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The calculation of matrix elements of two-body interactions needed in the hyper-
spherical harmonics method for a three-body system is greatly simplified by ex-
panding the bra- and ket-vector states in the hyperspherical harmonics basis states
appropriate for the partition corresponding to the interacting pair. This involves
the Raynal-Revai coefficients (RRC) which are the transformation coefficients be-
tween the hyperspherical harmonics bases corresponding to the two partitions. In
this work, we present a fast algorithm for an accurate numerical computation of
RRC. We have used this technique for two-electron atoms where the two-body in-
teractons are purely Coulombic, and compared the results with the direct numerical
integrations. Both the individual matrix element of the total interaction potential
as well as the calculated binding energy agree within the computational error.
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1. Introduction

The hyperspherical harmonics expansion method is a powerful tool for the ab
initio solution of the few-body Schrödinger equation, for a given set of potentials
of interaction among constituent particles. The method has been used for bound
states in atomic [1–4], nuclear [5–14] and particle physics [15–17]. Attempts have
been made to use it also in scattering problems [18]. In this method, one introduces
hyperspherical variables in terms of Jacobi coordinates, the i th Jacobi coordinate
being proportional to the separation vector of the (i+1)th particle from the centre
of mass of the first i particles. In this way, the centre of mass motion is automat-
ically separated and the relative motion of an N -particle system is described in
terms of (N − 1) Jacobi vectors. Next, hyperspherical variables [19] are introduced
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(Sect. 2) and the wave function is expanded in the complete set of hyperspherical
harmonics (HH), which are the eigenfunction of the hyper-angular-momentum op-
erator in (3N − 4) dimensions. Substitution of this expansion into the Schrödinger
equation and projection on a particular set of hyperspherical harmonics leads to
a set of coupled differential equations. Solution of this set of equations, subject to
appropriate boundary conditions for a bound system, gives the binding energy and
the wave function of the system. The method is ab initio and essentially exact (i.e.,
the precision of the results depend only on the extent of truncation of the expansion
basis). The method also provides a clear physical picture of the system in terms of
the configuration space wave function [5]. One of the most difficult computational
aspects of this method is the calculation of the coupling matrix elements. We will
see in the next section that the calculation of the matrix elements of the interaction
between the first two particles (numbered 1 and 2) is straightforward, while that
between any other pair is very cumbersome, because the corresponding separation
vector becomes a linear combination of more than one Jacobi coordinate, and the
calculation procedure is not unique, since we can number the particles in any one
of the N ! ways. Each choice will lead to an equivalent set of (N−1) Jacobi vectors,
and a corresponding equivalent set of hyperspherical coordinates. It can be shown
that the hyperradius, which is the invariant global length in 3(N − 1) dimensions,
is the same for all choices. The hyperangles form a set of (3N − 4) angle variables.
These are constituted by 2(N − 1) polar angles of the (N − 1) Jacobi vectors and
(N − 2) angles defined in terms of the relative lengths of the Jacobi vectors. The
hyperangles depend on the particular partition chosen. Consequently, HH also de-
pend on the partition. Each complete set of HH corresponding to a given partition
span the same (3N − 4) dimensional angular hyperspace. Hence, a given HH of
a particular set can be expanded in the complete set of HH corresponding to any
other partition, there being a unitary transformation between such sets of basis
vectors. In calculating the matrix element of V (rij), the interaction potential of
the (ij) pair, it is then convenient to expand the chosen HH in the set of HH cor-
responding to the partition in which ~rij is proportional to the first Jacobi vector.
To do this, we need the transformation coefficients, called Raynal-Revai coefficients
(RRC), from one choice of partition to another. Raynal and Revai [20] obtained
an expression for these coefficients for a three-body system consisting of particles
of arbitrary masses. In this communication, we present a computational algorithm
for the calculation of these coefficients which can be used in any three-body cal-
culation. We have checked the calculation of these coefficients by computing the
matrix elements needed in two-electron atoms and compared them, as well as the
binding energy, with direct numerical integration of the matrix elements.

