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We put forward the following, physically motivated premiss for constructing a the-
ory that underlies the standard model in four-dimensional space-time: The Euler-
Lagrange equations of such a theory formally resemble some equations of motion
underlying fluid-dynamics equations in the kinetic theory of gases. In support of
this premiss, we point out local and covariant Lagrangians whose Euler-Lagrange
equations contain a subsystem equivalent to the Euler-Lagrange equations of the
standard model with covariantly regularized propagators, and a subsystem describ-
ing faster-than-light effects.
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1. Introduction

The standard model, which provides an adequate description of all quantum-
mechanical experiments so far performed, is generally considered to be only an
effective field theory: a low-energy approximation to an underlying theory (UT).
To obtain a UT, within the last fifteen years or so considerable effort has been put
into various string theories. But it is still an open question whether this “top-down”
approach leads to the observed low-energy physics. In this paper we put forward
a new framework for an opposite, “bottom-up” approach to the construction of
a UT in four-dimensional space-time. We base it on the analogy of the kinetic
theory of gases and give basic assumptions in Sect. 2, the premiss in Sect. 3, and a
transport-theoretic example in Sect. 4. As a starting point, we note that:

(A) Propagators of the standard model must be regularized to obtain physically
meaningful results. FollowingPauli [1], we presume there is a UT whose propagators
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(i) do not need to be regularized, and (ii) can be regarded as such regularizations
of standard-model propagators that reflect ultra-high-energy physics; for comments
on this belief see Ref. [2]. In Sect. 4.3 we point out a possible Lagrangian of such a
UT.

(B) Ever since Einstein, Podolski and Rosen published their gedanken-
experiment some sixty years ago, physicists have been aware that, if we go beyond
a strictly operational description of quantum phenomena, interpretations of certain
results suggest the existence of faster-than-light effects (FTLEs) [3].1 So we expect
the mathematical formalism of a UT to exhibit some FTLEs. However, special
relativity poses two serious conceptual problems in connection with FTLEs:

(i) When the relation between two events suggests FTLEs, different observers
may not agree on what is the cause and what is the consequence! Suppose we
observe two spacelike-separated measurements, say A and B, and we believe
that the result of the earlier one determines the result of the latter one by a
FTLE, e.g., by an instantaneous change of the quantum-mechanical state. In
our frame of reference, let A precede B so that we believe B is determined by
A. However, there are inertial frames where B precedes A, and there observers
believe the opposite, that B determines A.

(ii) It is not clear how to model states that exhibit FTLEs without predicting that
the present can influence the past! Suppose the relation between responses
and their sources is covariant in the sense that to Lorentz-transformed source
corresponds Lorentz-transformed response. So, if a part of the response due
to some source is faster than light, then the corresponding parts of responses
to sources that equal certain Lorentz transformations of this source precede
their causes. Which is a very strong objection to FTLEs, since no physi-
cal phenomenon ever suggested the existence of “effects” that precede their
causes.1

Resolution of such problems is often seen as the key to a better understanding of
quantum phenomena [3]. We see no way around the first problem.2 Regarding the
second problem, we point out in Sect. 4 such Euler-Lagrange equations where one
can avoid this problem without coming in conflict with special relativity.

2. Basic assumptions

The shape of a UT is quite unknown. However, we assume that its Euler-
Lagrange equations are local3 and covariant, and the free-field equations (i.e., Euler-

1A change in the state of a physical system that occurs at the space-time point (ct2, r2) and is
attributed to a source at (ct1, r1) is refered to as: an effect (response) if t2 ≥ t1; a faster-than-light
effect (FTLE) if |r2 − r1| > c(t2 − t1) and t2 ≥ t1; an “effect” that precedes its cause if t2 < t1;
an effect that satisfies Einstein’s causality condition if |r2 − r1| ≤ c(t2 − t1).
2Aharonov and Albert [4] argued that one cannot use relativistic functions to describe FTLEs

suggested by quantum mechanics.
3We label an equation of motion as local if it relates only the values of the state function and

of finitely many of its time and space derivatives at the same space-time point.
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Lagrange equations with all non-linear terms taken as external sources) admit clas-
sical solutions that have: (i) properties that are propagated not faster than light
according to covariant, regularized Green functions of basic field equations, (ii) un-
bounded front velocity, and (iii) no “effects” that precede their causes. Therefore,
we believe that an understanding of classical systems with such equations of motion
would be invaluable in searching for and in constructing a UT.

