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On top of its valence quarks, the full nucleon ground state may contain appreciable
admixture of ss̄ pairs already at small momentum transfers. This paper discusses
strangeness in the mean–field type of nucleon models, and exemplifies this by ex-
plicit calculations in the MIT bag model enriched by the presence of instantons.
We calculate the instanton contribution to the strangeness in the MIT bag (on
top of the standard contribution to strangeness found in that model). Although
we do it in an essentially perturbative way, we present a detailed derivation of the
formula expressing nucleon matrix elements of bilinear strange quark operators, in
terms of a model valence nucleon state and interactions producing quark-antiquark
fluctuations on top of that valence state. We do it in detail to clarify our argument
that in the context of the mean–field type of quark models (where a Fock state
expansion exists and where the nucleon state can be constructed out of single-
quark states), the resulting formula acquires a significance beyond perturbation
theory. The derivation combines the usage of the evolution operator containing a
strangeness source, and Feynman-Hellmann theorem.

PACS numbers: 12.90+b, 12.40Aa, 14.20Dh UDC 539.126

Keywords: strange quarks, nucleons, instantons, effective interactions

1. Introduction
For quite some time, a number of investigators has been considering possible

nonzero strange matrix elements of non-strange particles, the nucleons [1–13]. Such
intriguing discussions received additional impetus from the experimental [14] and
theoretical investigations of the related problem, namely surprisingly small fraction
of the nucleon spin carried by the quarks [12,13,15–21,6]. The intensive research on
nucleon strangeness continued into nineties up to the present day; references [22–

FIZIKA B (Zagreb) 8 (1999) 4, 505–534 505
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47] are just some of the examples. More precisely, matrix elements in question are
〈N |Os|N〉, where |N〉 is the nucleon state and Os is an operator containing strange
(s) quark fields bilinearly. In this section, the integration over the three-space is
understood in the matrix element. Later, we will indicate the integration explicitly
where needed. We will be concerned with Os = sΓs, where Γ is an arbitrary matrix
in the spinor space.

Namely, although the valence component |N0〉 of the full nucleon state |N〉 con-
tains only u and d quarks, quark-antiquark fluctuations include the ss component,
allowing

〈N |sΓs|N〉/=0 , (1)

even though the net strangeness of the nucleon state |N〉 is of course zero. Some of
these matrix elements may be surprisingly large, possibly pointing to some effects
not expected in the naive quark model of hadrons. For example, the strange scalar
density inside the nucleon is connected with the experimentally measured π − N
sigma-term by the ratio

y =
〈N |ss|N〉

1
2 〈N |ūu+ dd|N〉

. (2)

For example, see Refs. [1–13,22,28,29,38]. A review [38] containing discussions of
a very complete set of original references, estimates y = 0.22 ± 0.16. Also, EMC
experiment [15] provides evidence that 〈N |s̄γµγ5s|N〉 is possibly relatively large.
In the study of the long-debated issue of nucleon strangeness, the application

of nucleon models is still important. This of course rises the question of the model
dependence — even concerning the results on what is the basic mechanism be-
hind the effect. For example, an analysis of Steininger and Weise [45] of the scalar
strangeness of the nucleon performed in the framework of the Nambu Jona-Lasinio
(NJL) model, obtained a very small upper bound on the scalar strangeness from the
NJL model with four-momentum cut-off, a larger but still modest upper bound on it
from the NJL model with a three-momentum cut-off, but dramatically higher scalar
strangeness arises when instanton-induced interaction among quarks dominates. In
addition, these authors found only a small contribution, less than 3%, from kaon
loops. On the other hand, kaon loops are the basic mechanism for generating the
nucleon strangeness in some other approaches (see, e.g., Ref. [48] and references in
Sec. 2.1 in Ref. [49], or discussion in Forkel et al. [50]). Other examples are provided
by the strangeness electric mean-square radius, the sign of which is positive accord-
ing to Refs. [46,51,52], but negative in some other approaches [13,26,48,50,53–56],
or the strangeness nucleon magnetic form factor, for which predictions of various
models and analyses range from +0.37 [51,52] over positive [13,55] to various neg-
ative values [13,26,49,53–56] all the way down to possibly −0.75± 0.30 [53,54].
This illustrates the motivation to investigate such issues further, in as large num-

ber of different approaches as possible, attempting to decrypt what is the physics
behind the model dependence. In the present paper, we formulate a framework
which will in principle make possible a comparison of such results [45] with cor-
responding results in a wider range of complementary models. We also want to

506 FIZIKA B (Zagreb) 8 (1999) 4, 505–534
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propose a framework which will be applicable not only to the scalar strangeness,
but more generally. Below, we will give an expression for 〈N | : sΓs : |N〉 where
: ... : denotes normal ordering with respect to the non-perturbative vacuum |0〉:

: q̄Γq : = q̄Γq − 〈0|q̄Γq|0〉 . (3)

Γ is an arbitrary matrix in the spinor space, say Γ = 14, γ
µ, γ5, γ

µγ5, σ
µν , ..., de-

pending on whether one is interested in the scalar, pseudoscalar, vector, axial, and
for some purposes maybe even tensor, pseudotensor, etc., ... strangeness of the
“full” (model) nucleon state |N〉 which may contain ss̄ pairs. Any interaction (call
it LI) which can produce ss pairs can lead to such a nucleon state containing an
intrinsic strangeness component.

