 4
4 5 2 6
5 3 6 3
6 2 5 5
7 10 2 6
8 1 6 10
9 2 4 2

Figure 4 Construction process for the initial solution

4.3 DR Procedure

In the classical DR strategies, jobs are randomly
extracted from the current solution and inserted into all
possible positions to construct several new solutions [32].
However, as described in Section 4.1, the coding strategy
used in this work not only includes the sequence
information of jobs but also the information on the
processing manner of adjacent jobs. Therefore, using the
classical DR strategies can severely destroy the existing
blocks in the current solution, which is not conducive to
algorithm convergence. In view of this, an improved DR
procedure is developed to mine better solutions, where two
terms, including mining new block structures and
balancing the load of parallel machines, are mainly
considered to improve the effectiveness. The specific steps
of the implementation process are as follows.

Step1: Randomly select an active job iJ from the job
sequence on the bottleneck parallel machine.

Step2: Identify all jobs that can be group processed
with iJ and sort them in non-decreasing order of the
reduction value; then, generate a list π .

Step 3: Extract a job, denoted as jJ , from list π in
turn, and generate a block according to the configuration
relationship of the reduction value, that is, if the reduction
value ij jis s> , set [,]i jblock J J= ; otherwise, set

[,]j iblock J J= .
Step 4: Determine whether the generated block already

exists in the current solution, and if so, proceed to Step 8;
otherwise, proceed to Step 5.

Step 5: Remove job iJ from the current solution and
determine whether there is a partner of job iJ in the
current solution; if so, move it to the end of the sub-
sequence corresponding to the weakest machine.

Step 6: Remove job jJ from the current solution and
judge whether there is a partner for job jJ , and if so, move
the partner to the end of the sub-sequence corresponding to
the weakest machine.

Step 7: Insert block into the front of the sequence on
the weakest machine and generate a new complete
solution.

Step 8: Repeat Steps 4 - 7 to obtain
min(| |, _)new solutionsπ solutions.

Step 9: Select the best solution from the generated
solutions as a new solution.

It should be noted that in the reconstruction phase, the
number of new solutions constructed in each iteration is
denoted by _new solutions , and its value is related to the
solution efficiency. The optimal value of _new solutions
is determined experimentally. In addition, to ensure load
balancing of parallel machines, the completion time of
each machine is dynamically updated in each move, and
the weakest machine is always selected for every insert
operation.

Taking the initial solution obtained in Fig. 4 as an
example, Fig. 5 illustrates the process of the DR procedure.

Figure 5 The proposed DR procedure

Assume that job 7J on machine 2M is selected,
according to the matrix S, only job 8J can be processed
with job 7J as a group, i.e., [8]π = . Because job 7J has
no partner, it is first removed from the current solution,
then machine 2M becomes the weakest one. Job 8J has

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

Tehnički vjesnik 30, 4(2023), 1241-1252 1247

already processed as a group with job 4J in the current
solution; so, job 4J is moved to machine 2M . By doing
so, machine 3M becomes the weakest one. Thus, the new
block 7 8[,]J J is inserted into machine 3M . Finally, a new
solution with an objective of 33 is obtained.

4.4 Local Search Strategy

The VND strategy has been commonly used as a local
search strategy. Insert and exchange are two widely-used
operations in solving the scheduling problem, and their
effectiveness has been validated [33]. In view of this, based
on the classical insert and exchange operations, two
problem-oriented VNDs, including block- and job-insert
operations, are designed to explore the search space. It
should be noted that whenever an improved neighbour
solution is found, the exploration is restarted from the first
neighbourhood.

4.4.1 Block-Insert Operation

Because a lot of block information exists in the current
solution, a simple block-insert operation is designed. First,
sequence on the bottleneck machine is analyzed, and the
block with the shortest processing time is removed and
inserted into the weakest machine. To avoid insert
operation destroying the existing block structures in the
current solution, the selected block inserted into the first
position of the sequence corresponds to the weakest
machine. In particular, if no block exists on the bottleneck
machine, skip this operation.