In Sect. 2, we discuss the fundamentals of the hyperspherical harmonics expan-
sion method and the transformation coefficients between two sets of HH belonging
to two different partitions. In Sect. 3, we discuss the numerical algorithm and in
Sect. 4, we use the calculated RRC for the ground states of some two-electron atoms
and compare them with the results in which matrix elements were obtained in a
straightforward manner, paying attention to the total computation time involved
in each process.
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2. Hyperspherical harmonics expansion method

To study the structure of a three-particle system by the hyperspherical harmon-
ics expansion (HHE) method, we label the particles by “i ”, “j ” and “k ”, having
masses mi, mj , mk, respectively, as shown in Fig. 1. For such a system consisting
of three unequal-mass particles having spatial coordinates ~ri, ~rj and ~rk, the relative
motion is described by the Jacobi coordinates in partition “i ” defined by [3]:

~xi =

[
mjmkM

mi(mj +mk)
2

]1/4
(~rj − ~rk) ,

~yi =

[
mi(mj +mk)

2

mjmkM

] 1
4
(
~ri − mj~rj +mk~rkmj +mk

)
,

~R = (mi~ri +mj~rj +mk~rk)/M ,

(1)

where M = mi +mj +mk. The sign of ~xi is fixed by the condition that (i, j, k)
should form a cyclic permutation of (1, 2, 3).

.

j

i

~yi

k~xi
Fig. 1. Choices of the Jacobi coordinates for the partition “i ”.

The set of Jacobi coordinates represented by Eqs. (1) corresponds to the parti-
tion in which the particle labelled “i ” is called the spectator and particles labelled
“j ” and “k ” form the interacting pair. It is so named, since the calculation of ma-
trix element of V (~rjk) in terms of these set of Jacobi coordinates is straightforward.
We can likewise define two other sets of Jacobi coordinates by cyclically permuting
i → j → k → i twice, which correspond to the partitions labelled “j ” and “k ”,
respectively.

In terms of the Jacobi coordinates, Eqs.(1), the three-body Schrödinger equation
immediately separates into the centre of mass motion (which is uninteresting) and
the relative motion described by

[
− h̄

2

2µ
(∇2xi +∇2yi) + Vjk(~xi) + Vki(~xi, ~yi) + Vij(~xi, ~yi) −E

]
Ψ(~xi, ~yi) = 0 , (2)

where µ =
√
mimjmk/M is an effective mass parameter. One next introduces the

hyperspherical variables defined by [3, 4]

xi = ρ cos φi ,
yi = ρ sinφi ,

(3)
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where ρ =
√
x2i + y

2
i is invariant under three-dimensional rotations and indepen-

dent of the partition (this can be seen from Eq. (13) below). Hence, ρ is invariant
under permutations of the particle indices.

The spherical polar angles ( θxi , φxi ) and ( θyi , φyi ) of ~xi and ~yi, together with
the angle φi constitute the set of five hyperangles and is denoted by

Ωi → {φi, θxi , φxi, θyi , φyi} . (4)

The hyperangles Ωi are obviously dependent on the partition. The set of six vari-
ables (ρ,Ωi) form the hyperspherical variables. In terms of these variables, the
Schrödinger equation becomes

[
− h̄

2

2µ

{
1

ρ5
∂

∂ρ
(ρ5
∂

∂ρ
)− K̂

2(Ωi)

ρ2

}
+ V (ρ,Ωi)− E

]
Ψ(ρ,Ωi) = 0 , (5)

where V (ρ,Ωi) = Vjk + Vki + Vij is the total interaction potential, and K̂
2(Ωi) is

the square of hyper-angular-momentum operator given by [19]

K̂2(Ωi) = − ∂2

∂φi
2 − 4 cotφi

∂

∂φi
+

1

cos2 φi
l̂2(x̂i) +

1

sin2 φi
l̂2(ŷi) . (6)

Here l̂2(x̂i) and l̂
2(ŷi) are the squares of ordinary orbital angular momenta associ-

ated with ~xi and ~yi motions. The operator K̂
2(Ωi) satisfies the eigenvalue equation

[19]

K̂2(Ωi)YKαi(Ωi) = K(K + 4)YKαi(Ωi) . (7)

The normalized eigenfunctions, called the hyperspherical harmonics (HH) having
specified total orbital angular momentum of the system (L) and its projection (M),
are given by [19]

Ykαi(Ωi) ≡ YKlxi lyiLM (φi, θxi , φxi , θyi , φyi)
= N

lxi lyi
K (cos φi)

lxi (sinφi)
lyiP

lyi+
1
2 , lxi+

1
2

ni (cos 2φi)[
Ylximxi (θxiφxi)Ylyimyi (θyiφyi)

]
LM

≡ (2)P
lxi lyi
K (φi)

[
Ylximxi (θxiφxi)Ylyimyi (θyiφyi)

]
LM
,

(8)

where αi ≡ {lxi , lyi , L,M} is a short-hand notation, [ ]LM indicates the angular
momentum coupling, Pα,βn is a Jacobi polynomial and

N
lxi lyi
K =

[
2ni!(K + 2)(ni + lxi + lyi + 1)!

