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We review a quantum stabilizationmethod for the SU(2) σ-model, based on the con-
stant cut-off limit of the cut-off quantization method developed by Balakrishna et
al., which avoids the difficulties with the usual soliton boundary-conditions pointed
out by Iwasaki and Ohyama. We investigate the baryon number B = 1 sector of
the model and show that after the collective coordinate quantization, it admits a
stable soliton solution which depends on a one-dimensional arbitrary constant. We
then study a soliton fluid coupled to the dilaton field and the ω meson field in this
model. We use the mean-field theory in which the dilaton and the ω field acquire
a mean value determined by the solitons. Thus, we calculate the soliton binding
energy, effective soliton mass, pressure, chemical potential and the entropy per soli-
ton, showing that there is a good qualitative agreement of the present results with
those obtained using the complete Skyrme model.
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1. Introduction

It was shown by Skyrme [1] that baryons can be treated as solitons of a nonlinear
chiral theory. The original Lagrangian of the chiral SU(2) σ-model is given by

L =
F 2π
16
Tr ∂µU∂

µU+ , (1)

FIZIKA B (Zagreb) 8 (1999) 4, 489–504 489



dalarsson: constant cut-off approach to the skyrmion fluid . . .

where

U =
2

Fπ
(σ + i ~τ · ~π) (2)

is a unitary operator (UU+ = 1) and Fπ is the pion-decay constant. In (2) σ = σ(~r)
is a scalar meson field and ~π = ~π(~r) is the pion-isotriplet.

The classical stability of the soliton solution to the chiral σ-model Lagrangian
requires the additional ad-hoc term, proposed by Skyrme [1], to be added to (1)

Lsk =
1

32e2
Tr [U+∂µU, U

+∂νU ]
2 (3)

with a dimensionless parameter e and where [A, B] = AB − BA. It was shown
by several authors [2] that, after the collective coordinate quantization using the
spherically symmetric ansatz

U0 = exp[i ~τ · ~r0F (r)] , ~r0 = ~r/r , (4)

the chiral model, with both (1) and (3) included, gives a good agreement with
the experiment for several important physical quantities. However, the introduc-
tion of the Skyrme stabilizing term makes the analytical structure of the results
complicated and in many cases difficult to handle.

Mignaco and Wulck (MW) [3] indicated, therefore, a possibility to build a stable
single baryon (n = 1) quantum state in the simple chiral theory, with Skyrme
stabilizing term (3) omitted. MW have shown that the chiral angle F (r) is indeed
a function of a dimensionless variable s = 1

2χ”(0)r , where χ”(0) is an arbitrary
dimensional parameter intimately connected to the usual stability argument against
the soliton solution for the non-linear σ-model Lagrangian.

Using the adiabatically rotated ansatz U(~r, t) = A(t)U0(~r)A
+(t), where U0(~r)

is given by (4), MW obtained the total energy of the non-linear σ-model soliton in
the form

E =
π

4
F 2π

1

χ”(0)
a +
1

2

[χ”(0)]3

π
4
F 2πb

J(J + 1) , (5)

where

a =

∞∫
0

[
1

4
s2
(
dF
ds

)2
+ 8 sin2

(
1

4
F
)]
ds (6)

b =

∞∫
0

ds
64

3
s2 sin2

(
1

4
F
)
, (7)

and F(s) is defined by

F (r) = F (s) = −nπ + 1
4
F(s) . (8)
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The stable minimum of the function (5), with respect to the arbitrary dimensional
scale parameter χ”(0), is

E =
4

3
Fπ

[
3

2

(π
4

)2 a3
b
J(J + 1)

]1
4

. (9)

Despite the non-existence of the stable classical soliton solution to the non-linear
σ-model, it is possible, after the collective coordinate quantization, to build a stable
chiral soliton at the quantum level, provided that there is a solution F = F (r) which
satisfies the soliton boundary conditions, i.e., F (0) = −nπ , F (∞) = 0 , such that
the integrals (6) and (7) exist.