To this end let us be more specific about the mathematical properties we expect
from the above classical, free-field solutions in a particular, scalar system:

(A) An external source is described by a real function j(x) of the space-time
variable x = (ct, r) ∈ R1,3. The set of possible sources is invariant under
the inhomogeneous Lorentz transformations x → Λx+ a, i.e., if a particular
source j(x) belongs to this set, then so does any “moving” source j(Λx+ a).

(B) The total response of the system to the external source j(x) is described by
the state function determined by some local, linear, covariant, Euler-Lagrange
equations of motion and subsidiary conditions. A certain part of this total re-
sponse, described by the real function ϕ(x) of x ∈ R1,3, is such that: (i) There
is a Green function G(x) such that ϕ(x) = G∗j, where ∗ denotes the convolu-
tion with respect to x. (ii) The relation between ϕ(x) and j(x) is covariant [if
j(x) is the source of ϕ(x), then a “moving” source j(Λx+a) causes ϕ(Λx+a)].
(iii) Responses ϕ(x) do not precede their sources j(x). Thus, G(x) is covariant
in the sense that G(Λx) = G(x), and G(x) = 0 if t < 0, and also if c2t2 < |r|2
[5]. Consequently, (i) all responses ϕ(x) exhibit Einstein’s causality,1 and
(ii) the propagator

G̃(k) ≡
∫
d4x e−ik·xG(x) , (1)

where k ∈ R1,3 and k · x = k · r− k0ct, is covariant, i.e., G̃(Λk) = G̃(k).
(C) This propagator G̃(k) (i) can be adequately approximated by the propagator

G̃w(k) ≡ (k2)−1 (2a)

up to some extremely large value of |k2|, and (ii) is regular in the sense that

G̃(k) = O
(
(k2)−n

)
(2b)

as k2 →∞, with constant n > 2 [1].
(D) The total response to any source j(x) exhibits some FTLEs, but no “effects”

that precede their causes. So state functions of the system in question depend
causally on their sources; but, as pointed out in Sect. 1, this dependence can-
not be covariant! Thus the subsidiary conditions that together with covariant
equations of motion determine the state functions cannot be covariant.

FIZIKA B (Zagreb) 8 (1999) 3, 441–452 443
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(E) All inertial frames are equivalent: The properties (A) to (D), and the rela-
tions between state functions, responses ϕ(x), and their sources j(x) do not
depend on the inertial frame of the observer. Sources j(x) and responses ϕ(x)
are relativistic: functions j(x) that represent the same source in different
inertial frames are related by Lorentz transformations for scalar fields; and
the same goes for the corresponding functions ϕ(x), in agreement with the
assumption (B). As certain Lorentz transformations of any state function ex-
hibit effects that precede their causes, total responses are not relativistic—the
relation between state functions in different inertial frames is open.2

By (C) above, the Fourier transform G̃w(k) of the wave-equation Green func-

tion Gw(x) adequately approximates G̃(k) up to extremely large values of |k2|. So,
the wave response ϕw(x) ≡ Gw ∗ j is a very good approximation to the response
ϕ(x) when the source j(x) is varying slowly enough, both spatially and temporaly.

In such a case, the wave equation (c−2∂2/∂t2 − ~∇ · ~∇)ϕw(x) = j(x) is a good ap-
proximation to the unknown, covariant equation of motion for the response ϕ(x).
So we can say that the unknown equations of motion for the state function of the
system in question underlie the wave equation in the sense that their causal solu-
tions, though exhibiting FTLEs, propagate certain effects by a covariant, regular

propagator G̃(k) that can be approximated by the wave propagator G̃w(k) up to
extremely high values of |k2|.