LI

�

t = t0

�s s

u

u

u

u

dd

Fig. 1. Non-vanishing nucleon strangeness due to a response of the valence nucleon
state to a strangeness source at Γ (denoted by ×), i.e. to a probe coupled to strange
quarks through Γ. More precisely, this graph is that part of the nucleon response
which arises only through one interaction LI.
The possibility that matrix elements 〈N |sΓs|N〉 can be significantly different

from zero is not very surprising in nonperturbative QCD in the light of its non-
vanishing quark scalar condensates – the finite vacuum expectation value1 of s̄s is
actually approximately as large as for the non-strange quarks: 〈0|s̄s|0〉 ≈ 〈0|ūu|0〉 =
〈0|d̄d|0〉 ≈ (−240MeV)3. The MIT bag model provides a good illustration how this
leads to a large 〈N |s̄s|N〉 [1]. However, there may also be ss̄-pairs other than those
from the QCD vacuum condensate, so that normal-ordered strange operators can
in principle also have non-vanishing nucleon matrix elements. Figure 1 illustrates
how a non-vanishing value of not only 〈N |s̄Γs|N〉, but also of 〈N | : s̄Γs : |N〉, can
then get a contribution from these ss̄-pairs not from the vacuum condensate: at the
instant t = t0, the composite nucleon is hit by an external probe (e.g., a neutrino
[19]) with the coupling Γ to the strange quarks. Due to an interaction capable of
producing ss̄-fluctuations, the nucleon state |N〉 at the time-slice t = t0 obviously
contains not only the valence quarks uud, but also the s-quark loop to which the

1This is what is often – e.g., in O.P.E. – denoted by 〈0| : q̄q : |0〉 (q = u, d, s), but where
the normal ordering is with respect to the perturbative vacuum, so that it does not vanish in the
nonperturbative vacuum. We reserve the notation : ... : for the normal ordering with respect to
the non-perturbative QCD vacuum.
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external probe can also couple. Let us schematically write down the full nucleon
(proton) state which is also coupled to the strangeness-sensitive probe:

|N〉 = 1N

( ∞∑
X=0

CX |uudX〉+
∞∑
X=0

Css̄X |uud ss̄X〉
)
≡ 1N

(
|N0〉+ |δN〉

)
, (4)

where X (starting from X = |0〉 standing for the complicated non-perturbative
QCD vacuum) symbolizes any number of various perturbative and non-perturbative
gluon configurations but also any number of quark-antiquark pairs, including
strange pairs which escaped detection by this probe. These complicated configura-
tions “dress” quarks (q = u, d, s...) into their effective counterparts – constituent
quarks Q = U ,D,S . . . . (In terms of the constituent quarks, this part, unperturbed
by the strangeness-sensitive probe, is just the valence part: |N0〉 = |UUD〉. That
〈N0| : s̄Γs : |N0〉 = 0 is especially obvious in terms of the constituent quarks.) The
one strange pair detected at Γ has been explicitly denoted by ss̄ in the |δN〉-part
of the nucleon state perturbed by the probe. |δN〉 can be viewed as the response of
|N0〉 to the weakly coupled strangeness-sensitive probe. (The coefficients CX , Css̄X
denote the amplitudes of states with various admixtures X or ss̄X . N is the nor-
malization factor.) This response makes possible that in principle the total nucleon
Γ–strangeness 〈N |s̄Γs|N〉 also receives a nonvanishing contribution from the non-
vacuum channel 〈N | : s̄Γs : |N〉.
However, the question is how to get the nucleon state in specific enough terms

in order to have a calculable expression for 〈N | : sΓs : |N〉. To get it exactly would
probably be tantamount to solving nonperturbative QCD — consider, for example,
that the Fock state expansion itself must be built upon the nonperturbative QCD
vacuum (X = 0), which is unknown. This is why we said that (4) is only a schematic,
illustrative expression. Therefore, one obviously has to rely on models to a large
extent. One seemingly more viable approach could, for example, be to model |N0〉 in
a conventional way in terms of only non-strange effective quarks (so that 〈N0| :sΓs :
|N0〉 = 0 even though 〈N0|sΓs|N0〉 /=0 at least for Γ = 1 due to the strange vacuum
condensate), and then use appropriate interactions LI to infect it by ss̄-fluctuations
and thereby produce |δN〉 - say, using perturbation theory if LI happens to be
perturbative. This is what Eq. (6) in the next section amounts to. However, in
that section we also point out why one cannot proceed quite so straightforwardly,
and then give our alternative formulation with the formula for matrix elements of
strange operators. How this expression can be evaluated is explained in more detail
in the third section, where we also explain why we are motivated to investigate
the case of the instanton-induced interaction. The evaluation of the various strange
densities – with this LI , and in a concrete nucleon model – is carried out in the
fourth section.

2. Formulation of a model approach to nucleon

strangeness
As pointed out by Forkel et al. [50], the (“naive”) absence of virtual qq̄ pairs in

the hadron wave functions in the models based on constituent quark core, makes
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the treatment of nucleon strangeness in such models far from straightforward. Since
the approach presented below is complementary to other ones which have also used
dressed quarks in some way (e.g., Refs. [17,45,50]), we first give a review of some
quark-model notions that will be relevant below.

The purpose of working with hadron models is, of course, not to solve but to im-
itate the horrendously complicated non-perturbative low-energy QCD. Accordingly,
various gluon field configurations (e.g., instantons, or those configurations responsi-
ble for confinement) and polarization clouds of fluctuating qq̄ pairs (all symbolized
byX′s in (4)), as well as all interactions between all these fundamental constituents,
are taken into account through parameters of some nucleon model and appropriate
wave functions for dressed, effective quarks and antiquarks Q = U ,D,S. Examples
may be various constituent quark models, where baryons consist just of valence
quarks which are however constituent quarks, quasi-particles which come about
through dressing of the current quarks by QCD – i.e., in other words, by our X’s.
Or, it may be the MIT bag model, where these long-range nonperturbative QCD ef-
fects lead to, or are partially parametrized by, a confining cavity containing again a
fixed number of effective valence quarks (and antiquarks, in the case of mesons and
”exotic” qqqqq̄ baryons). Choosing a definite model of the hadron structure implies
also the choice of the model wave function basis qK(x) in which one expands the

quark fields q(x) (q = u, d, s) in terms of creation (U†K ,D†K,S†K) and annihilation
(UK ,DK,SK) operators of dressed quarks and antiquarks. (K stands for the set of
quantum numbers labeling a model quark state. For the expansion specific to the
MIT bag-model see the Appendix.)