However, as pointed out by Iwasaki and Ohyama [4], the quantum stabilization
method in the form proposed by MW [3] is not correct since in the simple σ-model,
the conditions F (0) = −nπ and F (∞) = 0 cannot be satisfied simultaneously. If
the condition F (0) = −π is satisfied, Iwasaki and Ohyama obtained numerically
F (∞) = −π/2, and the chiral phase F = F (r) with correct boundary conditions
does not exist.

In Ref. [5], the present author suggested a method to resolve this difficulty by
introducing a radial modification phase ϕ = ϕ(r) in the Ansatz (4), as follows

U(~r) = exp[i~τ · ~r0F (r) + iϕ(r)] . (10)

Such a method provides a stable chiral quantum soliton, but the resulting model is
an entirely non-covariant chiral model, different from the original chiral σ-model.

In the present paper, we use the constant cut-off limit of the cut-off quantiza-
tion method developed by Balakrishna, Sanyuk, Schechter and Subbaraman [6] to
construct a stable chiral quantum soliton within the original chiral σ-model. We
then study a soliton fluid coupled to the dilaton field and the ω meson field in this
model. We use the mean field theory in which the dilaton and the ω field acquire
a mean value determined by the solitons. Thus, we calculate the soliton binding
energy, effective soliton mass, pressure, chemical potential and entropy per soliton,
showing that there is a good qualitative agreement of the present results with those
obtained using the complete Skyrme model [7].

The reason why the cut-off–approach to the problem of chiral quantum soliton
works is related to the fact that the solution F = F (r), which satisfies the boundary
condition F (∞) = 0, is singular at r = 0.
From the physical point of view, the chiral quantum model is not applicable

to the region about the origin, since in the physical world in that region there is
a quark-dominated ‘bag’ of the soliton. However, in the constant cut-off approach
employed here, the ‘cavity’ in the middle of the soliton is not assumed to carry any
quark degrees of freedom.

The present model differs, therefore, from the hybrid models [8], where in
the Callan-Hornbostel-Klebanov (CHK) bound-state SU(3)-soliton model, a cav-
ity populated with quarks is introduced in the centre of the soliton. The present
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model is fully analogous to the original Skyrme model, and our soliton is a topolog-
ical soliton with the winding number equal to the baryon number. The total baryon
number is determined by the soliton degrees of freedom from the region where r is
larger than the cut-off ε, and there are no contributions from any quark degrees of
freedom in the ‘bag’. Thus, in the constant cut-off model, there is no problem with
the balance of the baryon number of hyperons.

However, as argued in Ref. [6], when a cut-off ε is introduced, then the boundary
conditions F (ε) = −nπ and F (∞) = 0 can be satisfied. In Ref. [6], an interesting
analogy with the damped pendulum has been discussed, showing clearly that as
long as ε > 0, there is a chiral phase F = F (r) satisfying the above boundary
conditions. The asymptotic forms of such a solution are given by Eq. (2.2) in Ref.
[6]. From these asymptotic solutions, we immediately see that for ε→ 0, the chiral
phase diverges at the lower limit.

Different applications of the constant cut-off approach have been discussed in
Ref. [9].

2. Constant cut-off stabilization

The chiral soliton with baryon number n = 1 is given by (4), where F = F (r)
is the radial chiral phase function satisfying the boundary conditions F (0) = −π
and F (∞) = 0.
Substituting (4) into (1), we obtain the static energy of the chiral baryon

M =
π

2
F 2π

∞∫
ε(t)

dr

[
r2
(
dF

dr

)2
+ 2 sin2 F

]
. (11)

In (11), we avoid the singularity of the profile function F = F (r) at the origin by
introducing the cut-off ε(t) at the lower boundary of the space interval r ∈ [0,∞],
i.e. by working with the interval r ∈ [ε,∞]. The cut-off itself is introduced following
Ref. [6] as a dynamic time-dependent variable.