4.4.2 Job-Insert Operation

After completing the block-insert operation, job-insert
operation is further performed for jobs that are non-group
processing on the bottleneck machine. Namely, if there are
independently processed jobs, the one with the shortest
processing time is removed and inserted into the weakest
machine. Unlike the block-insert operation, the selected
job is inserted at the end of the sequence on the weakest
machine. It should be noted that throughout the whole local
search procedure, if a block needs to be inserted into a new
sequence, it is always inserted at the beginning of the
sequence, and if the inserted object is a single job, it is
inserted at the end of the sequence. The purpose of this is
to prevent the move operation from destroying the existing
block structures in the current solution.

4.5 Acceptance Rule

In the IGA, an improved acceptance criterion is
defined following the idea of the age threshold used in the
migratory bird optimization algorithm, that is, age is used
to indicate the updating status. During each iteration, if the
current solution cannot be improved, its age is increased by
one; otherwise, its age is initialized as zero. If the age
exceeds the preset threshold ϕ , the algorithm will accept
a new (worse) solution with a probability /Ee τ−∆ , where

E∆ is the gap of maxC between the new solution and the

current solution, and τ is the temperature parameter, and
is set that 1 21

()n
i i ii

p w pτ
=

= + +∑ .

4.6 Procedure of the IGA

Algorithm 1 presents the pseudo code for the proposed
IGA, where the number of new solutions is generated in the
reconstruction phase, and is the age threshold in the
acceptance rule.

Algorithm 1: IGA
Parameters: _new solutions , ϕ

Output: Solution bestX
Generate initial solutioninitX ←

,best cur initX X X←
 1 iter ← //consecutive iterations that have not been improved

While stop criterion is not meet do
(, _)curX DR X new solutions′ ←

()X LocalSerach X′ ′←

if () ()bestf X f X′ < then //f is the evaluation function

bestX X ′←
end
if () () curf X f X′ < then

curX X ′←

1iter =
else

1iter iter← +

if (, , ,) curaccept X X iter ϕ′ // Acceptance rule

curX X ′←

1iter ←
end
end
end
return bestX

5 COMPUTATIONAL EXPERIMENTS

In this section, computational experiments are
presented to evaluate the performance of the proposed
model and IGA. First, instances with rich features are
generated and grouped according to the problem scales.
Next, the effectiveness of key strategies in the IGA is
verified, and the parameter values are calibrated. Then, the
solution performance of the model is tested using small
scale instances. Finally, the IGA is compared with three
state-of-art algorithms using large scale instances. All of
the algorithms are implemented using MATLAB R2015a,
and the model is solved by CPLEX 12.10. The code
running environment is Intel(R) i5-6200U CPU /16.0 GB.

5.1 Test Data

Since the problem considered in this work is a new
scheduling problem, and there have been no existing
benchmarks in this field, a number of test instances are
generated based on the real situations in a hot rolling
workshop of a large steel enterprise in China. Each instance
is defined by three parameters as { , , }m n W , where m
represents the number of machines, n is the number of jobs,

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

1248 Technical Gazette 30, 4(2023), 1241-1252

and W indicates the pattern used for generating the
operation processing times and waiting times between the
operations.

The number of machines is classified into two sets:
{2,3}m∈ (small scale), and {5,8,10}m∈ (large scale).

The number of jobs is set to be {5,10,20,50}n∈ (small
scale), and {100,150,300,500}n∈ (large scale). In the
considered problem, the relationship between the
processing time and the waiting time can affect the
possibility of group processing, thus affecting the difficulty
of the problem-solving process. Therefore, for a reliable
comparison, three different patterns of parameter W are
set as follows. ① 1W = represents that the value range of
waiting time is less than that of the processing time, where
the processing time is set as 1 2, [5,50]i ip p DU∈ , and the
waiting time is set as [5, 25]iw DU∈ . [,]DU a b denotes a
discrete uniform distribution ranging from a to b. ② 2W =
indicates that the value ranges of waiting and processing
times are the same. Here, the processing time is set as

1 2, [5,50]i ip p DU∈ , and the waiting time is set as
[5,50]iw DU∈ . ③ 3W = indicates that the value range of

waiting time is larger than that of the processing time,
having 1 2, [5,50]i ip p DU∈ , and [50,75]iw DU∈ .

Combining different values of the three parameters, 24
small-scale categories and 36 large-scale categories are
generated. For each category, 10 problem instances are
generated, which results in a total of (24 + 36) × 10 = 600
instances.