It is then clear, for example, that the nucleon |UUD〉 (when all three of these
effective quarks are in their ground states), is nothing but our |N0〉 from (4) except
that all the mess of fluctuations X is by some model parametrization lumped into
dressing of valence quarks UUD, as well as into effective model interactions, or a
mean field they experience. Obviously, the idea here is to represent hadrons as com-
posed of a fixed, well-defined number of dressed valence quarks (and antiquarks),
bound by effective model interactions which sum up reasonably successfully the
fundamental QCD ones. The most simplified, but illustrative case is when these
model quasiparticles are moving in an average, mean field Φ. To be sure, these
model interactions (and/or mean field), as well as the effective, dressed quarks Q,
are assumed to be “produced” by all relevant interactions between quarks at more
fundamental levels including presently interesting strangeness-producing interac-
tions LI . “Produced” here of course means that we modeled them, not “calculated”
from these underlying relevant interactions. So, they (including LI) are assumed
to be accounted for through modelling.

Note, however, that this approach does not say what would be the model repre-
sentation (or parametrization) of |δN〉, as it does for |N0〉 = |UUD〉. Of course, in
the spirit of the above discussion, we can write |δN〉 ∼ |UUDSS̄〉, and writing this
is even quite useful for reminding us that i) the fluctuating strange (anti)quarks —
being embedded in the nucleon — also have to be dressed in the way prescribed
by whatever model is applied, including being in one of the model single-quark
eigenstates, and that modelling effectively takes care of all their interactions (ex-
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cept of course the interactions induced by their coupling at Γ to their source, a
probe sensitive to strangeness), and ii), that all other fluctuations (X′s in (4)) are
lumped in the dressing, so that the only allowed quark-antiquark fluctuation is SS̄,
which has its source in the external strangeness-sensitive probe at Γ. However, in
contradistinction to, e.g., |N0〉 = |UUD〉 which is unambiguous because we know
that there all quarks are in their model ground states (and corresponding quan-
tum numbers on UUD are suppressed for brevity of the notation, but known in
principle), |δN〉 ∼ |UUDSS̄〉 is just a generic formula, a useful mnemonic as just
described, because in this case we do not know in what states these five constituents
are. In principle, |δN〉 is a superposition of all possible such states, encompassing
exotic baryons with UUDSS̄ contents and ordinary strange baryons coexisting with
kaons, as well as nucleons with ss̄-mesons — most notably φ-mesons.

So, let us call H0 the Hamiltonian responsible for the formation of hadron
states composed of definite, fixed numbers of quarks — and possibly antiquarks.
In the simplest case, we can imagine H0 as consisting of a sum of one-body quark
operators, say typically of the effective quark kinetic energy operator K and the
mean, or self-consistent, field Φ in which the dressed valence quarks would move.
In any case, H0 defines the nucleon model — possibly together with some other
ingredients (like the confining boundary condition in bag models, for example).
The valence nucleon state |N0〉 would then be the ground eigenstate, and |k〉 would
stand for all possible higher eigenstates of H0,

H0|N0〉 = EN0 |N0〉, H0|k〉 = Ek|k〉, Ek > EN0 . (5)

For example, H0 could be the static bag-model Hamiltonian. |N0〉 would then be
the bag model nucleon in its ground state, and |k〉 all higher bag states with a
definite number of constituents, including also “bagged” UUDQQ̄ exotic baryons
and the product meson-baryon bag states such as |k〉 = |UDQ〉 |UQ̄〉.
What H0 cannot do is to produce ss̄ fluctuating pairs. For that we have to

invoke LI, or its corresponding Hamiltonian HI , as by assumption they can pro-
duce ss̄ excitations on top of |N0〉. To clarify that introducing LI does not lead
to double-counting, let us repeat that H0 is just a model Hamiltonian, the pa-
rameters of which should mimic the effects of full, true non-perturbative QCD as
much as possible. For example, if H0 is the Hamiltonian of the non-relativistic
naive constituent-quark model, it must contain the postulated mass parameter of
the constituent quark mass MQ ≈MN0/3. The corresponding quantity in the true
theory, the dynamically generated quark mass, is (in principle) the result of all
possible QCD interactions, so that the interactions related to HI can, in real QCD,
also contribute to this mass by contributing to the ss̄-fluctuations. The dynamically
generated non-strange quark mass must be close to the model constituent-quark
mass parameter MQ sitting in H0, and only in such implicit, indirect ways are
interactions like HI “present” in H0. However, they are not present explicitly, and,
in fact, H0 cannot produce any ss̄ fluctuations at all. Therefore, if we want to
study the ss̄ fluctuations, we must introduce HI to enrich the model nucleon with
SS̄-fluctuations on top of |N0〉. Correspondingly, LI (and thus also HI) contains
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strange-quark field operators bilinearly so that it can connect |N0〉 and |δN〉 con-
taining ss̄ pairs. (This also implies 〈N0| : HI : |N0〉 ≡ ∆(1)EN = 0 regardless of
what precisely this interaction is. This will be important in (10) below, for the

first-order shift ∆(1)EN and the third-order shift ∆
(3)EN .) In our figures, this

interaction is depicted as a two-body operator, where a strange-quark bilinear is
combined with a non-strange bilinear. This may be, for example, the two-body
part of Linst, the instanton-induced interaction2. On the other hand, Steininger
and Weise [45] studied the three-body part [59,60] of instanton-induced interac-
tion (which part they call L6). Nevertheless, the arguments here are completely
general and encompass such cases, too; one would just have to do some obvious
modifications in our figures. (For example, in Figs. 1 and 2, such a LI would, in
addition to the strange quark loop, straddle not just one but two valence quark
lines of different flavours.) So, 〈N | : s̄Γs : |N〉 could be evaluated if |δN〉 could be
found. But how? For instance, it is easy to see that a straightforward application
of perturbation theory to find |δN〉, where

|δN〉 =
∑
k /=N0

〈k|HI|N0〉
EN0 −Ek

|k〉+ ... , (6)

is hardly viable even in those cases when HI would be truly perturbative. Namely,
it necessitates the summation over intermediate states |k〉 (some of which must
contain ss̄-pairs, in order to give 〈N | : s̄Γs : |N〉/=0), which is very hard to handle in
practice. Admittedly, Geiger and Isgur [46] have recently succeeded in performing
such a straightforward perturbation calculation of the proton strangeness (i.e., using
(6)). However, in order to make their calculation tractable, they were forced to
model hadrons as simple harmonic oscillators. Also, the choice where to put a cut-
off, i.e. which intermediate hadron states |k〉 to discard, is more ambiguous than
when working with quarks.