From (11), we obtain the following differential equation for the profile function
F = F (r)

d

dr
(r2
dF

dr
) = sin(2F ) , (12)

with the boundary conditions F (ε) = −π and F (∞) = 0, such that the correct soli-
ton number is obtained. The profile function F = F [r; ε(t)] now depends implicitly
on time t through ε(t). Thus, in the nonlinear σ-model Lagrangian

L =
F 2π
16

∫
d3xTr(∂µU∂

µU+) , (13)
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we use the Ansätze

U(~r, t) = A(t)U0(~r, t)A
+(t) U+(~r, t) = A(t)U+0 (~r, t)A

+(t) , (14)

where

U0(~r, t) = exp[i ~τ · ~r0F (r; ε(t))]. (15)

The static part of the Lagrangian (13), i.e.,

L =
F 2π
16

∫
d3xTr(~∇U · ~∇U+) = −M , (16)

is equal to minus the energy M given by (11). The kinetic part of the Lagrangian
is obtained using (14) with (15) and it is equal to

L =
F 2π
16

∫
d3xTr(∂0U∂0U

+) = bx2Tr(∂0A∂0A
+) + c[ẋ(t)]2 , (17)

where

b =
2π

3
F 2π

∞∫
1

dy y2 sin2 F , c =
2π

9
F 2π

∞∫
1

dy y2
(
dF

dy

)2
y2 , (18)

with x(t) = [ε(t)]3/2 and y = r/ε. On the other hand, the static energy functional
(11) can be rewritten as

M = ax2/3 , a =
π

2
F 2π

∞∫
1

dy

[
y2
(
dF

dy

)2
+ 2 sin2 F

]
. (19)

Thus the total Lagrangian of the rotating soliton is given by

L = cẋ2 − ax2/3 + 2bx2α̇να̇ν , (20)

where Tr(∂0A∂0A
+) = 2α̇να̇

ν and αν (ν = 0, 1, 2, 3) are the collective coordinates
defined as in Ref. [10]. In the limit of a time-independent cut-off (ẋ → 0), we can
write

H =
∂L

∂α̇ν
α̇ν − L = ax2/3 + 2bx2α̇ν α̇ν = ax2/3 + 1

2bx2
J(J + 1) , (21)

where ~J2 = J(J+1) is the eigenvalue of the square of the soliton laboratory angular
momentum. A minimum of (21) with respect to the parameter x is reached at

x =

[
2

3

ab

J(J + 1)

]−3/8
⇒ ε−1 =

[
2

3

ab

J(J + 1)

]1/4
. (22)
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The energy obtained by substituting (22) into (21) is given by

E =
4

3

[
3

2

a3

b
J(J + 1)

]1/4
. (23)

This result is identical to the result obtained by Mignaco and Wulck [3], which
is easily seen if we rescale the integrals a and b in such a way that a → π

4F
2
πa,

b → π
4
F 2πb and introduce fπ = 2

−2/3Fπ. However, in the present approach, as
shown in Ref. [6], there is a profile function F = F (y) with the proper soliton
boundary conditions F (1) = −π and F (∞) = 0 and the integrals a, b and c in (18)
and (19) exist and are shown in Ref. [6] to be a = 0.78 GeV2, b = 0.91 GeV2 and
c = 1.46 GeV2 for Fπ = 186 MeV.

Using (23), we obtain the same prediction for the mass ratio of the lowest states
as Mignaco and Wulck [3] which agrees rather well with the empirical mass ratio
for the ∆-resonance and the nucleon. Furthermore, using the calculated values for
the integrals a and b, we obtain the nucleon mass M(N) = 1167 MeV which is
about 25% higher than the empirical value of 939 MeV. However, if we choose
the pion decay constant equal to Fπ = 150 MeV, we obtain a = 0.507 GeV

2 and
b = 0.592 GeV2 giving the exact agreement with the empirical nucleon mass.