5.2 Algorithm Calibration

The improvement strategies and parameters used in the
IGA are calibrated. The improvement strategies include the
initialization strategy, DR strategy, local search strategy,
and acceptance rule. The IGA has two parameters, the
number of new solutions (_new solutions) in the
reconstruction phase and the age threshold in the
acceptance rule (φ). Based on the preliminary
experiments, the comparison strategies and parameter
values are listed below.
- Initialization ： two levels (our initial strategy and
random initial strategy).
- DR：two levels (our DR strategy and classical DR
strategy).
- Insert operation：three levels (our block and job insert
operation, classical insert operation, No insert operation).
- Exchange operation: three levels (our block- and job-
exchange operation, classical exchange operation, No
exchange operation).
- Relocation operation: two levels (Use and no-use job
relocation operation).
- _new solutions : four levels (1,3, 5 and 10).
- φ : three levels (10, 30 and +∞), where +∞ means
no acceptance rule is used.

The above combinations can yield a total of
2 × 2 × 3 × 3 × 2 × 4 × 3 = 864 different configurations for
the IGA. All 864 configurations are evaluated using a full
factorial experimental design. One instance is randomly

selected from each of the 36 large-scale categories,
obtaining 36 instances in total. Each algorithm is evaluated
by 5 independent replications for each instance with a
termination criterion of a maximum of 50000 50n m+ × ×
ms, which is composed by a basic term plus another term
increasing with the problem size. The percentage relative
deviation (PRD) [34] is used as the response variable to
measure different algorithms. PRD is calculated by

*
max max

*
max

() 100%C A CPRD
C

−
= × (17)

where max ()C A is the makespan generated by algorithm A,
and *

maxC is the best makespan obtained by all algorithms.
Following the statistical model commonly used in the
literature, the experimental results are analyzed by a multi-
factor analysis of variance (ANOVA) at a 95% confidence
level. The ANOVA results are shown in Tab. 3, where F-
value shows the influence of the factor on the algorithm
performance, and P-value indicates whether there is a
significant difference among the levels in each factor.

Table 3 Results of ANOVA
Source Sum of

Squares DF Mean
Square

F-
value

P-value

Initialization 1322.90 1 1322.87 132.3 <0.001
DR 671.05 1 670.97 70.86 <0.001
Insert operation 559.35 2 279.67 28.23 <0.001
Exchange
operation 894.73 2 447.37 44.74 <0.001

Relocation
operation 681.86 1 681.86 68.20 <0.001

new_solutions 569.32 3 189.77 19.01 <0.001
ϕ 228.5 2 114.28 15.38 0.035
Error 8430.1 851 9.906
Total 13078.13 863

As shown in Tab. 3, P-value results of the seven
factors are all less than 0.05, indicating significant
differences in the performance between different levels of
each factor. According to the results, the initialization
strategy leads to the largest F-value, showing that it has the
most important effect on the algorithm performance among
all considered factors. Based on the results, using the
proposed initialization strategy can significantly improve
the solution performance. The DR strategy achieves the
second largest F-value, demonstrating the effectiveness of
the proposed DR strategy.

For the three factors in the local search phase, job
relocation strategy achieves the largest F-value, followed
by the exchange operation and insert operation. It can be
seen that the IGA effectiveness can be significantly
improved when incorporating the designed job relocation
operation.

The two parameters _new solutions and φ are
finally examined. In our results, the IGA produces the best
results when _new solutions = 5 and 30φ = . Based on
these results, we set _ 5new solutions = and 30=ϕ for
the IGA in the following experiments.

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

Tehnički vjesnik 30, 4(2023), 1241-1252 1249

5.3 Optimality Test

Next, the aforementioned 24 small-scale categories
containing 240 instances are used to evaluate the
effectiveness of the two proposed models, and to observe
the deviation of maxC yielded by the IGA from the optimal
one. For each instance, the time limit of CPLEX solver is
set to 3600 s, and the maximum elapsed CPU time is set to
50000 50n m+ × × ms for the IGA. Experimental results
are shown in Tab. 4, maxC represents the average maxC
values, Time is the average running time required by the
CPLEX solver, and optN indicates the number of instances

that the model and the IGA obtain the optimal maxC in each
category.

