
ISSN1330–0016

CODENFIZBE7

DIRAC EQUATION WITH TWO MASS PARAMETERS AND
TWO-FLAVOUR NEUTRINO OSCILLATIONS

ANDREA RASPINI

Department of Physics, SUNY at Fredonia, Fredonia, NY 14063, USA
E-mail: Raspini@Fredonia.EDU

Received 27 October 1999; Accepted 4 January 2000

Linear transformations of the Dirac equation with two mass parameters result in
“standard” forms of the massive, massless and tachyonic equations. These equa-
tions are used to describe neutrino mass eigenstates, which, in turn, are linearly
combined to obtain flavours. This paper examines the issue of neutrino oscillations
in a particular case of the model.
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1. Introduction

In previous papers [1–6], the Dirac equation with two mass parameters and re-
lated topics were discussed. The approach was used to derive standard equations
for massive, massless and tachyonic fermions. In particular, a massless equation
was obtained, which differs from the usual one and does not produce a superfluous
conserved current. In Ref. [7], the aforementioned results were reformulated and
justified on the grounds of desirable features relating to the active symmetry op-
erations (time reversal, spatial parity, etc.). Possible applications and a flavoured
neutrino model were introduced in Refs. [1,3,4,7]. This paper examines the issue of
flavour oscillations in the context of the neutrino model first proposed in Ref. [3]:
the three flavours result as unitary superpositions of three neutrino mass eigenstates
(massive, massless and tachyonic). The model is here specialized to a particular case
of two-flavour oscillations.

The treatment is done before the second quantization, and notation is rather
conventional. Specifically, and unless otherwise noted, Greek (Latin) indices run
through the values 0, 1, 2, 3 (1, 2, 3) and the summation convention is applied to
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repeated up and down labels. An attempt is made at distinguishing powers from
superscripts: for instance, (m)2 and | b |2 are powers, while x2 indicates a spe-
cific variable with superscript 2. Units are such that h̄ = c = 1 (unless otherwise
indicated).

2. Neutrino flavours

In a frame of reference X of real spacetime coordinates x = {xλ} and pseu-
doeuclidean metric gµν = diag{+1,−1,−1,−1}, the model described in Ref. [7] is
based on the “standard” equations:

/PΘω(x) = M(ω)Θω(x) , ω = −1, 0, 1, (1)

with

/P = iγα∂α (2)

and

M(ω) =
m

2

[
(I − εγ5)− ω(I + εγ5)] , m > 0 , (3)

where Θω(x) are complex four-spinors. The Dirac matrices γ
λ (in a fixed chosen

representation) obey the usual rules

γµγν + γνγµ = 2gµνI , (γµ)† = γ0γµγ0 , (4)

with I being the 4 × 4 identity matrix. The matrix γ5 = iγ0γ1γ2γ3 is hermitian
and unitary, and anticommutes with all γλ. For general reference on the Dirac
equation and related topics, see, for instance Refs. [8–19]. The value of the sign
ε = (−1)T+S depends on the frame of reference [1,20]. Namely, the time-index T
and the space-index S of X are so defined: T = 0 if t = x0 runs forward (T = 1
otherwise) and S = 0 if s = {x`} is a right-handed triplet (S = 1 otherwise).
The solutions Θω(x) of Eq. (1) are eigenstates of the squared four-momentum

(SFM) operator

− ∂αgαβ∂β (5)

for the eigenvalues −(m)2 ω. Thus, in this model, there are three neutrino mass
eigenstates [7]: massive (ω = −1), massless (ω = 0) and tachyonic (ω = 1). The
flavour spinors Φf (x) are introduced by means of the linear superpositions:

Φf (x) = b
ω
f Θω(x) , f = −1, 0, 1, (6)

where (b ωf ) is some 3× 3 unitary matrix of mixing coefficients. The squared mag-
nitude

| b ωf |2 (7)
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denotes the conditional probability that a flavour f will be measured to have a
value −(m)2 ω of the SFM operator [7].
In this paper, the linear combinations (6) are specialized in the following man-

ner:

b ωf =




1/
√
2 (f = ∓1, ω = −1)
0 (f = ∓1, ω = 0)

−1/√2 (f = −1, ω = 1)
0 (f = 0, ω = ∓1)
1 (f = 0, ω = 0)

1/
√
2 (f = 1, ω = 1)

which makes the flavour f = 0 strictly massless, as it coincides with the ω = 0
mass eigenstate. The mass eigenstates ω = ∓1 are maximally superimposed in the
flavours f = ∓1: on the average, each of these two flavours is massless [7]. It is
possible that these features might allow a massless treatment of all three flavours,
whenever certain detailed behaviours (e.g., oscillations) need not be taken into
consideration.