Finally, it is of interest to know how large the constant cut-offs are for the above
values of the pion-decay constant in order to check if they are in the physically
acceptable ball park. Using (22), it is easily shown that for the nucleons (J = 1

2),
the cut-offs are equal to

ε =

{
0.22 fm , for Fπ = 186 MeV
0.27 fm , for Fπ = 150 MeV .

(24)

Clearly, the cut-offs have to be smaller than the nucleon size (0,72 fm), and from
(24), we see that this is the case. It should, however, be noted that the simple
Skyrme model discussed here is at variance with some physical constraints since
the isoscalar charge radius (≈ 0.8 fm) is identical to the baryon charge radius (≈ 0.5
fm).

3. Dilute skyrmion fluid

Following Ref. [7], where the skyrmion fluid was treated using the complete
Skyrme model, we write the Lagrangian of the field theory, including solitons, the
dilaton σ and the ω meson, as follows

L = L2dilaton + L2 − Vinteraction − V (σ) + Lω

= e2σ [
1

2
Γ20∂µσ∂

µσ − F
2
π

16
Tr(U+∂µUU

+∂µU)]

− gvωµBµ −B[1 + e4σ(4σ − 1)]− 1
4
(∂µων − ∂νωµ)2 + 1

2
e2σm2ωω

2
µ . (25)
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The scale invariance of the Lagrangian (25) is broken only by the anomaly, and
all other terms are scale invariant, including the ω mass term with appropriate
factors of eσ . The Lagrangian (25) possesses both isospin and chiral symmetry,
since the chiral symmetry breaking pion mass term is omitted as relatively small.

The dilute skyrmion fluid, consisting of N skyrmions, is built using the product
Ansatz for skyrmions

UN (~r, ~R1, ~R2, ..., ~RN) = U(~r − ~R1)U(~r − ~R2) · · · U(~r − ~RN) (26)

and the additive Ansatz for the scalar fields

σN = σ1 + σ2 + ...+ σN = σ0 + δσ1 + δσ2 + ...+ δσN (27)

ωN = ω1 + ω2 + ...+ ωN = ω0 + δω1 + δω2 + ...+ δωN (28)

where σ0 and ω0 are the mean-field-constant values and δσj and δωj (1 ≤ j ≤ N)
are the field fluctuations. The fields in (27) and (28) depend on the same arguments
as the Skyrmion field they are attached to.

Due to the Ansätze, we first focus on the single baryon case where U(~r) is given
by (4), and

ωµ(~r) = [ω(r), 0, 0, 0] . (29)

Using (4) and (29) in (25), we obtain the static Skyrmion mass in the form

M = 4π

∞∫
ε

r2drM(r) (30)

where

M = e2σ
F 2π
8

[(
dF

dr

)2
+ 2
sin2 F

r2

]
+ V (σ)

+ e2σ
1

2
Γ20

(
dσ

dr

)2
− 1
2

(
dω

dr

)2
+
gV ω sin

2 F

2π2r2
dF

dr
− 1
2
m2ωω

2e2σ . (31)

The field equations for the static profile and the meson fields are then given by

e2σ
[
1

r2
d

dr

(
r2
dF

dr

)
+ 2
dσ

dr

dF

dr
− sin 2F
r2

]
+
2gV sin

2 F

π2F 2πr
2

dω

dr
= 0 (32)

FIZIKA B (Zagreb) 8 (1999) 4, 489–504 495



dalarsson: constant cut-off approach to the skyrmion fluid . . .