Γ(ni + lxi +
3
2
)Γ(ni + lyi +

3
2
)

] 1
2

, (9)
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ni = (K − lxi − lyi)/2 being a non-negative integer. The quantity K is the
hyperangular-momentum quantum number (not a good quantum number of the
three-body system) and is the degree of the homogeneous harmonic polynomials
ρKYKαi(Ωi) in the Cartesian components of ~xi and ~yi.
In the HHE method, Ψ(ρ,Ωi) is expanded in the complete set of HH associated

with a given partition (say partition “i ”):

Ψ(ρ,Ωi) =
∑
kαi

Ukαi(ρ)

ρ5/2
Ykαi(Ωi) . (10)

The factor ρ−5/2 is included to remove the first derivative with respect to ρ in
Eq. (5). Substitution of Eq. (10) in Eq. (5), the use of Eq. (7) and the orthonor-
mality of HH, give a set of coupled differential equations (CDE) in ρ[

− h̄22µ
(
d2

dρ2

)
− LK(LK + 1)

ρ2
)− E

]
UKαi(ρ)

+
∑
K′α ′

i
< Kαi | V (ρ,Ωi) | K′α ′i > UK′α ′

i
(ρ) = 0 ,

(11)

where LK = K + 3/2 and

< Kαi|V |K′, α ′i >=
∫
Y∗Kαi(Ωi)V (ρ,Ωi)YK′α ′

i
(Ωi)dΩi . (12)

Evaluation of the matrix elements of the type <YKαi(Ωi)|Vjk(xi)|YK′α ′
i
(Ωi)> (for

the central potentials) is straightforward, while for matrix elements of the type
<YKαi(Ωi)|Vki(xj)|YK′α ′

i
(Ωi)> or <YKαi(Ωi)|Vij(xk)|YK′α ′

i
(Ωi)>, calculations

become very complicated even for central potentials, since xj or xk depend on
the polar angles x̂i and ŷi. Using Eq. (1), we express ~xk and ~yk in terms of ~xi and
~yi [20]

~xk = − cos ζki ~xi + sin ζki ~yi ,
~yk = − sin ζki ~xi − cos ζki ~yi ,

(13)

where ζki = tan
−1{(−1)P√Mmj/(mimk)}, P being even (odd) if (kij) is an even

(odd) permutation of the triad (1 2 3).

Then for an arbitrary shape of the central potential and nonvanishing L, most
of the five-dimensional integrals have to be done numerically. This makes the cal-
culation slow and inaccurate. However, calculation of the latter matrix elements
can be greatly simplified using the following tricks. We first note that each of the
complete sets of HH functions {YKαi(Ωi)}, {YKαj(Ωj)} or {YKαk(Ωk)} span the
five-dimensional angular hyperspace. Hence, a particular member of a given set, say
YKαi(Ωi), can be expanded in the complete set of {YKαj(Ωj)} through a unitary
transformation:

YKαi(Ωi) =
∑
αj

< αj | αi >KL YKαj(Ωj) . (14)
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Note that K,L,M are conserved for Eq. (14); furthermore there is the rotational
degeneracy with respect to the quantum number M for spin independent forces.
Hence,

< αj | αi >KL=< lxj lyj | lxi lyi >KL . (15)

Equation (14) can then be rewritten as [20]

YKαi(Ωi) =
∑
lxj lyj

< lxj lyj | lxi lyi >KL YKαj(Ωj) . (16)

These coefficients are indepenent of M due to the overall rotational degeneracy.
The coefficients (15) are called Raynal-Revai coefficients (RRC). Using them, the
matrix element of a central interaction Vki becomes

< YKαi(Ωi) | Vki(xj) | YK′α ′
i
(Ωi) >=

∑
l ′xj l

′
yj
lxj lyj

< lxj lyj | lxi lyi >∗KL
× < l ′xj l ′yj | l ′xi l ′yi >K′L< YKαj(Ωj) | Vki(xj) | YK′α ′

j
(Ωj) > .