Table 4 Experimental results for two models and IGA

m n W
Model IGA

maxC optN Time maxC optN PRD
2 5 1 171.0 10 0.89 171.0 10 0.000
2 5 2 189.7 10 0.90 189.7 10 0.000
2 5 3 233.2 10 0.92 233.2 10 0.000
2 10 1 346.5 10 342.04 346.6 9 0.035
2 10 2 316.3 10 363.61 316.3 10 0.000
2 10 3 374.6 10 652.90 374.6 10 0.000
2 20 1 605.7 10 14.36 605.8 9 0.016
2 20 2 581.2 10 14.55 584.3 9 0.531
2 20 3 699.9 10 14.86 702.4 8 0.358
2 50 1 1558.2 4 128.95 1558.3 3 0.376
2 50 2 1461.7 5 132.93 1461.7 5 0.780
2 50 3 1714.0 6 132.08 1720.9 3 0.407
3 5 1 132.4 10 1.157 132.4 10 0.000
3 5 2 122.8 10 0.952 122.8 10 0.000
3 5 3 150.9 10 0.886 150.9 10 0.000
3 10 1 214.0 10 344.21 214.2 9 0.088
3 10 2 226.0 10 353.63 226.0 10 0.000
3 10 3 265.5 10 1333.96 265.7 9 0.080
3 20 1 398.6 10 26.40 400.1 9 0.387
3 20 2 426.7 10 30.79 430.7 6 1.217
3 20 3 470.0 10 43.68 471.4 9 0.311
3 50 - - 0 141.04 1070.7 - -
3 50 - - 0 163.64 986.7 - -
3 50 - - 0 182.37 1159.7 - -

Average / / / / / 0.218
Total / 195 / 178 /

It can be seen from Tab. 4 that for the instances with a
very small scale, the proposed model and IGA have the
same maxC value, which confirms the correctness of the
model. With the increase in the problem size, the solution
time of model shows a trend of rapid increase, and when

3 & 50m n= = , the model cannot obtain the optimal
solution within the specified time. Overall, a total of 195
out of 240 instances can be solved to be the optimal
solution by the model, proving the feasibility of the model.
As for the IGA, 178 out of 195 instances (45 instances
without optimal solutions are not considered) can be solved
with the optimal maxC , which shows that for most test
instances (approximately 91%), the IGA can obtain the
optimal solution in a limited time. For the instances whose
optimal solution cannot be obtained by the IGA, the overall
PRD value is only 0.218%, indicating that the deviations in
the schedules obtained by the IGA from the optimal ones
are very small. Consequently, the above results verify that
the IGA has a good ability to construct high-quality
solutions for small-scale instances.

5.4 Comparison with State-of-Art Algorithms
5.4.1 Adaptation and Aalibration of Atate-of-Art Algorithms

Although many pieces of literature are cited in Section
2, as mentioned above, there are certain differences
between the problem studied in this work and those in the
literature; so, no comparison algorithms can be directly
applied to the problem considered in this paper. In addition,
the problem studied in this wok can be regarded as a
parallel machine scheduling problem. Therefore, three
state-of-art meta-heuristic algorithms proposed in the
literature for the parallel machine scheduling problem are
selected for the comparison. To ensure fairness of the
comparison, certain necessary adaptations in these
algorithms are made.

The selected algorithms include one population-
evolutionary meta-heuristic algorithm, the hybrid biased
random-key genetic algorithm (HBRGA) proposed by [8];
two individual-evolutionary meta-heuristic algorithms, the
general variable neighbourhood search (GVNS) algorithm
proposed by [11] and the iterated greedy algorithm
proposed by [29], denoted as IGA_O. The adaptations
made to these algorithms are as follows. First, the objective
functions of the three comparison algorithms are uniformly
revised to makespan. Second, since the problem studied in
this paper requires considering the processing manner of
adjacent jobs, the designed decoding method is adopted for
those algorithms to ensure the fairness of the comparison,
that is, all algorithms only focus on other two sub-
problems, namely the assignment of jobs to machines and
the sequence of jobs on each machine.

Table 5 Parameter values of the state-of-art algorithms
Algorithm Parameter Description
GVNS None None
HBRGA

sizep n=

0.2elite sizep p= ×

0.1mutation sizep p= ×

Population size
Elite group size
Number of mutant individuals

IGA_O 0.15ε =
0.1λ =

Destruction parameter
Solution restore parameter

To determine the best parameter values and thus
ensure the fairness of the experiment, a similar procedure
as that presented in Section 5.2 is used for each of the
algorithms. Specifically, for each algorithm, a full factorial
experimental design is adopted using the factors and levels
taken from the original paper. The 36 instances presented
in Section 5.2 are used as a criterion. The best parameter
values of each algorithm are reported in Tab. 5. It should
be noted that since some of the local search strategies that
cannot be applied to the considered problem were
discarded, the corresponding relevant parameters of these
strategies are automatically discarded.