Γ20e
2σ

[
1

r2
d

dr

(
r2
dσ

dr

)
+ 2

(
dσ

dr

)2]

− F
2
πe
2σ

4

[(
dF

dr

)2
+
2 sin2 F

r2

]
− dVσ
dσ
+m2ωω

2e2σ = 0 , (33)

1

r2
d

dr

(
r2
dω

dr

)
−m2ωωe2σ +

gV sin
2 F

2π2r2
dF

dr
= 0 . (34)

Since the fluctuations of σ and ω vanish in the mean field state, using (27) and
neglecting the small contributions coming from the potential Vσ , we find that the
above equations are modified by the simple scaling laws

r→ e−σ0r , ω → eσ0ω . (35)

It is now sufficient to solve these equations for a free skyrmion and then rescale the
ω field and radial distance. The static mass of Eq. (30) is rescaled as follows [7]

M = eσ0M0 (36)

where M0 is the mass for σ = 0 .

Applying now the Lorentz boosts, followingRef. [7], to the collective coordinates
R(t) of each skyrmion and calculating the Hamiltonian, we obtain for the energy
of a skyrmion in motion

Ep = (E2 +Eσ − Eω)2p
2 + 3M2

3εM
+
E

ε
(Uσ − Uω + Uint) (37)

where

ε = (p2 +M2)1/2 , p =
Mv

(1− v2)1/2 (38)

and M is the static mass of Eq. (30) for nonvanishing σ0 and ω0. In (37), the
following definitions have been introduced [7]

E2 =
4πF 2π
8

∞∫
ε

r2dr e2σ

[(
dF

dr

)2
+
2 sin2 F

r2

]
(39)

Eσ =
4πΓ20
2

∞∫
ε

r2dr e2σ
(
dσ

dr

)2
(40)
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Eω = 4π

∞∫
ε

r2dr

(
dω

dr

)2
(41)

Uσ = 4π

∞∫
ε

r2drVσ (42)

Uω = 4π

∞∫
ε

r2dre2σ
m2ωω

2

2
(43)

Eint =
2gV
π

∞∫
ε

drω
dF

dr
sin2 F , (44)

where ε is the constant cut-off defined as in (22).

The energy Ep defined by (37) enters the single particle distribution functions

np =
1

exp

(
Ep + gV ω0 − µ

kT

)
+ 1

(45)

np =
1

exp

(
Ep − gV ω0 + µ

kT

)
+ 1

. (46)

The energy of N skyrmions per unit volume in the mean-field approximation
for symmetric nuclear matter is then given by

EV = 4

∫
d3p

(2π)3
Ep(np+np)+Vσ(σ0)−1

2
e2σ0m2ωω

2
0+4gV ω0

∫
d3p

(2π)3
(np−np) . (47)

At zero temperature (T = 0), we have np = Θ(pF − p) and np = 0 such that the
equations of motion for the mean fields become

0 =
∂EV
∂σ0

= 4

∫
d3p

(2π)3
∂Ep
∂σ0

+
dVsigma
dσ0

−m2ωe2σ0ω20 (48)

0 =
∂EV
∂ω0

= m2ωe
2σ0ω0 − 2gV p

3
F

3π2
. (49)
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At finite temperature, instead of energy, we consider the contribution to the
pressure by a single Skyrmion, given by

Pp = (E2 + Eσ −Eω)2p
2 − 3M2
9εM

− M
ε
(Uσ − Uω) (50)

so that the pressure per unit volume is given by

PV = 4

∫
d3p

(2π)3
Pp(np + np) + Vσ(σ0)− 1

2
e2σ0m2ωω

2
0 . (51)

Following Ref. [7] and using the virial theorem to the soliton profile in the case of
vanishing dilaton and ω fluctuation, E2 =

1
2M , we have

M = πF 2π e
2σ0

∞∫
ε

r2dr

((
dF

dr

)2
+
2 sin2 F

r2

)
= eσ0M0 (52)

ε = Ep =
√
P 2 + e2σ0M20 , Pp =

P 2

3Ep
(53)

where ε is the constant cut-off defined as in (22).