Fortunately, the alternative formulation through the evolution operator is also

LILI

�

K

�

N0 N0

Fig. 2. A response of the valence nucleon state |N0〉 to a strangeness source at
Γ through two interactions LI . This type of contribution can be associated with
the kaon-loop contribution to the nucleon strangeness (a possible KΛ intermediate
state is therefore indicated).

2See, e.g., Linst of Shifman, Vainshtein and Zaharov [57], or its version used in Ref. [58].
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possible. We formulated and used it in Ref. [47]. Here we present a more de-
tailed derivation of the expressions used there. More concretely, we will combine
the Feynman-Hellmann theorem [61,62] with the usage of the evolution operator
containing the Hamiltonian with the source of the strange current of interest. This
is because in cases like this one, where we would like to avoid the need to construct
|δN〉 explicitly, the method of sources is especially helpful. (See, e.g., Ref. [63],
pages 89 and 90.) Of course, in this approach, |δN〉 is the response of |N0〉 to the
external probe which is the source of a strange current, and, naturally, we had
this approach in mind already when we wrote schematically the full nucleon state
coupled to a strangeness source as (4). This way we will not need |δN〉 explicitly.
Instead, we will obtain the nucleon matrix element of this current as the response
(to the current source) of the transition amplitude of the model ground state |N0〉
at t→ −∞ into itself, but at t→ +∞.
We will use normal-ordered operators in order to get an expression for 〈N | :

sΓs : |N〉 which can be non-vanishing due to the strange densities that may exist
in the nucleon on top of the vacuum condensate densities that exist in the QCD
vacuum. We are then in principle able to evaluate this matrix element because
we assume we can represent the ground state |N0〉 by a known nucleon model.
Whatever we do below could be done also without normal ordering, but then the
analogous expression would include the strangeness due to the strange condensate
in the complicated QCD vacuum, and since we neither know the QCD vacuum
state nor presently address its modelling, we cannot evaluate this expression. How
to find the vacuum part of the nucleon strangeness is an issue that depends on the
relation of each specific hadron model with the QCD vacuum quark condensates.
For example, this vacuum contribution to the scalar strangeness was found in the
MIT bag model by Donoghue and Nappi [1], while the expression for 〈N | :sΓs : |N〉
evaluated in our Sec. 4, is the strangeness induced in the MIT bag nucleon valence
ground state in addition to the vacuum contribution.

Using the method of sources in combination with the model approach will also
enable us to use the perturbative expansion of the evolution operator only for-
mally; since there are plausible physical arguments, which are different from the
usual argument (used in Ref. [47]) of “smallness of the perturbation”, that higher
orders should be neglected, the resulting formula for strange nucleon matrix el-
ements should be applicable even when the interactions LI , which lead to their
non-vanishing values, are not really perturbative. These arguments are a novel el-
ement with respect to Ref. [47]. Namely, as already emphasized, the state used
here as the ground state, |N0〉, is fully determined by some model Hamiltonian H0
which also sums up the effects of LI in dressing of the constituent valence quarks,
so that this interaction with strange quarks is not explicitly present — just as the
strange quarks are not explicitly present in |N0〉. However, LI is again induced by
the external strangeness source, because it brings in a ss̄ pair, which is not hidden
in the modeled dressing polarization clouds (X’s), and which must be absorbed
via LI by the valence quarks so that the system is returned to |N0〉. However,
it turns out that a recognizable response within a defined nucleon model can be
obtained only for a limited number of LI -vertices, otherwise a double-counting oc-
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curs through dressing of already dressed quarks. All this will be explained more
concretely below, after the derivation, which we present in more detail than in Ref.
[47] so that the common points as well as differences with respect to Geiger and
Isgur [46] are clear.

So, let us define another, auxiliary perturbation Hamiltonian H ′ by adding to
HI a source term for the strange operator we want to calculate in the “full” nucleon
state:

H ′ ≡ HI + λ⊗ 〈sΓs〉, (7)

where 〈sΓs〉 is the convenient abbreviation

〈sΓs〉 ≡
∫
s(x)Γs(x) d3x . (8)

(However, in all matrix elements 〈N | : sΓs : |N〉 above and below, the three-
dimensional integration over s(x)Γs(x) is understood!) The generic form λ ⊗ Γ
can mean any of the cases λ14, λµγ

µ, λ5µγ
µγ5, λµνσ

µν , ... . The Hamiltonians are
normal ordered. It is usually implicitly understood, but, for clarity, we will indicate
normal ordering explicitly everywhere in the remainder.

Obviously, the Feynman-Hellmann theorem applied to our H(λ) = H0 +H
′(λ)

says that the sought strange matrix element of the full nucleon state is

〈N |
∫
: s(x)Γs(x) : d3x|N〉 = 〈N |∂ :H(λ) :

∂λ
|N〉

∣∣∣∣
λ=0

=
∂EN(λ)

∂λ

∣∣∣∣
λ=0

, (9)

where we also took the physical limit of the vanishing strength (λ = 0) of the
external strangeness source.

Since ∆(1)EN = 0, the perturbed ground-state energy EN(λ) is given by

EN(λ) = EN0 +
∑
k /=N0

〈N0| :H ′(λ) : |k〉〈k| :H ′(λ) : |N0〉
EN0 −Ek

+
∑
k,l /=N0

〈N0| :H ′(λ) : |k〉〈k| :H ′(λ) : |l〉〈l| :H ′(λ) : |N0〉
(EN0 − Ek)(EN0 −El)

+O[H ′(λ)4]

≡ EN0 +∆(2)EN(λ) + ∆(3)EN(λ) + O[H ′(λ)4].

(10)

O[H ′(λ)4 ] stands for the fourth and higher orders, which, as we will argue soon, turn
out not to contribute to (9). The presence of the sums over hadronic intermediate
states |k〉 of (5), similarly as in the approach of Geiger and Isgur [46] should be
noted. One can then easily understand how we can capture similar aspects of
the physics of nucleon strangeness in our respective approach. Now, how do we
expect to render the strangeness in (9) calculable, when (10) contains sums over
intermediate states, and, as pointed out above, handling them is precisely the
difficulty that makes the conventional perturbative approach (as in (6)) useless in
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practice? What helps here is that we can relate ∂EN (λ)/∂λ to the nucleon matrix
elements of the evolution operator U(t2, t1), whose perturbation expansion is

U(t2, t1) = 1 +

∞∑
n=1

U (n)(t2, t1) = T̂

{
1 +

∞∑
n=1

in

n!