3. Premiss

The above properties (A) to (E), however, do not even suggest whether such
a classical system has a state function of only four continuous variables (ct and
r), and certainly give no indication about the nature of its equations of motion.
So we went looking for classical physical systems that behave similarly in order
to construct by analogy such equations of motion that underlie the basic free-field
equations in the above sense. We found such systems in the kinetic theory of gases
[5].

For example, take a non-relativistic gas. Its macroscopic state is described by
macroscopic variables such as kinetic energy and density, slow changes of which
propagate with a finite speed of sound, approximately according to some fluid-
dynamics partial-differential equations. But its microscopic state is affected almost
immediately everywhere by a localized source since the velocity of gas particles is
not bounded in the non-relativistic theory. Only a finite number of local averages of
the microscopic state are regarded as macroscopically observable, i.e., the macro-
scopic variables, which can also be defined independently with no reference to the
microscopic state. The remaining properties of the microscopic state (i.e., infinitely
many, macroscopically directly unobservable degrees of freedom) describe processes
that manifest themselves (i) in fluctuations of macroscopic variables, and (ii) in the
fact that fluid-dynamics equations are only asymptotically valid approximations for
smoothly and slowly changing macroscopic variables.
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For a rare gas of identical pointlike particles, the fluid-dynamics equations can
be extended to model somewhat faster changes of macroscopic variables by intro-
ducing additional fields of spacetime variable, which have no direct significance
within the framework of fluid dynamics, though they can be interpreted as local
averages of the microscopic state, see, e.g., the Grad method of moments [6]. But
eventually, these equations of motion cannot be improved this way any more, and
one must resort to a more detailed description by the one-particle distribution, a
function of time, position, and velocity, evolving according to the integro-differential
Boltzmann equation [6]. So in the case of a rare gas, there is a characteristic length
and time interval where a completely new physics appears with three additional
independent variables: physics essentialy different from the macroscopic physics
described by fluid-dynamics equations.

For various theoretical reasons, many theorists believe that the framework of
present quantum field theories may not be appropriate for a theory of quantum
phenomena valid at all energies. It was Feynman [7] who first suggested that the
basic partial-differential equations of theoretical physics might be actually describ-
ing macroscopic motion of some infinitesimal entities he called X-ons. In addition,
already Heisenberg [8] and Bjorken and Drell [9] expected that there is a char-
acteristic energy (and length) beyond which quantum dynamics will be essentially
different from the one described by the canonical formalism; so we expect the Euler-
Lagrange equations of a UT to be very different from those of the standard model.
All of which, together with the behaviour of a nonrelativistic gas, leads us to put
forward the following premiss for a “bottom-up” approach to fundamental interac-
tions: The Euler-Lagrange equations of a UT formally resemble some of equations
of motion underlying fluid-dynamics equations in the kinetic theory of gases.We be-
lieve that this physically motivated premiss will help us (i) to construct a UT whose
propagators do not need to be regularized, and (ii) to model quantum-mechanical
FTLEs.

4. Transport-theoretic example

4.1. Equation of motion

Following the above premiss, we now consider a class of systems with properties
(A) to (E), defined by covariant, linear, integro-differential equations of motion
with a non-covariant causality condition. On the analogy with the linearized Boltz-
mann equation let us provisionally regard these equations of motion as modeling
transport of some infinitesimal entities, X-ons, with arbitrary four-momenta, whose
macroscopic motion evolves almost according to the wave equation.

We describe the state of X-ons in a given inertial frame by a real scalar state
function Ψ(x, p) of the space-time variable x ∈ R1,3 and of the four-momentum
variable p = (p0,p) ∈ R1,3. As the equation of motion for Ψ(x, p) we take the local,
linear, transport equation

p·∂Ψ = SΨ+Q , (3)
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where: (i) p·∂ = p0c−1∂/∂t + p · ~∇ is the covariant, substantial time derivative.
Thus Eq. (3) with S = 0 and Q = 0 is an analog of Newton’s first law and describes
free streaming of X-ons.