Thus, in the present approximation, the mean-field Skyrmion fluid is described
in the same way as in the Dirac mean-field approach, with the additional advantage
of knowing how to calculate the reaction of the single Skyrmion to the bath using
dilaton scaling properties [7].

In (25), the conventional glue potential with the ”bag-constant”B ≈ (240MeV)4
has been introduced. This potential reflects the trace anomaly [7], and it can be
supplemented by other terms consistent with the anomaly in order to fit the proper-
ties of nuclear matter. The most important reason for adding other terms is fitting
the low value of the nuclear compressibility modulus κ ≈ 270 MeV. The actual
choice of the functional form of these terms turns out to be relatively unimportant
[7]. The constraints on Vσ , demanded by the nuclear matter phenomenology, are
such that at the saturation density of nuclear matter, ρ0 = 0.154 baryons/fm

3, we
have:

a) the binding energy per nucleon is 16 MeV,

b) the binding energy has a maximum,

c) the compressibility modulus is of the order of 270 MeV and

d) the dilaton and ω fields satisfy the mean-field equations.

These conditions give the following equations

ω0 =
gV ρ0e

−2σ0

m2ω
,

∂Vσ
∂σ0
− ω20m2ωe2σ0 +Q = 0 (54)
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with

Q =
M2(32π

2ρ)2/3

π2
×



√
1 +M2

(
3

2
π2ρ

)−2/3
−M2

(
3

2
π2ρ

)−2/3
arccoth

√
1 +M2

(
3

2
π2ρ

)−2/3 (55)

EV = Vσ +
m2ωω

2
0

2
+
Q

4
+

3
2
π2ρ
√
(3
2
π2ρ)2/3 +M2

2π2
= ρ0(M0 − 16 MeV) (56)

EV

ρ0
=

√(
3

2
π2ρ

)2/3
+M2 +

g2V ρ0e
2σ0

m2ω
(57)

κ = 9ρ0

[
∂2EV

∂ρ2
−
(
∂2EV

∂ρ∂σ

)2(
∂2EV

∂σ2

)−1]
(58)

where

∂2EV
∂ρ2

=
(32π

2ρ)2/3

3ρ0

√
(3
2
π2ρ)2/3 +M2

+
g2V e

−2σ0

m2ω
(59)

∂2EV

∂ρ∂σ
=

M2√
(3
2
π2ρ)2/3 +M2

− 2g
2
V ρ0e

−2σ0

m2ω
(60)

∂2EV

∂σ2
=
∂2Vσ

∂σ2
+ 4Q− 3π2ρM2

π2
√
(32π

2ρ)2/3 +M2
+
2g2V ρ

2
0e
−2σ0

m2ω
. (61)

In order to fulfill these constraints, following Ref. [7], we introduce the aditional
term to the dilaton potential which reproduces the nuclear matter phenomenology.
The dilaton potential thus becomes

Vσ = B[1+e
4σ(4σ−1)]+B[a1(e−σ−1)+a2(eσ−1)+a3(e2σ−1)+a4(e3σ−1) (62)

where B is fixed, and the anomaly condition requires dVσ/dσ = 0 at σ = 0, which
gives a1 = a2 + 2a3 + 3a4.

The potentials for the fluctuations of the σ and ω fields are then determined
by the averages < σ >= σ0 and < ω >= ω0 to be to the lowest order mass-term
interactions

V (δσ) =
B

2
δσ2

[
16e4σ0(1 + 4σ0) + a1e

−σ0 + a2eσ0 + 2a3e2σ0 +
9

2
a4e
3σ0

]
, (63)
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V (δω) =
1

2
e2σ0m2ωδω

2 . (64)

The effective mass of the dilaton is not fixed, because it depends on the param-
eter Γ0 of Eq. (25), that has to be determined separately. It is of importance in the
finite nuclei calculations only.