5.4.2 Experimental Results

The 360 large-scale instances are used to evaluate the
performance of the comparison algorithms and IGA. Ten
independent runs are conducted using each algorithm to
solve each instance, and all of the algorithms are tested
with the same termination criterion of 50000 50n m+ × ×
ms. The multi-factor ANOVA is used to analyse
differences in the average PRD values of the four

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

1250 Technical Gazette 30, 4(2023), 1241-1252

algorithms, where the algorithm is regarded as a factor. The
LSD intervals at the 95% confidence level are shown in
Fig. 6.

Figure 6 LSD intervals at the 95% confidence level for four algorithms

According to the results in Fig. 6, the IGA obtains the
lowest average PRD values on all 36 combinations, and its
overall average PRD value is only 0.40%, which is much
lower than that of the IGA_O (3.36%), GVNS (7.66%),
and HBRGA (11.43%). This demonstrates that the quality
of the IGA solution is better than those of the other three
comparison algorithms. Regarding the confidence level of
the PRD value, the IGA also has the lowest result among
the four algorithms, which indicates that the IGA can not
only generate better solutions but also perform more
steadily with various problem instances. Among the three
comparison algorithms, the IGA_O performs the best. The
rankings of the GVNS and HBRGA deviate with the
problem size, while GVNS is performed slightly better
than the HBRGA on the whole. The reason for this result
may be that the HBRGA adopts a coding strategy based on
a continuous interval, where the processing order of jobs is
determined by numerical sorting during decoding.
However, this coding strategy is difficult to dig-out high-
quality blocks during evolution and has large randomness.

Moreover, a series of statistical analyses of the average
PRD values of the four algorithms is performed for
different numbers of jobs and machines, and the results are
shown in Figs. 7 and Fig. 8, respectively. As shown in Fig.
7, the average PRD values of the IGA_O, GVNS, and
HBRGA show an upward trend with the increase in the
number of jobs, indicating that the job size has a certain
influence on the performance of the algorithm. However,
the IGA does not fluctuate significantly and maintains a
low level, which is far lower than that of the second-ranked
IGA_O. This further confirms the robustness of the
proposed IGA. In Fig. 8, it can be seen that as the number
of machines increases, the average PRD values of the IGA
and IGA_O are relatively stable. The performances of the
GVNS and HBRGA are relatively poor and have large
fluctuations. In summary, the IGA has a stable
performance for various combinations of jobs and
machines.

In addition to the job scale and machine numbers, the
relationship between the processing time and the waiting
time, i.e., parameter W , is also an influential factor of the
algorithm performance. The mean plots of the four
algorithms for different W values are shown in Fig. 9. It
can be seen that for three levels of W, the average PRD
values of the IGA, IGA_O, and GVNS all first increase and
then decrease. For instance, the average PRD values of the
IGA are 0.29%, 0.46%, and 0.43% for 1W = , 2W = , and

3W = , respectively. However, the HBRGA deteriorates as

W increases. This shows that the configuration relationship
between the processing time and the waiting time has a
great impact on the algorithm performance. Indeed, when

1W = , there are many jobs that do not meet the conditions
for group processing; so, the problem is relatively easy to
solve, and performance differences between the four
algorithms are small. For the case when 2W = , the
combination space of jobs for group processing is large,
increasing the difficulty of solving the problem. When

3W = , although the combination space is very large, the
impact of different schemes on maxC is weakened, which
reduces the problem-solving difficulty.

Figure 7 Average PRD values with different number of jobs

Figure 8 Average PRD values with different number of machines

Figure 9 Average PRD values with different w

Based on the above comparisons, it can be concluded
that the IGA is very effective and superior to the IGA_O,
GVNS, and HBRGA at solving the studied problem.