(ii) The scattering operator S describes the scattering of X-ons by the host
medium—the vacuum. In the considered case,

SΨ ≡ f0(p
2)

∫
d4p′f0(p′2)Ψ(x, p′)

+f1(p
2)p ·

∫
d4p′f1(p′2)p′Ψ(x, p′)− t(p2)Ψ(x, p) , (4)

where f0(p
2), f1(p

2) and t(p2) are real functions of p2 ∈ R; and the integral

∫
d4pF (p) ≡ −i lim

r→∞

ir∫
−ir
dp0

∫
p2≤r2

F (p) d3p (5)

for functions F (p), p ∈ R1,3.
(iii) The source of all X-ons described by Ψ(x, p) is given by

Q(x, p) ≡ q0f0(p2)j(x) , (6)

with q0 being a real parameter. As we do not permit effects that precede their
causes, we assume the causality condition: if Q(x, p) = 0 for all t ≤ t0, the corre-
sponding state function

Ψ(x, p) = 0 for all t ≤ t0 . (7)

The equation of motion (3) is covariant with respect to the inhomogeneous
Lorentz transformations

x→ Λx+a , p→ Λp , Ψ(x, p)→ Ψ(Λx+a,Λp) , Q(x, p)→ Q(Λx+a,Λp) . (8)

However, like the Boltzmann equation, Eq. (3) is not invariant under the time
reversal: the state function Ψ(x, p) displays an arrow of time in the sense that the
time-reversed Ψ(x, p) is not a solution to (3) with time-reversed source Q(x, p).
In contrast to the Einstein causality condition, condition (7) is not covariant. As
a consequence, the relation between solutions Ψ(x, p) to equation (3) and their
sources Q(x, p) need not be covariant.

The equations of motion (3)–(6) are equal to the Euler-Lagrange equations of
the local, covariant Lagrangian

(2q0)
−1
∫
d4pΨ(x,−p)[p · ∇Ψ− SΨ]−

∫
d4pΨ(x,−p)f0(p2)j(x) . (9)
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4.2. Properties of the state function Ψ(x, p)

The total responses Ψ(x, p) of the system in question to sources j(x) are such
that certain local averages, the macroscopic variables

ϕ[x; Ψ] ≡
∫
d4p f0(p

2)Ψ(x, p) , (10)

a[x; Ψ] ≡
∫
d4p f1(p

2)Ψ(x, p)p ,

covariantly depend on sources j(x) and exhibit Einstein’s causality despite the non-
covariant causality condition (7). To infer this, we proceed as in Ref. [5] to compute
the Fourier transforms ϕ̃[k; Ψ] and ã[k; Ψ] of ϕ[x; Ψ] and a[x; Ψ], and conclude that

ϕ̃[k; Ψ] = G̃0(k)j̃(k) , (11a)

ã[k; Ψ] = ikG̃1(k)j̃(k) , (11b)

where

G̃0(k) = q0D
−1(1− I3 −D) , (11c)

G̃1(k) = q0D
−1I2 , (11d)

with

D ≡ (1− I1)(1− I3) + k2I22 , (11e)

I1(k
2) ≡ (2π2/k2)

∞∫
0

f20 (y)t(y)[
√
1 + k2y/t2(y) − 1]dy , (11f)

I2(k
2) ≡ (π/k2)2

∞∫
0

f0(y)f1(y)t
2(y)[

√
1 + k2y/t2(y) − 1]2dy , (11g)

I3(k
2) ≡ (π/k2)2

∞∫
0

f21 (y)t
3(y)[

√
1 + k2y/t2(y) − 1]2dy . (11h)

As G̃0(k) and G̃1(k) are covariant, the corresponding retarded Green functions
G0(x) and G1(x) are covariant, and ϕ[x; Ψ] = G0 ∗ j and a[x; Ψ] = ∂G1 ∗ j satisfy
Einstein’s causality condition [5].