3. Oscillations

The f = 0 flavour cannot oscillate, since it is a mass eigenstate. The f = ∓1
flavours were designed so that they should oscillate maximally: the calculation
of these two-flavour oscillations is outlined in the following, as a variation of the
method described in Ref. [21] and in numerous other papers. For the remainder
of this section, the labels f (and, later on, f ′) and ω will be restricted to the
values ∓1.
In the given frame of reference, define the energy [7] operator i(−1)T∂/∂t, and

the (contravariant) momentum operator in the z = x3 direction: −i∂/∂z. Consider
the corresponding eigenstates

Θω(x) = exp{−i(−1)TE t} exp{ipωz}Θω(0) , (8)

with eigenvalues E > 0 and pω > 0. These are ω = ∓1 plane waves of positive
energy E, collimated in the positive z direction with momenta pω. The spinors
Θω(0) satisfy the equations

[
(−1)T γ0E − γ3pω

]
Θω(0) = M(ω)Θω(0) , (9)

which entail

pω =
[
(E)2 + (m)2 ω

]1/2
, E > m . (10)

For high energy (E � m), the approximation

pω ≈ E + (m)
2 ω

2E
(11)
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may be used.

From Eq. (8), one obtains:

Φf(x) = exp{−i(−1)TE t}
[
exp{ip-1z} − f exp{ip1z}

2
Φ-1(0)

+
exp{ip-1z}+ f exp{ip1z}

2
Φ1(0)

]
, (12)

having applied the definition of flavours (Sect. 2) both at point x and at the point
x = 0. It is noted that the spinors (12) are eigenstates of energy, but not of
momentum. At z = D and for f = 1, the squared magnitude of the coefficient of
Φ-1(0) is indicated as P (−1→ 1), and is calculated as follows:

P (−1→ 1) =
[
sin

(
p-1 − p1
2

D

)]2
. (13)

Similarly

P (1→ −1) = P (−1→ 1) , (14)

and

P (−1→ −1) = P (1→ 1) = 1− P (−1→ 1) . (15)

In the high energy approximation:

P (−1→ 1) ≈
{
sin

[
(m)2D

2E

]}2
. (16)

The quantities P (f → f ′) are here intended to represent the probabilities of flavour
oscillation (f /=f ′) or non-oscillation (f = f ′) over a distance D between source and
detector. A few comments follow.

The use of plane waves may be questioned, because both the production and the
detection of neutrinos must involve some degree of spacetime localization; a related
concern stems from the application of flavour definitions and probability interpre-
tations at specific points of spacetime, rather than within neighborhoods of points
[7]. However, this naive approach (to be viewed as an approximation) appears in
most calculations of flavour oscillations. In the present model, further doubts are
due to the unclear meaning of the tachyonic current [22,23], and to the lack of
a well-established second quantization scheme for tachyons. It is hoped that the
probability concepts introduced in Ref. [7] are consistent enough as to extrapolate
to the intended interpretation of the quantities P (f → f ′). At any rate, see Ref.
[24] for a similar treatment. See also Refs. [25–30] for a variety of opinions on
tachyons and related issues.
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4. Conclusions

The described model, compared with the data on atmospheric neutrinos [31],
provides a good fit if f = 0 is identified with the electron neutrino, and if the value
of m is chosen as

m ≈ 3.3× 10−2 eV, (17)

in atomic units of energy. A distinctive feature of this model is that all flavours are
massless (either strictly or on the average); the case f = 0 stands out as a “special”
type of neutrino with respect to the other two flavours.
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DIRACOVA JEDNADŽBA S DVIJE MASE I NEUTRINSKIM OSCILACIJAMA
DVAJU OKUSA

Linearnim transformacijama Diracove jednadžbe s dvije mase izvode se “stan-
dardni” oblici jednadžbi za masena, bezmasena i tahionska stanja. Te se jednadžbe
primjenjuju za opis neutrinskih svojstvenih masenih stanja i linearno se slažu radi
dobivanja okusa. Ovaj rad opisuje neutrinske oscilacije za poseban slučaj ovog
modela.

488 FIZIKA B (Zagreb) 8 (1999) 4, 483–488