[ t2∫
t1

:Lint(t) : dt
]n}

. (11)

T̂ denotes the time ordering operator and Lint(t) =
∫Lint(x, t)d3x = −Hint(t) is

the interaction Lagrangian. In our case, we should replace the interaction in the
integrand with the form containing the strangeness sources, like in the definition
of H ′, (7):

L(t)int → L′(t) = LI(t)− λ⊗ 〈sΓs(t)〉 =
∫
d3x

[
LI(x)− λ⊗ s(x)Γs(x)

]
. (12)

For definiteness, let us from now on specialize λ ⊗ Γ to λµγµ, i.e., suppose that
we are after the vector strangeness of the nucleon. It is trivial to reformulate what
follows for any other possible λ⊗ Γ. For example, the second-order term in (11) is
then

U (2)(+∞,−∞) = −1
2
T̂

+∞∫
−∞
dt

+∞∫
−∞
dt′
[
:LI(t) : :LI(t

′) :

−λα : 〈s̄γαs(t)〉 : :LI(t′) : − :LI(t) : λβ : 〈s̄γβs(t′)〉 :

+λαλβ : 〈s̄γαs(t)〉 : : 〈s̄γβs(t′)〉 :
]
.

(13)

The second- and third-order terms, U (2) and U (3), are particularly interesting.
Their contribution to the S-matrix, when written with the help of the interaction
Hamiltonian H ′ and the sum over intermediate states |k〉,

S
(2)
ab ≡〈b|U (2)(+∞,−∞)|a〉=−2πiδ(Eb− Ea)

×
∑
k /=a

〈b| :H ′(λ) : |k〉〈k| :H ′(λ) : |a〉
Ea − Ek + iε ,

(14)

S
(3)
ab ≡〈b|U (3)(+∞,−∞)|a〉=−2πiδ(Eb− Ea)

×
∑
k,l /=a

〈b| :H ′(λ) : |k〉〈k| :H′(λ) : |l〉〈l| :H ′(λ) : |a〉
(Ea − Ek + iε)(Ea − El + iε) ,

(15)

can obviously be related to ∆(2)EN and ∆
(3)EN in (10) when |a〉 = |b〉 = |N0〉:

〈N0|U (i)(+∞,−∞)|N0〉 = −2πiδ(0)∆(i)EN(λ) , i = 2, 3. (16)
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[Strictly speaking, the divergence due to δ(0) renders this expression meaningless;
however, we will be able to get rid of δ(0).] On the other hand, by using the
standard field-theory expansion of U , i.e., (11), we avoid the need to consider the
intermediate states |k〉. To demonstrate this, let us for a moment concentrate on
the contribution to strangeness that comes from U (2)(+∞,−∞), given by (13):

∂

∂λµ
〈N0|U (2)(+∞,−∞)|N0〉

∣∣∣∣∣
λµ=0

=

= 〈N0|1
2
T̂

+∞∫
−∞
dt

+∞∫
−∞
dt′
[
: 〈sγµs(t)〉 : :LI(t′) :

+ :LI(t) : : 〈sγµs(t′)〉 :
]
|N0〉

= 〈N0|
+∞∫
−∞
dt

{ t∫
−∞
: 〈sγµs(t)〉 : :LI(t′) : dt′

+

+∞∫
t

:LI(t
′) : : 〈sγµs(t)〉 : dt′

}
|N0〉 .

(17)

Since the nucleon strangeness cannot depend on the chosen time-slice t, the expres-
sion in the curly brackets must be the same for any t. We can, therefore, fix t in the
curly brackets ( i.e., in the limits of integration and in 〈s̄γµs(t)〉) to any constant
value t = t0 (say, t0 = 0), and we are free to factorize out the expression in the
curly brackets out of the integral over t:

∂

∂λµ
〈N0|U (2)(+∞,−∞)|N0〉

∣∣∣∣∣
λµ=0

=

 ∞∫
−∞
dt

 〈N0|
×
{ t0∫
−∞
: 〈sγµs(t0)〉 : :LI(t′) : dt′ +

+∞∫
t0

:LI(t
′) : : 〈sγµs(t0)〉 : dt′

}
|N0〉 .

(18)

This then leaves the integral (
+∞∫
−∞
dt) as a constant but divergent prefactor.

However, it exactly matches the constant divergent prefactor in (16), 2πδ(0) =
∞∫
−∞
dt, and they cancel each other out. The inspection of Eqs. (18), (16), (10)

and (9) then gives the contribution of U (2) to the nucleon strangeness. This is the
first term on the right-hand side of (19) below (where we have again gathered the
time-ordered integrals into one from −∞ to +∞ but containing the time-ordering
operator T̂ ). Repeating the above procedure for U (3) gives us the second term in
(19). For example, the strange nucleon matrix element of the full nucleon state is
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then given by

〈N | : sΓs : |N〉 = i
+∞∫
−∞
dt′ 〈N0|T̂ : 〈sΓs(t0)〉 : :LI(t′) : |N0〉

−1
2

+∞∫
−∞
dt′

+∞∫
−∞
dt′′ 〈N0|T̂ : 〈sΓs(t0)〉 : :LI(t′) : :LI(t′′) : |N0〉

(19)

(We have reverted from the special case of γµ to a general matrix Γ.)