(17)

The matrix element on the right side of Eq. (17) is of the same form as the matrix
element of Vjk in the partition “i ” and can be obtained in a simple manner. Thus
evaluating the RRC’s involved in Eq. (17), one can calculate the matrix element
of Vki easily. Similar treatment can be applied for the calculation of the matrix
element of Vij .

The explicit expression for RRC is given in Ref. [20]

< lxj lyj | lxi lyi >KL=
π

4

[
C
nj
lxj ,lyj

C nilxi ,lyi

]1/2 ∑
λ1λ2λ3λ4

(i)λ2+λ4+lyi−lyj (−1)λ1+λ2

× f(λ1λ3; lxi)f(λ4λ2; lyi)f(λ1λ4; lxj)f(λ3λ2; lyj)



λ1 λ3 lxi

λ4 λ2 lyi

lxj lyj L




× ∑µν(−1)µCµλ3λ4Cνλ1λ2(cos φij)2ν+λ1+λ2(sinφij)2µ+λ3+λ4 ,
(18)

where the summation is restricted by the following conditions:

~L = ~lxj +
~lyj = ~lxi +

~lyi ,

K = 2nj + lxj + lyj = 2ni + lxi + lyi ,

= 2µ+ 2ν + λ1 + λ2 + λ3 + λ4 .

(19)

In Eq. (18), the quantities Cαβγ and f(a, b; c) are given by

Cαβγ =
Γ(2α+ β + γ + 2)

Γ(α+ β + 3/2)Γ(α+ γ + 3/2)Γ(α+ 1)Γ(α+ β + γ + 2)

f(a, b; c) =
√
(2a+ 1)(2b+ 1) < a0b0|c0 > ,

(20)
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where < j1m1j2m2|jm > is a Clebsch-Gordan coefficient (CGC), and the quantity
within the large brakets in Eq. (18) is a 9-j symbol.

3. Numerical computation of RRC

The Raynal-Revai coefficient < lxj lyj |lxi lyi >KL vanishes unless ~lxj + ~lyj = ~L
= ~lxi +

~lyi . Furthermore, since K = 2ni + lxi + lyi = 2nj + lxj + lyj , (ni, nj being
non-negative integers), we have

|lxj − lyj | ≤ L ≤ (lxj + lyj) ≤ K ,

|lxi − lyi | ≤ L ≤ (lxi + lyi ) ≤ K ,
(21)

(K − lxi − lyi ) and (K − lxj − lyj ) must be both even integers . (22)

Condition (22) further shows that

lxi + lyi + lxj + lyj must be an even integer . (23)

The RRC vanishes whenever any one of the conditions (21) and (23) is not satisfied.

Next we note from Eq. (20) (using the symmetry property of the Clebsch-
Gordan coefficients) that f(a, b; c) vanishes unless (a + b − c) is an even integer.
Hence, from Eq. (18) we must have

λ1 + λ3 − lxi = 2n1 ,

λ4 + λ2 − lyi = 2n2 ,

λ1 + λ4 − lxj = 2n3 ,

λ3 + λ2 − lyj = 2n4 ,

(24)

where n1, n2, n3 and n4 are integers. From the second and fourth relations of
Eq. (24), we have

λ4 + λ3 + lyj − lyi = 2(n2 − n4) + 2λ3 . (25)

Next, for the 9-j symbol in Eq. (18) to be nonvanishing, we must have the angular
momenta additions:

~λ1 + ~λ3 = ~lxi ,

~λ4 + ~λ2 = ~lyi ,

~λ1 + ~λ4 = ~lxj ,

~λ3 + ~λ2 = ~lyj .

(26)

Since each of lxi , lyi , lxj and lyj are integers (being orbital angular momenta asso-
ciated with the corresponding variables), Eq. (26) shows that either all λi’s must
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be integral or all λi’s must be half integral. In the latter case, Eq. (25) shows
that (λ4 + λ3 + lyj − lyi ) is an odd integer and hence from Eq. (18) we see that
all RRC must be imaginary. This corresponds to an overall phase factor eiπ/2 in
YKαi(Ωi) (see Eq. (16)). On the other hand, if all λi’s are integers, Eq. (25) shows
that (λ4 + λ3 + lyj − lyi) is an even integer and hence Eq. (18) shows that each
RRC is real. Since an overall phase is unimportant, we take all λi’s to be integral
and consequently all RRC become real. The last of the relations in Eq. (19) shows
that the maximum value of (λ1 + λ2 + λ3 + λ4) is K. Hence, in the numerical
algorithm, we select the values of (λ1, λ2, λ3, λ4) and (µ, ν) for a given values of
(K,L, lxi, lyi , lxj , lyj ) in the following way :