6 CONCLUSIONS

This work studies a new parallel machine scheduling
problem with re-entrant and group processing features,
which arises from the important production management
requirements of hot rolling workshop in modern iron and
steel enterprises, but has received little attention in the
literature. First, a mixed integerlinear programming model
with the makespan criterion is formulated, and then the
properties of the studied problem are analyzed. Then, an
improved IGA is developed. To improve the performance
of the IGA, several new techniques, including an
initialization strategy, an enhanced DR procedure, and a
tailored local search strategy, are proposed. The

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

Tehnički vjesnik 30, 4(2023), 1241-1252 1251

effectiveness of the model and IGA are verified by
extensive instances. The results show that the proposed
IGA is effective at solving the considered problem, and
performs better than the other three mainstream meta-
heuristic algorithms.

Although this paper has done some work, there are still
the following limitations. ① In terms of problem
characteristics, only a single optimization objective is
considered, while in actual industrial environments,
multiple optimization objectives, such as production
efficiency and energy-saving indicators, often need to be
considered simultaneously. Besides, this paper only
considers the case of two jobs being processed in a group.
In actual industrial environments, there may be more jobs
being processed in a group, which will be the main
direction in the future research. ② The algorithm designed
in this work adopts a single threaded implementation
method. In the future, distributed parallel algorithms can
be developed using multi-threading technology to improve
solution performance.

7 REFERENCES

[1] Boudjemline, A., Chaudhry, I. A., Rafique, A. F., Elbadawi,
I. A., Aichouni, M., & Boujelbene, M. (2022). Multi-
Objective Flexible Job Shop Scheduling Using Genetic
Algorithms. Tehnicki vjesnik-Technical Gazette, 29(5),
1706-1713. https://doi.org/10.17559/TV-20211022164333

[2] Shuang, W., Xiaomeng, D., Ting, Z., & Xiaodong, W.
(2022). Task Scheduling Based on Grey Wolf Optimizer
Algorithm for Smart Meter Embedded Operating System.
Tehnicki vjesnik-Technical Gazette, 29(5), 1629-1636.
https://doi.org/10.17559/TV-20220518055833

[3] Behmanesh, R. & Rahimi, I. (2021). Improved Ant Colony
Optimization for Multi-Resource Job Shop Scheduling: A
Special Case of Transportation. Economic Computation &
Economic Cybernetics Studies & Research, 55(4), 277-294.
https://doi.org/10.24818/18423264/55.4.21.18

[4] Özgür, A., Uygun, Y., & Hütt, M. (2021). A review of
planning and scheduling methods for hot rolling mills in steel
production. Computers & Industrial Engineering, 151,
106606. https://doi.org/10.1016/j.cie.2020.106606

[5] Liao, C., Lee, C., & Tsai, H. (2016). Scheduling with multi-
attribute set-up times on unrelated parallel machines.
International Journal of Production Research, 54(16), 4839-
4853. https://doi.org/10.1080/00207543.2015.1118574

[6] Bitar, A., Dauzère-Pérès, S., Yugma, C., & Roussel, R.
(2016). A memetic algorithm to solve an unrelated parallel
machine scheduling problem with auxiliary resources in
semiconductor manufacturing. Journal of Scheduling, 19(4),
367-376. https://doi.org/10.1007/s10951-014-0397-6

[7] Chen, C., Fathi, M., Khakifirooz, M., & Wu, K. (2022).
Hybrid tabu search algorithm for unrelated parallel machine
scheduling in semiconductor fabs with setup times, job
release, and expired times. Computers & Industrial
Engineering, 165, 107915.
https://doi.org/10.1016/j.cie.2021.107915

[8] Soares, L. C. R. & Carvalho, M. A. M. (2022). Application
of a hybrid evolutionary algorithm to resource-constrained
parallel machine scheduling with setup times. Computers &
Operations Research, 139, 105637.
https://doi.org/10.1016/j.cor.2021.105637

[9] Abu-Marrul, V., Martinelli, R., Hamacher, S., &
Gribkovskaia, I. (2021). Matheuristics for a parallel machine
scheduling problem with non-anticipatory family setup
times: Application in the offshore oil and gas industry.
Computers & Operations Research, 128, 105162.

https://doi.org/10.1016/j.cor.2020.105162
[10] Abu-Marrul, V., Martinelli, R., & Hamacher, S. (2021).