Obviously, the non-vanishing contributions to (19) occur only when the strange
quark fields are fully contracted. e.g., the integrand of the first term in (19), written
in terms of space integrals over the strange current and Lagrangian densities is∫

d3x d3x′〈N0|T̂ : s(x)Γs(x) : : LI(x′) : |N0〉

=

∫
d3x d3x′〈N0| :

︷ ︸︸ ︷
s(x)Γ s(x)LI︸ ︷︷ ︸(x′) : |N0〉 , (20)

(where the contractions are indicated by over- and underbraces, and t0 ≡ x0, t′ ≡
x′0 for consistency of the notation). So, the first term in (19) corresponds to Fig.
1, since these contractions, or time-ordered pairings, are of course the propaga-
tors of strange quarks. In the second term, the two contractions must connect the
strangeness source at Γ with two different separately normal-ordered interaction
Lagrangian densities which act as “sinks” for strangeness at two different points
of a valence quark line, or two different valence quark lines. In any case, there
must be an additional strange quark contraction between these two : LI :’s, and
this completes the strange quark loop. Figure 2 gives an example of the graphs
originating from the second term of (19), namely the U (3) contribution. Clearly,

N0
N0

�

Fig. 3. One of the spurious graphs that would originate from the tenth-order term
U (10) of the evolution operator. It illustrates how the contributions from the terms
higher than U (3) cannot be identified with responses to a strangeness source at Γ,
but instead lead to dressing of already dressed quarks and to changing of the defined
model interactions. As in the previous figures, black dots denote the interactions
LI, solid lines denote nonstrange dressed quarks, and dashed lines strange dressed
quarks.
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this way kaon loops can be generated. If the result of [45] on small contribution
of kaon loops is not an artifact of their model, it is likely that the second term in
(19) will be much smaller than the first one if (19) is evaluated in realistic enough
models. However, this cannot be known in advance. So, why not include still higher
contributions which would give contributions like Fig. 3, for example?

First, let us remember that there are some perturbative interactions LI which
can nevertheless be important for nucleon strangeness. One example is the deple-
tion of the instanton density which occurs [58] in the MIT bag model, and which
is so strong that in this case one can for sure treat the instanton-induced interac-
tions perturbatively, using the density of very dilute instantons as the expansion
parameter. In the light of results of Ref. [45] which indicate that instanton-induced
interactions may be an especially important source of strangeness, even such a per-
turbative contribution from instanton-induced interactions may well be significant.

So, in some cases we can justify ignoring the contributions of U (n), n ≥ 4, (i.e,
O[H ′(λ)4 ] in (10)) as a perturbative approximation3. However, we are actually
better off than that, because our model prediction for strangeness terminates with
the U (3) contribution even for nonperturbative interactions LI, because it turns out
that contributions from higher U (n)’s would be double-counting. This follows from
our view on nucleon strangeness as the response (to a strangeness-sensitive probe)
of nucleon model states which, in the static regime (before or after any interactions
with external probes), are just |N0〉, i.e., are by assumption built only of non-
strange dressed quarks U ,D, which hide all the complexity of QCD – including
strange fluctuating pairs – in their (modeled) dressing. Remember that except
the interactions induced by the strangeness source, all fundamental interactions
(including LI) and resulting fluctuations of gluon and quark fields are lumped in
forming these effective quarks and their effective model interactions and/or mean
field they experience. Now, the contribution to (19) from a λ-differentiated term
U (n), n ≥ 4 (through (17)) would correspond to graphs with one vertex at Γ from
which two propagators of dressed strange quarks would emanate, two LI -vertices
which would receive them (so it would be like in Fig. 2, from the λ-differentiated
U (3) contribution, so far), but then other n− 3 LI-vertices would follow. (e.g., see
Fig. 3.) Depending on how the contractions are arranged, they can be connected
in the loop originating at Γ, or can be disconnected from it, forming their separate
loops. In both cases this is obviously double counting, as these additional n − 3
vertices represent dressing of quarks that have already been dressed. The first two
LI-vertices are different, as they are induced by the strangeness source — they are
the unavoidable sink for the ss̄ pair created by the source at Γ. The second term in
(19), i.e., the U (3) contribution, is the highest possible term that has just that, and
does not contain additional interactions of the dressed strange loop with already
dressed valence quarks, resulting in double-dressing. A completely equivalent, but
probably even clearer way to see this is to view our external strangeness-sensitive
probe as a sink (instead of a source) of a strange quark current. So, when this sink

3Had we limited ourselves to such cases, we could have omitted most of our discussion of
the role of dressed quarks in Secs. 1 and 2, because we would not have needed such detailed
explanations for justification of Eq. (19).
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(by means of the interaction LI) sucks a strange pair out of the polarization clouds
that form our dressed valence quarks, this strange pair should go to this sink at
Γ that pulled it out — and not run all around the nucleon interacting with the
valence quarks up to n−3 times (n = 4, 5, ...,∞), thus also altering already defined
model interactions between the valence quarks.

Realizing this also automatically answers why there is no such contractions
among the nonstrange quark fields which would lead to additional UŪ and DD̄
pairs. Such loops would also appear if contributions from higher U (n) could enter
in (19). (See Fig. 3.) That is, the avoidance of double-dressing gives the response
of |N0〉 to a strangeness source in the generic form |δN〉 ∼ |UUDSS̄〉 and not
|UUDSS̄SS̄DD̄...〉, etc., without imposing by hand any additional limitations to
“one-particle, one-hole” responses.

3. Strangeness evaluation with a specified interaction LI
Evaluation of the “master formula” (19) is in principle straightforward once

one specifies two things: i) the overall description of the hadronic structure, which
amounts to choosing the mean-field HamiltonianH0 in (5), and ii) LI , which gener-
ates the qq̄ fluctuations. Namely, specifying i) should normally define also the single
quark solutions; a concrete calculation within a specified framework or a model in-
volves expanding of quark fields in an appropriate wave function basis (e.g., in the
next section we choose to employ the quark solutions for the MIT bag). The field
contractions in (19) lead to the sums over stationary modes of single quarks and
antiquarks, or, equivalently, to the bound state propagators of these dressed model
quarks. These sums require a regularization, but now, for the single quark modes,
it is much easier to physically justify the choice of the cut-off than in the case of the
sum over the exotic baryon and meson-baryon states like the one in (6) or in Ref.
[46]. Let us recall at this point that in the course of our derivation (7)–(20), we re-
placed these summation over hadronic states by summation over the states/modes
of quarks which constitute these hadrons. The sum over quark modes should nat-
urally run only up to some typical hadronic low-energy cut-off Λ ∼ 0.6 GeV – 1
GeV. This cut-off on quark energies is dictated by the fact that nonperturbative
interactions among quarks operate at low energies, whereas they gradually weaken
and go over to the perturbative regime for higher energies. In the aforementioned
study of ss̄ effects of kaon loops [46], Geiger and Isgur have shown the importance
of high-mass intermediate states in these loops. However, since these are hadronic,
meson–baryon intermediate states, this does not contradict with the cut-off such
as Λ ∼ 1 GeV on quark energies. Namely, the dominant portions of the results of
Ref. [46] are accounted for by states lying below 3 – 3.5 GeV. For comparison, our
cut-off of 1.1 GeV (see Table 1) imposed on the energies of one strange quark and
one antiquark fluctuating on top of the valence nucleon state, corresponds to total
energies up to 2Λ+MN ∼ 3 GeV. This leads us to believe that we have accounted
for the majority of important degrees of freedom in a way compatible with Ref.
[46].