(1) Take all integral values of λ1 in the interval

0 ≤ λ1 ≤ K . (27)

(2) For a chosen value of λ1, integral values of λ3 are chosen in the interval
(using the first relation of Eq. (26))

|λ1 − lxi | ≤ λ3 ≤ (λ1 + lxi ) . (28)

(3) Similarly for a chosen value of λ1, integral values of λ4 are obtained from
(using the third relation of Eq. (26))

|λ1 − lxj | ≤ λ4 ≤ (λ1 + lxj ) . (29)

(4) Since λ2 must be an integer satisfying both the second and fourth relations
of Eq. (26), we have

(λ2)min ≤ λ2 ≤ (λ2)max , (30)

where

(λ2)min = Max{|λ3 − lyj |, |λ4 − lyi |} ,
(λ2)max = Min{|λ3 + lyj |, |λ4 + lyi |} .

(31)

(5) For such choices of {λ1, λ2, λ3, λ4}, we chose only those values which satisfy
(K − λ1 − λ2 − λ3 − λ4) = even non − negative integer (32)

(see the last relation of Eqs. (19)). For one allowed set of values of λ2, λ3 and λ4,
we have from the last relation of Eq. (19)

µ + ν = (K − λ1 − λ2 − λ3 − λ4)/2 = p (integer ≥ 0) . (33)

(6) We chose integral µ in the interval

0 ≤ µ ≤ p . (34)

476 FIZIKA B (Zagreb) 8 (1999) 4, 469–482



khan et al.: computation of raynal-revai coefficients for the . . .

(7) For a given value of µ, the integral ν is given by

ν = p − µ . (35)

With these choices, the indicated sums in Eq. (18) are carried out. Standard codes
for Clebsch-Gordan coefficients and 9-j symbols have been used.

A simple check of the calculated RRC is provided by the fact that the RRC form
a unitary matrix corresponding to the unitary transformation, Eq. (16), between
the orthonormal bases in the partitions “j ” and “i ”:∑

lxj lyj

< lxj lyj | l′xi l′yi >KL< lxj lyj | lxi lyi >KL= δlxi l′xi δlyi l′yi . (36)

This has been checked for calculated RRC’s. In Table 1, we present a few typical
(K,L) values with the corresponding sets of allowed (lxi , lyi) and (l

′
xi , l

′
yi) values.

Table 1. Check of the orthonormality relation of RRC for some representative values
of the quantum numbers.

K L lxi lyi l′xi l′yi Left side of Eq. (36)

2 0 0 0 1 1 2.5668486433594317E-17

2 0 0 1 0 1 1.0000000000000001E-00

4 0 2 2 1 1 1.2123413167461349E-16

4 0 2 2 2 2 0.9999999999999966E-00

6 0 2 2 3 3 2.2726910414369584E-16

6 0 3 3 3 3 0.9999999999999989E-00

8 0 0 0 4 4 9.2981178312356860E-16

8 0 4 4 4 4 1.0000000000000002E-00

10 0 5 5 4 4 -6.7465327215857769E-17

10 0 5 5 5 5 1.00000000000 0014E-00

12 0 3 3 6 6 1.3232560460243494E-16

12 0 5 5 5 5 1.0000000000000020E-00

14 0 5 5 2 2 -1.8127860232957633E-16

14 0 7 7 7 7 1.0000000000000045E-00

16 0 3 3 8 8 3.1556424208195771E-16

16 0 4 4 4 4 1.0000000000000026E-00

18 0 3 3 9 9 -1.2449605554415005E-15

18 0 8 8 8 8 1.0000000000000047E-00

20 0 10 10 10 10 1.0000000000000068E-00

20 0 10 10 8 8 3.6284689174711367E-15
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The computed left side of Eq. (36), using double precision calculation on a Desktop
486 EISA machine, is shown in the last column.