4. Numerical results

Using the same values of the parameters a1 − a4 as in Ref. [7], we obtain the
constant cut-off results for the binding energy per nucleon in MeV as a function of
ρ/ρ0, given in Table 1.

TABLE 1. Binding energy EB in MeV as a function of ρ/ρ0.

ρ/ρ0 EB (MeV)

Normal Abnormal Normal Abnormal

Ref. [7] Ref. [7]

0.3 295 0 275 -5

0.5 90 -5 75 -10

1.0 -25 -20 -15 -15

1.5 -5 5 0 0

2.0 65 45 50 40

2.5 185 90 175 75

From Table 1, we see that there is a general qualitative agreement between the
present results and the results obtained using the complete Skyrme model in Ref.
[7]. The more detailed discussion of the normal and abnormal solutions can be
found in Ref. [7].

The constant cut-off results for the effective Skyrmion mass in MeV as a function
of ρ/ρ0 at four different temperatures are given in Table 2.

From Table 2, we see that there is a general qualitative agreement between
the present results and the results obtained using the complete Skyrme model [7].
Similarly to the case of the complete Skyrme model, we note that in the constant
cut-off approach, the nucleon mass does not decrease as in the Walecka model, but
it has a minimum at about 1.5ρ/ρ0. A detailed discussion of the reasons for this
behaviour can be found in Ref. [7].

The constant cut-off results for the pressure in MeV/fm3 as a function of ρ/ρ0
at four different temperatures are given in Table 3.

From Table 3, we see that there is a general qualitative agreement between the
present results and the results obtained using the complete Skyrme model [7].
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TABLE 2. Effective Skyrmion Mass M∗ in MeV as a function of ρ/ρ0.

ρ/ρ0 M∗ (MeV)
T = 25 MeV T = 75 MeV T = 125 MeV T = 175 MeV

Ref. [7] Ref. [7] Ref. [7] Ref. [7]

0 990 940 985 940 990 940 985 940

0.5 865 830 860 835 865 830 860 835

1.0 730 710 765 750 730 710 765 750

1.5 605 630 685 695 605 630 685 695

2.0 660 670 700 705 660 670 700 705

2.5 710 700 725 725 710 700 725 725

3.0 735 725 750 745 735 725 750 745

3.5 770 750 775 765 770 750 775 765

4.0 795 770 800 780 795 770 800 780

TABLE 3. Pressure P ∗ in MeV/fm3 as a function of ρ/ρ0 .

ρ/ρ0 P ∗ (MeV)
T = 25 MeV T = 75 MeV T = 125 MeV T = 175 MeV

Ref. [7] Ref. [7] Ref. [7] Ref. [7]

0 0.01 0.03 0.04 0.1 0.1 0.3 1.5 4.5

0.5 0.3 0.8 2 4 4 10 7 15

1.0 1 2 9 15 10 20 15 30

1.5 10 15 25 35 28 45 30 50

2.0 45 60 50 70 55 80 65 100

2.5 75 90 85 100 88 110 90 120

3.0 100 120 105 130 108 140 110 150

3.5 175 180 180 190 185 200 188 210

4.0 200 200 205 210 210 220 215 230

The constant cut-off results for the chemical potential in MeV as a function of
ρ/ρ0 at four different temperatures are given in Table 4.

From Table 4, we see that there is a general qualitative agreement between the
present results and the results obtained using the complete Skyrme model [7].

The constant cut-off results for the entropy per baryon as a function of ρ/ρ0 at
four different temperatures are given in Table 5.
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From Table 5, we see that there is a general qualitative agreement between the
present results and the results obtained using the complete Skyrme model [7].

In general all numerical results, obtained using the constant cut-off approach
here, qualitatively support the results obtained in Ref. [7]. It is an expected be-
haviour since in the results obtained in Ref. [7], the Skyrme stabilizing term does
not play a significant quantitative role. It is only needed for Skyrmion stabilization.