The cut-off values of 0.6 GeV – 1 GeV are typical for calculations in models of
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low-energy QCD, e.g., the Nambu and Jona-Lasinio (NJL) model [45]. Obviously,
we are supposing here that the nucleon strangeness is the effect of low-energy,
nonperturbative QCD. Indeed, this brings us to the point ii), i.e., to the question
what to use concretely for LI in (19) in the explicit calculation of 〈N | : sΓs : |N〉
performed in the next section.

LI can of course be any interaction which can produce fluctuating ss pairs, but
the question is, which interactions can be important in producing the strangeness
of the nucleon? For example, perturbative QCD interactions should be relatively
unimportant in this regard. Although precisely the perturbative, high-energy deep
inelastic scattering reveals the sea of qq pairs, including ss, the contribution of
this perturbative sea to the nucleon strange matrix elements has traditionally been
judged as relatively unimportant (see, e.g., Refs. [22,38]). A theoretical analysis
[64] of the CCFR data [65] on strange quark distribution functions from neutrino-
nucleon deep inelastic scattering, seems to further support this point of view. For
example, it finds a very small upper bound on the strange radius of the nucleon
(|〈r2〉s| ≤ 0.005 fm2) [64] when extracted from such parton distribution functions
characterizing the nucleon structure at high momentum transfers. The possibly en-
hanced nucleon strangeness is thus expected (see, e.g., Ref. [22]) as an effect of non-
perturbative QCD which, at low energies, around nucleon mass scale, is certainly
more important for hadronic structure than perturbative QCD, and can lead to ss̄
pairs already at small momentum transfers, i.e., large distances. Nonperturbative
QCD is after all responsible for precisely such effects as forming quark-antiquark
condensate 〈0|q̄q|0〉 (q = u, d, s) and gluon condensate characterizing the nonper-
turbative QCD vacuum. Some investigators (see, e.g., Refs. [66–68], or, for a recent
and comprehensive review, Ref. [69]) has suggested that among the most impor-
tant nonperturbative configurations of the gluon fields are instantons. By now it
is certainly well-established that the effective interaction between quarks resulting
from the presence of instantons (let us call this interaction Linst), plays a very im-
portant role in the formation of hadron structure [69] although it is not responsible
for confinement [70,71], as thought previously. (In the present approach, confine-
ment must anyway be taken care of by the unperturbed Hamiltonian H0.) This
Linst is, therefore, in our opinion worth testing as an important candidate for the
interactions LI generating the strange nucleon matrix elements of some operators.
A recent calculation [45] in the context of NJL model seems to be an indication
that Linst is indeed the most important part of LI, as it found large strange pair
components in the nucleon only if instanton-induced interaction was included in
the low-energy dynamics. In that case, the ratio y (2) can be several times larger
than its upper limit in the case when the “standard” NJL model is used, even when
augmented by kaon cloud effects [45].

Here we quote the vacuum-averaged version of the instanton-induced interaction
Linst derived in Ref. [72] in the instanton liquid approach but transformed to x-
space. It is actually convenient to separate it in one-, two-, and three-body pieces,
L1,L2 and L3 respectively:

Linst = L1 + L2 + L3, (21)

FIZIKA B (Zagreb) 8 (1999) 4, 505–534 519
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L1 = −n
(
4π2

3
ρ3
){
Fu ūR uL + (u←→ d) + (u←→ s)

}
+ (R←→ L) (22)

L2 = −n
(
4π2

3
ρ3
)2{

FuFd
[
(ūRuL)(d̄RdL) +

3

32

(
ūRλ

auLd̄Rλ
adL

−3
4
ūRσµνλ

auLd̄Lσ
µνλadL

)]
+ (u←→ s) + (d←→ s)

}
+ (R↔ L)

(23)

L3 = −n
(
4π2

3 ρ
3
)3
Fu FdFs 1

3!

1

Nc(N2c − 1)
εf1f2f3 εg1g2g3

{
2Nc + 1

2Nc + 4

×(q̄f1R qg1L )(q̄f2R qg2L )(q̄f3R qg3L ) +
8

3(Nc + 3)
(q̄f1R q

g1
L )(q̄

f2
R σµνq

g2
L )(q̄

f3
R σ

µνqg3L )

} (24)

Here, n is the instanton density and Ff ’s are the characteristic factors (cor-
responding to inverse effective quark masses) composed of current light quark
masses mf (f = u, d, s), average instanton size ρ ' 1

3 fm [67,68,73], and the

quark condensate 〈0|qq|0〉 = (−240MeV)3. For example, for the u-flavour, Fu ≡
[muρ − 2π2

3 ρ
3〈0|qq|0〉]−1, and analogously for the other flavours. The left (and

right) projected components are defined in the usual way; e.g., for the u-flavour,
uL,R = γ±u ≡ 1