4. Application to two-electron atoms

As a simple example, we apply the idea of the Raynal-Revai coefficients to
the calculation of the ground state energy of two-electron atoms. We take the i th

particle as the nucleus of mass mN and charge +Ze and j
th and kth particles as

the two electrons of mass mj =mk = m and charge −e. We have for the Jacobi
coordinates describing the relative motion in the partition “i ” (from Eq. (1))

~xi = βi(~rj − ~rk) ,
~yi = (1/βi)(ri − (~rj + ~rk)/2)) , (37)

where the dimensionless parameter βi is given by βi = [(mN + 2m)/4mN ]
1/4. The

Hamiltonian in the partition “i ” is [3]

H = − h̄
2

m
β2i (∇2xi+∇2yi)+

e2

xi
βi− Ze2

| βi~yi − (1/(2βi))~xi | −
Ze2

| βi~yi + (1/(2βi))~xi | .
(38)

In Eq. (38), the effective mass µ is given by

µ = m
√
mN/(mN + 2m) = m/(2β2i ) . (39)

In atomic units we take h̄2=m=e2=1.

Introducing hyperspherical variables as in Eqs. (3) and (4), the Hamiltonian in
the partition “i ” becomes (in atomic units) [3]

H = −β2i
[
1
ρ5
∂
∂ρ

(
ρ5 ∂
∂ρ

)
− K̂

2(Ωi)
ρ2

]
+

βi
ρ cos φi

− Z
ρ |βi sinφi ŷi − (1/(2βi)) cos φi x̂i|

− Z
ρ |βi sinφi ŷi + (1/(2βi)) cos φi x̂i| .

(40)

A straightforward calculation of the matrix elements of the last two terms in
Eq. (40) would be prohibitively involved, both for analytical reduction to a com-
putationally feasible form, as well as for the numerical calculation. Furthermore,
the numerical calculation would be both time consuming and inaccurate. The use
of the RRC simplifies the calculation to a considerable extent. In the partitions
“k ” and “j ”, the third and fourth terms of H become simply Zβk/(ρ cos φk) and
Zβj/(ρ cosφj), respectively. In the case of a two-electron atom,

βj = βk =

[
1− m2

(mN +m)2

]1/4
. (41)
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For a heavy nucleus, mN � m and βi ≈ 1/
√
2, βj = βk ' 1.

We expand the three-body relative wave function in the complete set of HH
appropriate to partition “i ” as in Eq. (10). For the ground state of a two-electron
atom, the spin wave function of the two electrons is singlet (antisymmetric ) and
the total orbital angular momentum L = 0. Consequently, lxi = lyi . Hence, the set
of quantum numbers represented by αi is {lxi , lxi , 0, 0} and the quantum numbers
{Kαi} can be represented by {Klxi} only. Furthermore, since the space part of the
wave function must be symmetric under exchange of the two electrons, only even
values of lxi ( ≤ K/2 ) are needed. Corresponding HH is given by [2, 3]

YKαi(Ωi) ≡ YKlxi lxi00(Ωi)
= (2)P

lxi lxi
K (φi)

[
Ylximxi (θxiφxi)Ylxi−mxi (θxiφxi)

]
00

(K even and lxi = 0, 2, 4, . . . , K/2) .

(42)

The matrix element of the two-electron repulsion in our chosen partition “i”, is

< K′l′xi | βi
ρ cos φi

|Klxi >

=
βi
ρ δl ′xi ,lxi

π/2∫
0

(2)P
lxi lxi
K′ (φ) (2)P

lxi lxi
K (φ) sin2 φ cos φ dφ ,

(43)

in which we have dropped the suffix i on φ, as it is only a variable of integration.
Similarly, the matrix element of the third term in the partition “k ” is [2, 3]

< K′l′xk | βk
ρ cos φk

| Klxk >

=
βk
ρ δl′xk ,lxk

π/2∫
0

(2)P
lxk lxk
K′ (φ) (2)P

lxk lxk
K (φ) sin2 φ cos φ dφ .