When t2(p2)/p2 and its inverse are bounded for all p2 ≥ 0, the propagator G̃0(k)
has the following properties:
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(A) If a114 /=4, a
00
2 = 1 and (4− a114 )(4q0 − a004 ) = (a014 )2, where

amnr ≡ π2
∞∫
0

fm(y)fn(y)[t(y)]
m+n+1 |√y/t(y)|rdy ,

then

G̃0(k) = 1/k
2 + O((k2)0) as k2 → 0 .

(B) G̃0(k) = O((k
2)−n) as k2 →∞, where

n = 1 if a001 = 0, n = 3/2 if also 2a000 = −(a012 )2 ,

n = 2 if also a00−1 = −4a012 a011 , n = 5/2 if also a112 a000 = 2(a011 )2 + 2a012 a010 ,

and n = 3 if also a00−3 = 8a
01
2 a
01
−1 + 32a

01
1 a
01
0 − 16a000 a111 − 4a00−1a112 .

These results enable us to explicitly show that within the presented transport-

theoretical framework, there are covariant propagators G̃0(k) regularizing the wave

propagator G̃w(k). Namely, when
√
p2/t(p2) has only two values for p2 ≥ 0, say

τ1 and −τ2, we can explicitly calculate the corresponding propagator G̃0(k) as a
rational function of

√
1 + τ2j k

2, j = 1, 2, whose six parameters are determined by

integrals of f0(p
2) and f1(p

2). For τ2 > τ1 > 0, there are infinitely many f0 and

f1 such that for some real q0 the corresponding G̃0(k) has the required properties:

(i) it satisfies the conditions (A) and (B) with n = 3, (ii) G̃0(k) is a decreasing

function of k2 > 0, (iii) the difference |G̃0(k) − G̃w(k)| is a bounded function of
complex k2, e.g., for τ2/τ1 = 2, and (iv) for any µ0 this difference can be made
arbitrarily small for all |k2| < µ0 by taking τ1 and τ2 sufficiently small.
By (3), (4), (5), (7) and (10), when j(x) = 0 if t ≤ t0, we can express the state

function Ψ(x, p) for p0 /=0 in terms of the source j(x) and fields ϕ[x; Ψ] and a[x; Ψ]
[5]:

Ψ(x, p) = Θ(t− t0)
c(t−t0)/p0∫
0

e−t(p
2)yq(x− yp, p) dy , (12)

with

q(x, p) ≡ {ϕ[x; Ψ] + q0j(x)}f0(p2) + p · a[x; Ψ]f1(p2) , (13)

Θ(t < 0) ≡ 0 and Θ(t ≥ 0) ≡ 1. By (10)–(13), the source j(x) at x = (ct1, r1):
(i) does not affect Ψ(x, p) at x = (ct2, r2), t2 < t1, i.e., the system considered is
causal; and (ii) affects Ψ(x, p) at x = (ct2, r2), t2 > t1, for some values of four-
momentum p no matter how small is the time interval t2−t1 and/or how large is the
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distance |r2−r1|, i.e., the physical system considered displays everywhere arbitrary
fast effects: the front velocity of its state function Ψ(x, p) is not bounded! Thus
the dependence of Ψ(x, p) on j(x) is not covariant in contrast with the dependence
of its properties ϕ[x; Ψ] and a[x; Ψ]: the covariance (8) of the equation of motion
(3) is partly broken by the non-covariant causality condition (7).

Regarding the relation between descriptions of X-ons in different inertial frames,
we assume that (i) there is no preferred inertial frame, (ii) the source j(x) is a
scalar relativistic field, and, (iii) the independent variable p transforms as a four-
momentum. In particular, when considering X-ons from an inertial frame whose
space-time coordinates x′ = Λx + a, their four-momenta p′ = Λp, and their state
function Ψ′(x′, p′) is uniquely determined by (i) the equations of motion (3)–(6)
with ∂ → ∂′, p → p′ and j(x) → j′(x′) = j(Λ−1x′ − Λ−1a), and (ii) the non-
covariant causality condition (7). The preceding results imply that G′0(x) = G0(x)
and G′1(x) = G1(x) so that ϕ′[x′; Ψ′] = ϕ[x; Ψ] and a′[x′; Ψ′] = Λa[x; Ψ]; so these
two local averages of the state function are relativistic scalar and vector fields. The
state function itself is not relativistic; Ψ′(x′, p′) is related to ϕ′[x′; Ψ′], a′[x′; Ψ′] and
j′(x′) through the non-covariant relation (12).
The above results show that one can construct integro-differential equations of