Scheduling pipe laying support vessels with non-anticipatory
family setup times and intersections between sets of
operations. International Journal of Production Research,
59(22), 6833-6847.
https://doi.org/10.1080/00207543.2020.1828637

[11] Zhang, X. & Chen, L. (2022). A general variable
neighborhood search algorithm for a parallel-machine
scheduling problem considering machine health conditions
and preventive maintenance. Computers & Operations
Research, 143, 105738.
https://doi.org/10.1016/j.cor.2022.105738

[12] Chung, T., Gupta, J. N. D., Zhao, H., & Werner, F. (2019).
Minimizing the makespan on two identical parallel machines
with mold constraints. Computers & Operations Research,
105, 141-155. https://doi.org/10.1016/j.cor.2019.01.005

[13] Rau, H. & Cho, K. (2009). Genetic algorithm modeling for
the inspection allocation in reentrant production systems.
Expert Systems with Applications, 36(8), 11287-11295.
https://doi.org/10.1016/j.eswa.2009.03.020

[14] Wang, M. Y., Sethi, S. P., & van de Velde, S. L. (1997).
Minimizing Makespan in a Class of Reentrant Shops.
Operations Research, 45(5), 702-712.

[15] Wang, K., Qin, H., Huang, Y., Luo, M., & Zhou, L. (2021).
Surgery scheduling in outpatient procedure centre with re-
entrant patient flow and fuzzy service times. Omega, 102,
102350. https://doi.org/10.1016/j.omega.2020.102350

[16] Wu, X. & Cao, Z. (2022). An improved multi-objective
evolutionary algorithm based on decomposition for solving
re-entrant hybrid flow shop scheduling problem with batch
processing machines. Computers & Industrial Engineering,
169, 108236. https://doi.org/10.1016/j.cie.2022.108236

[17] Frihat, M., B. Hadj-Alouane, A., & Sadfi, C. (2022).
Optimization of the integrated problem of employee
timetabling and job shop scheduling. Computers &
Operations Research, 137, 105332.
https://doi.org/10.1016/j.cor.2021.105332

[18] Xu, J., Yin, Y., Cheng, T. C. E., Wu, C., & Gu, S. (2014). A
memetic algorithm for the re-entrant permutation flowshop
scheduling problem to minimize the makespan. Applied Soft
Computing, 24, 277-283.
https://doi.org/10.1016/j.asoc.2014.07.002

[19] Shin, H. J. (2015). A dispatching algorithm considering
process quality and due dates: an application for re-entrant
production lines. The International Journal of Advanced
Manufacturing Technology, 77(1-4), 249-259.
https://doi.org/10.1007/s00170-014-6436-9

[20] Chakhlevitch, K. & Glass, C. A. (2009). Scheduling
reentrant jobs on parallel machines with a remote server.
Computers & Operations Research, 36(9), 2580-2589.
http://doi.org/10.1016/j.cor.2008.11.007

[21] Costa, A., Cappadonna, F. V., & Fichera, S. (2020).
Minimizing makespan in a Flow Shop Sequence Dependent
Group Scheduling problem with blocking constraint.
Engineering Applications of Artificial Intelligence, 89,
103413. http://doi.org/10.1016/j.engappai.2019.103413

[22] Divyashree, H. B., Puttamadappa, C., & Prasad, K. S.
(2022). Multi Objective Energy based Hybrid Optimization
Algorithm for Clustering and Routing in WSN. Journal of
System and Management Sciences, 12(1), 80-497.

[23] Singh, G., Prakash, S., & Kumar, S. (2021). Minimizing
Makespan Time in Cloud Computing using Heuristic
Elasticity based Dynamic Task Scheduling Algorithms.
Journal of System and Management Sciences, 11(2), 29-47.
https://doi.org/10.33168/JSMS.2021.0203

[24] Huang, Y., Huang, S., & Jin, C. (2021), 3D-Container
Loading Problem with a Distribution Plan Based on Hybrid
Quantum Genetic Algorithm. Economic Computation And
Economic Cybernetics Studies And Research, 55(4), 117-

https://doi.org/10.33168/JSMS.2021.0203

Shuaipeng YUAN et al.: An Iterated Greedy Algorithm for a Parallel Machine Scheduling Problem with Re-entrant and Group Processing Features

1252 Technical Gazette 30, 4(2023), 1241-1252

132. https://doi.org/10.24818/18423264/55.4.21.08
[25] Sarkar, T., Salauddin, M., Hazra, S., Choudhury, T., &