(44)

A similar relation holds for the matrix element of the last term of H in the partition
“j ”. Eqs. (43) and (44) show that the matrix elements are essentially the same
in the respective partitions, although lxk and lxj are not restricted to only even
integer values. Each involves only a single, one-dimensional integral to be performed
numerically. Using Eq. (17), the matrix elements of the third and fourth terms of
H in our chosen partition (i.e., partition “i ”) become

< K′l ′xi | Zrij | Klxi >=
∑
lxk
< lxk lxk | l′xi l′xi >∗K′0

< lxk lxk | lxi lxi >K0< K′lxk | Zβk
ρ cosφk

| Klxk > .
(45)

and

< K′l ′xi | Zrik | Klxi >=
∑
lxj
< lxj lxj | l ′xi l ′xi >∗K′0

< lxj lxj | lxi lxi >K0< K′lxj | Zβj
ρ cos φj

| Klxj > .
(46)
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In Eqs. (45) and (46), the sums over lx′
k
and lx′

j
, respectively, have been performed

using the Kronecker δ’s in Eq. (44), and a similar one with suffix k replaced by
suffix j. Thus, the calculation of the matrix elements of all interactions become
very simple and easy to handle numerically.

In Table 2, we compare a few typical matrix elements of V (ρ,Ωi) in partition “i ”
by using RRC (Eq. (45)) and by direct numerical integration. The latter involves
expanding 1/rij and 1/rik as the generating function of Legendre polynomials, and
then using the addition theorem of spherical harmonics [4]. It is seen that the use
of RRC is both accurate and fast compared to the direct evaluation. Furthermore,
one should note that although the direct calculation of the matrix element of 1/rij
in the partition “i ” is possible by the method of Ref. [4], it is not possible for an
interaction other than Coulomb or harmonic oscillator. For an arbitrary interaction
potential, a direct calculation of the matrix element will involve five-dimensional
angular integrations. This becomes very time consuming and inaccuracies creep in
easily. Thus, the use of RRC in such cases becomes essential.

Table 2. Comparision of the matrix element of the total interaction (V ) evaluated
at ρ = 1 by using RRC and by direct integration.

< K, l1|V |K′, l′1 > By RRC By direct integration

< 0, 0|V |0, 0 > -5.589726896 -5.590107406

< 10, 0|V |2, 0 > 0.209860018 0.209874304

< 10, 0|V |10, 0 > -4.327704613 -4.327999211

< 12, 4|V |12, 2 > 1.266261341 1.266347540

< 14, 2|V |0, 0 > 0.000189867 0.000189879

< 14, 6|V |10, 0 > -0.195161836 -0.195175122

< 16, 8|V |16, 8 > -9.600012346 -9.600665855

< 18, 8|V |2, 0 > -0.063249646 -0.063253953

< 20, 10|V |10, 4 > 0.000574136 0.000574179

< 20, 10|V |0, 0 > -0.333234831 -0.333257516

< 20, 10|V |20, 10 > -9.857809299 -9.858480377

Table 3. Comparision of binding energies.

Kmax BE using RRC BE by direct calculation

4 2.783965 2.783883

8 2.849803 2.849720

12 2.875594 2.875508

16 2.887128 2.887043

20 2.893168 2.893083
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For completeness, we compare in Table 3 the binding energies calculated by an
exact numerical solution of the coupled differential equation by the renormalized
Numerov method [21], by the present method and one in which matrix elements are
calculated by direct numerical integration [2, 3]. We find, the results agree within
computational errors.

5. Conclusion

We note that the use of RRC is essential in solving the three-body equation
if the interparticle interaction is other than Coulomb or harmonic oscillator. We
have proposed here an algorithm for the computation of the RRC which is fast and
accurate. These coefficients may be calculated once only and stored, resulting in
an efficient and highly economical numerical computation.
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RAČUN RAYNAL-REVAIJEVIH KOEFICIJENATA ZA HIPERSFERIČNI
PRISTUP PROBLEMU TRI TIJELA

Račun matričnih elemenata dvočestičnih med–udjelovanja, potreban za metodu
hipersferičnih harmonika u sustavu tri tijela, bitno se pojednostavi razvojem bra i
ket vektora u bazi hipersfreričnih harmonika koja je prikladna za razdjelu koja odgo-
vara paru koji med–udjeluje. To uključuje Raynal-Revaijeve koeficijente (RRC) koji
su transformacijski koeficijenti izmed–u baza hipersferičnih harmonika koje odgo-
varaju dvjema razdjelama. U ovom se radu izlaže brz algoritam za točno računalno
odred–ivanje RRC. Primijenili smo tu tehniku za dvoelektronske atome sa čistim
Coulombovim med–udjelovanjem parova, te usporedili dobivene ishode s ishodima
izravnih numeričkih integracija. Kako pojedini matrični elementi, tako i energije
vezanja slažu se do na pogrešku računanja.
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