motion that can be regarded as the Euler-Lagrange equations underlying the wave
equation in the sense specified at the end of Sect. 2. In the same manner, one can
construct also integro-differential equations that can be regarded as Euler-Lagrange
equations underlying other basic, differential free-field equations (see Appendix A).

4.3. Lagrangian for UT in accordance with the premiss

To construct a possible Lagrangian for a UT, we may proceed as follows:

(i) We take the Euler-Lagrange equations of the standard model and express
them in terms of spin-0, spin-1

2
and spin-1 propagators.

(ii) We replace these propagators with propagators analogous to G̃0(k) with prop-
erties (B) to obtain relations such as (11) with spin-0, spin- 12 and spin-1
sources.

(iii) Combining Lagrangians that are related to the obtained relations as (9) is re-
lated to (11), we can then construct a possible transport-theoretic Lagrangian
for a UT as specified in Sects. 2 and 3. Its local and covariant Euler-Lagrange
equations comprise transport equations such as (3) with scalar, spinor, and
vector sources.

For ϕ4 theory, an example of such a construction is given in Appendix B. The ques-
tion remains, however, which of the infinity of such transport-theoretic Lagrangians
are physically relevant for constructing a UT. We considered quantum field theo-
ries defined by Feynman path integrals of such transport-theoretic Lagrangians in
Ref. [10].
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The Euler-Lagrange equations of a Lagrangian constructed as specified above
contain a subsystem of equations equivalent to the Euler-Lagrange equations of
the standard model with some covariantly regularized propagators. This subsys-
tem determines the dynamics of all fields of the standard model in the classical
approximation so that they exhibit no FTLEs, though solutions to the whole set
of covariant transport-theoretic Euler-Lagrange equations do exhibit FTLEs. As in
the classical approximation, the temporal dependence of the fields of the standard
model describes the temporal dependence of its quantum states, FTLEs are absent
there. How to use transport-theoretic FTLEs to explain FTLEs implied by certain
quantum phenomena is open. Such an explanation would not require, as sometime
suggested [11] that we abandon the traditional belief that the basic equations of
motion are covariant, and all inertial frames are equivalent.

5. Concluding remarks

In this paper we have put forward a new framework for constructing a the-
ory that may underlie the standard model in four-dimensional space-time. It re-
quires that the Euler-Lagrange equations of this theory: (i) are local and covariant,
(ii) have propagators that need not be regularized, (iii) describe some faster-than-
light effects, and (iv) formally resemble equations of motion of some theory that
underlies fluid dynamics in the kinetic theory of gases. Physical motivations for
and details of this framework are given in Sects. 1 – 3.

To show that the proposed framework for modeling fundamental interactions is
feasible, we have pointed out in Sect. 4.3 how one can construct Euler-Lagrange
equations such that: (i) they are integro-differential equations defined in eight-
dimensional R1,3 × R1,3 on the analogy with the Boltzmann transport equation,
(ii) their causal solutions display FTLEs, and (iii) certain local averages of these
solutions are propagated not faster than light by the Euler-Lagrange equations of
the standard model whose propagators are covariantly regularized. These transport-
theoretic Euler-Lagrange equations define for the first time such a physically mo-
tivated class of classical models in four-dimensional space-time that (i) are not
invariant under time reversal, (ii) have covariant, regular propagators, (iii) model
certain FTLEs without predicting that present can influence the past, and (iv) are
not in conflict with special relativity.
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Appendix A: Spin-0 propagator