Chakraborty, R. (2021). Comparative Approach of Artificial
Neural Network and Thin Layer Modelling for Drying
Kinetics and Optimization of Rehydration Ratio for Bael
(Aegle marmelos (L) correa) Powder Production. Economic
Computation And Economic Cybernetics Studies And
Research, 55(1), 167-184.
https://doi.org/10.24818/18423264/55.1.21.11

[26] Wang, Y. J., Wang, N. D., Cheng, S. M., Zhang, X. C., Liu,
H. Y., Shi, J. L., Ma, Q. Y., & Zhou, M. J. (2021).
Optimization of disassembly line balancing using an
improved multi-objective Genetic Algorithm. Advances in
Production Engineering & Management, 16(2), 240-252.
https://doi.org/10.14743/apem2021.2.397

[27] Ruiz, R. & Stützle, T. (2007). A simple and effective iterated
greedy algorithm for the permutation flowshop scheduling
problem. European Journal of Operational Research,
177(3), 2033-2049. https://doi.org/10.1016/j.ejor.2005.12.009

[28] Arroyo, J. E. C., Leung, J. Y. T., & Tavares, R. G. (2019).
An iterated greedy algorithm for total flow time
minimization in unrelated parallel batch machines with
unequal job release times. Engineering Applications of
Artificial Intelligence, 77, 239-254.
https://doi.org/10.1016/j.engappai.2018.10.012

[29] Mecler, D., Abu-Marrul, V., Martinelli, R., & Hoff, A.
(2022). Iterated greedy algorithms for a complex parallel
machine scheduling problem. European Journal of
Operational Research, 300(2), 545-560.
https://doi.org/10.1016/j.ejor.2021.08.005

[30] Rodriguez, F. J., Lozano, M., Blum, C., & García-Martínez,
C. (2013). An iterated greedy algorithm for the large-scale
unrelated parallel machines scheduling problem. Computers
& Operations Research, 40(7), 1829-1841.
http://doi.org/10.1016/j.cor.2013.01.018

[31] Pan, Q. (2016). An effective co-evolutionary artificial bee
colony algorithm for steelmaking-continuous casting
scheduling. European Journal of Operational Research,
250(3), 702-714. http://doi.org/10.1016/j.ejor.2015.10.007

[32] Arroyo, J. E. C. & Leung, J. Y. T. (2017). An effective
iterated greedy algorithm for scheduling unrelated parallel
batch machines with non-identical capacities and unequal
ready times. Computers & Industrial Engineering, 105, 84-
100. http://doi.org/10.1016/j.cie.2016.12.038

[33] Rerkjirattikal, P., Wanwarn, T., Starita, S., Huynh, V. N.,
Supnithi, T., & Olapiriyakul, S. (2020). Heuristics for noise-
safe job-rotation problems considering learning-forgetting
and boredom-induced job dissatisfaction effects.
Environmental Engineering & Management Journal, 19(8),
1325-1337.

[34] Ren, J. F., Ye, C. M., & Li, Y. (2021). A new solution to
distributed permutation flow shop scheduling problem based
on NASH Q-Learning. Advances in Production Engineering
& Management, 16(3), 269-284.
https://doi.org/10.14743/apem2021.3.399.

Contact information:

Shuaipeng YUAN, Lecturer
(Corresponding author)
School of Economics and Management,
University of Science & Technology Beijing,
Beijing 100083 P. R. China
E-mail: 17801002601@163.com

Bailin WANG, Professor
School of Economics and Management,
University of Science & Technology Beijing,
Beijing 100083 P. R. China
E-mail: wangbl@ustb.edu.cn

Tieke LI, Professor
School of Economics and Management,
University of Science & Technology Beijing,
Beijing 100083 P. R. China
E-mail: tieke@ustb.edu.cn

	1 INTRODUCTION
	2 RELATED WORK
	3 RESEARCH PROBLEM
	4 THE PROPOSED IGA
	4.1 Encoding and Decoding
	4.2 Initialization
	4.3 DR Procedure
	4.4 Local Search Strategy
	4.5 Acceptance Rule

	5 COMPUTATIONAL EXPERIMENTS
	5.1 Test Data
	5.2 Algorithm Calibration
	5.3 Optimality Test
	5.4 Comparison with State-of-Art Algorithms
	5.4.1 Adaptation and Aalibration of Atate-of-Art Algorithms
	5.4.2 Experimental Results

	6 CONCLUSIONS