TABLE 4. Chemical potential µ∗ in MeV as a function of ρ/ρ0 .

ρ/ρ0 µ∗ (MeV)
T = 25 MeV T = 75 MeV T = 125 MeV T = 175 MeV

Ref. [7] Ref. [7] Ref. [7] Ref. [7]

0 995 825 555 480 210 110 0 0

0.5 1115 890 815 740 670 540 260 280

1.0 1195 915 855 805 750 650 405 435

1.5 1215 1020 945 915 810 760 550 580

2.0 1255 1130 1115 1045 910 890 655 705

2.5 1305 1220 1205 1150 1005 1000 745 825

3.0 1355 1305 1255 1215 1080 1090 835 925

3.5 1395 1370 1315 1305 1155 1175 915 1020

4.0 1445 1435 1365 1370 1230 1250 995 1085

TABLE 5. Entropy per baryon S∗ as a function of ρ/ρ0.

ρ/ρ0 S∗ (MeV)

T = 25 MeV T = 75 MeV T = 125 MeV T = 175 MeV

Ref. [7] Ref. [7] Ref. [7] Ref. [7]

0 5.3 5.1 7.9 7.2 8.5 8.2 29 23

0.5 3.1 3 5.5 4.9 6.3 5.9 9.1 7.5

1.0 2.1 2.1 4.7 4 5.5 5 7.2 6

1.5 1.5 1.4 3.5 3 4.4 4.1 5.1 4.8

2.0 1.4 1.6 3.2 2.8 4.0 3.9 5.1 4.6

2.5 1.4 1.5 3.0 2.7 3.7 3.8 5.1 4.4

3.0 1.4 1.5 3.0 2.6 3.6 3.8 5.0 4.3

3.5 1.3 1.4 2.9 2.5 3.6 3.7 4.9 4.2

4.0 1.3 1.4 2.8 2.5 3.5 3.6 4.9 4.2
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5. Conclusions

We have shown the possibility of using the Skyrme model for the study of a
soliton fluid coupled to the dilaton field and the ω meson field, without the use
of the Skyrme stabilizing term proportional to e−2, which makes the practical
calculations more complicated and introduces the problem of the choice of the
stabilizing term. We used the mean-field theory in which the dilaton and the ω
field acquired a mean value determined by the solitons. Thus, we have calculated
the soliton binding energy, effective soliton mass, pressure, chemical potential and
the entropy per soliton in the constant cut-off model.

For such a simple model with only one arbitrary dimensional constant Fπ, chosen
to be equal to its empirical value Fπ = 186 MeV, and with the dilaton potential
parameters chosen in the same way as in Ref. [7], we find that the results obtained
here are in good qualitative agreement with those obtained using the complete
Skyrme model [7].
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PRISTUP SKYRMIONSKOJ TEKUĆINI STALNIM ODREZOM

Daje se pregled kvantne stabilizacijske metode za SU(2) σ-model koja se zasniva na
limesu stalnog odreza kvantizacijske metode koju su razvili Balakrishna i suradnici.
Ta metoda izbjegava teškoće solitonskih graničnih uvjeta kako su to uočili Iwasaki i
Ohyama. Istražuje se sektor B = 1 modela i pokazuje kako je nakon kolektivne koor-
dinatne kvantizacije moguće stabilno rješenje koje ovisi o samo jednoj proizvoljnoj
dimenzijskoj stalnici. Zatim se proučava solitonska tekućina vezana s dilatonskim
poljem i poljem ω mezona. Rabi se teorija srednjeg polja u kojoj dilaton i ω polje
poprimaju srednje vrijednosti odred–ene solitonima. Tako se izračunava energija
vezanja solitona, efektivna solitonska masa, tlak, kemijski potencijal i entropija po
solitonu, i pokazuje da se postiže dobro kvalitativno slaganje ovih ishoda s ishodima
cjelovitog Skyrmeovog modela.
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