Propagator G̃0(k) defined by Eq. (11a) can be made regular and approximate

spin-0 propagator G̃KG(k) ≡ (k2 +m2)−1, m ≥ 0, as accurately as desired for all
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k up to some extremely large value of |k2| by choosing q0, f0(y), f1(y) and t(y) so
that: (i) conditions (B) in Sect. 4.2 are satisfied; (ii) at y = −m2,

[1− I1(y)][1− I3(y)] = yI22 (y) , (A1a)

q0[1− I3(y)] = d{[1− I1(y)][1− I3(y)] + yI22 (y)}/dy ; (A1b)

and (iii) |t(y)| is sufficiently large.

Appendix B: ϕ4 theory

The Lagrangian of ϕ4 theory reads

−1
2
(∂ϕ)2 − 1

2
m2ϕ2 − λ

4!
ϕ4 . (B1)

Its Euler-Lagrange equation is

∂2ϕ−m2ϕ = λ
6
ϕ3 . (B2)

According to Sect. 4.2, the Euler-Lagrange equations of the Lagrangian (9) with

j(x) = λ
4!ϕ
4[x; Ψ] (B3)

contain in k-space the subsystem

ϕ4[k; Ψ] = λ
6 G̃0(k)

˜ϕ3[x; Ψ] , (B4)

which is equivalent to the Euler-Lagrange equation (B2) of (B1) if we replace G̃0(k)

with G̃KG(k). So under conditions given in Appendix A, the Euler-Lagrange equa-
tions (B2) of the transport-theoretic Lagrangian (9) with (B3) contain a subsystem
corresponding to the Euler-Lagrange equation (B2) of ϕ4 theory with a regularized
propagator.
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5) M. Ribarič and L. Šušteršič, Fund. Phys. Lett. 7 (1994) 531; Fizika B 3 (1994) 93;

6) M. M. R. Williams: Mathematical Methods in Particle Transport Theory, Butterworths,
London (1971), Sects. 2.3, 2.7 and 2.8; R. L. Liboff, Kinetic Theory, Prentice Hall,
Englewood Cliffs (1990), Chap. 3;

7) R. P. Feynman, R. B. Leighton and M. Sands: The Feynman Lectures on Physics, Vol.
II, Addison-Wesley, Reading, Mass. (1965), Sect.12–7;

8) W. Heisenberg, Ann. Phys. (Leipzig) 32 (1938) 20;

9) J. D. Bjorken and S. D. Drell: Relativistic Quantum Fields, McGraw-Hill, New York
(1965), pp. 3, 14;

10) M. Ribarič and L. Šušteršič, Int. J. Theor. Phys. 34 (1995) 571; hep-th/9710220;

11) P. H. Eberhard, Nuovo Cimento B 46 (1978) 392; D. Bohm, B. Hiley and P. Kalogerou,
Phys. Rep. 144 (1987) 321; L. Hardy, Phys. Rev. Lett. 68 (1992) 2981; L. Hardy and
E. J. Squires, Phys. Lett. A 168 (1992) 169; P. R. Holland, Phys. Rep. 224 (1993) 95;
M. C. Combourieu and J. P. Vigier, Phys. Lett. A 175 (1993) 269.

OKVIR TEORIJE KOJA JE OSNOVA STANDARDNOG MODELA

Predlažemo novu, fizički motiviranu postavku za razvijanje teorije koja je osnova
standardnog modela u četiri-dimenzijskom prostoru–vremenu: Euler-Lagrangeove
jednadžbe te teorije formalno sliče osnovnim jednadžbama dinamike tekućina u
kinetičkoj teoriji plinova. Kao podršku toj postavci ističemo lokalnu i kovarijantnu
Lagrangeovu funkciju čije Euler-Lagrangeove jednadžbe sadrže podsustav koji je
jednakovrijedan Euler-Lagrangeovim jednadžbama standardnog modela s kovari-
jantno sred–enim propagatorima i podsustav koji opisuje učinke iznad brzine svjet-
losti.
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