2 (1± γ5)u.
In the three body interaction L3, the indices fi, gi (i = 1, 2, 3) run over light

flavours u, d, and s. For example, g3 = d means q
g3
L = dL. Repeated indices are

summed over. The interaction defined here by L1,L2, and L3 is actually the same
as the well-known one of Shifman, Vainshtein and Zakharov (SVZ) [57], although
the present three-body term (24) looks much simpler, but it is just that Nowak
[74] Fierzed away otherwise very complicated colour structures in that piece of
SVZ interaction [57], reshuffling them in simple prefactors involving the number of
quark colours Nc. Obviously, the two-body term is the one which, through the (19)
and (20), yields the graph in Fig. 1. In addition to that, there is also a contribution
to the nucleon strangeness due to the three-body interaction L3, exemplified by the
last loop in Fig. 4. Such graphs come about when contractions in (20) are done
with a strange bilinear in L3.
In contradistinction to L2 and L3, the contribution to the nucleon strangeness

due to the one-body term L1 does not involve any interacting with the valence
quarks, as illustrated in Fig. 3. Not surprisingly, this disconnected graph requires
some care. L1 has in fact the form of a mass term, and can be thought of as the
self-energy, or the effective mass that a quark acquires from the effective interaction
caused by the instanton liquid through which quarks move in the nonperturbative
QCD vacuum. Now imagine that we want to evaluate some strange nucleon matrix
element (19) in some kind of constituent quark model where one from the start
uses effective constituent quark masses already “dressed” by nonperturbative QCD.
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The self-mass part of the instanton effects would in that case be already included
in the constituent mass parameters. Using L1 in the calculation would, therefore,
be double-counting, so in that case it must be dropped. On the other hand, if we
would use some approach where one uses the current, Lagrangian quark masses,
like in the MIT bag model for example, there is no reason to drop L1 and it should
be included in the calculation on equal footing with L2 and L3.

L1 L2 L3

s
s

s

u

u

d

Fig. 4. Instanton-induced local strangeness represented by the effective one-, two-
and three-body operators. Non-strange quarks are denoted by solid lines, and
strange ones by dashed lines.

We also note that the average instanton size ρ ' 1
3 fm = (600MeV)

−1 is con-
sistent with what we said above about the typical hadronic cut-off scale Λ ∼ 0.6–1
GeV. Namely, the effective interaction Linst cannot be operative at energies which
would probe distances significantly smaller than the average size of these extended
objects, instantons, which produce Linst.
The final point we should clarify concerns consistency of using the instanton

induced interaction Linst for LI in (19), even in the case when we view (19) as a
purely perturbative result.

Namely, although in the previous section we have advanced the arguments why
the applicability of (19) goes beyond perturbation theory in the context of some
quark models, we want to point out that even if we forget for a moment these argu-
ments, what we do in the next section can be justified already from a viewpoint that
is essentially perturbative. So, if we take this viewpoint, why is (19) applicable not
only to parts of LI which come from perturbative interactions like the perturbative
gluon exchange, but also to Linst (21)–(24) which is of nonperturbative origin. The
point is that the origin of Linst is nonperturbative, i.e., these effective interactions
between quarks are the consequence of nonperturbative gluon configurations —
instantons. However, Linst itself contains a small parameter, namely the instanton
density n, and it is in fact so small that perturbative expansion in its powers is
possible. Original estimates [73] where n ≈ 1.6 · 10−3 GeV4 proved to be quite
reliable as they have remained essentially unchanged [69] also in the more recent
instanton liquid calculations. It is in fact useful to define a “dimensionless instan-
ton density” ñ by expressing it in units of the average instanton size ρ, n ≡ ñρ−4.
The commonly accepted value is ρ = 1/600 MeV−1 ' 1/3 fm [67,68,75]. Therefore
ñ ' 12.4 · 10−3 ' 1/81 and this dimensionless parameter is obviously small enough
to be used as the parameter of the perturbative expansion. (The expansion param-
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eter in QED is not much smaller, α ' 1/137.) We should also keep in mind that
this is the instanton density in the true, nonperturbative QCD vacuum, while in
some circumstances the appropriate n can be even smaller. Notably, in Ref. [58] was
found that in the MIT bag model enlarged with the instanton–induced interaction
(21)–(24), which is used in the next section for the first evaluations of the nucleon
strangeness via formula (19), the instanton density is very strongly depleted with
respect to the true QCD vacuum. In Ref. [58] were used certain approximations
and assumptions, so that the depletion may be not quite so strong as estimated
there, but the usage of Linst in (19) is clearly consistent anyway, since even the
aforementioned value of the undepleted instanton density in the truly nonpertur-
bative QCD vacuum is small enough to serve as the parameter of the perturbative
expansion.

4. Instanton–induced strangeness in the MIT bag model

Now, we turn to the actual calculation of strange nucleon matrix elements in
the MIT bag model, and with the instanton-induced interaction Linst given by (22-
24). For definiteness, we quote the results for the proton—since the neutron case
is quite similar, we keep |N〉 (for nucleons) in our expressions.
Using (19), the proton-strangeness matrix element is

〈N | : s̄Γs : |N〉 = i
∞∫

−∞
dt′ 〈N0| T̂ :

∫
d3x s̄(x, t0)Γs(x, t0) :

× :
∫
d3y Linst(y, t′) : |N0〉 ,

(25)

where we have kept only the first term in the perturbation series over low instanton
density. We have treated each of the three parts of Linst (21) separately. The one-
body interaction L1 (22) is the simplest of all. Since no valence quarks take part
in this interaction, the only relevant part of L1 is

− n
(
4π

3
ρ3
)
Fs(s̄RsL + s̄LsR) , (26)

giving the L1 part of the matrix element:

〈N | : s̄Γs : |N〉L1 = i
∞∫

−∞
〈N0|N0〉 T̂ :

∫
d3x s̄(x, t0)Γs(x, t0) :

× :
∫
d3y s̄(y, t′)s(y, t′) : .

(27)

By taking into account the expansion of the strange quark quantum field s(x) in
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the MIT bag-model wave functions sK (x) (see Appendix), this reduces to the

〈N | : s̄Γs : |N〉L1 = 4π2nρ3Fs
∑
K,L

1

ωK + ωL

×
{∫
d3x s̄M (x)Γs

c
N (x)

∫
d3y s̄cN (y)sM (y) + (s↔ sc)

}
.

(28)

Here, K and L stand for the sets of quantum numbers labelling quark states in
the bag: K = {n, κ, j3}, L = {n′, κ′, j′3} (see Appendix). The sum over K and L
goes up to the state with n = 1, κ = −1 (corresponding to the cut-off of about 1.1
GeV), encompassing four lowest-lying strange quark states displayed in Table 1.

TABLE 1. Strange quark states which can be excited by the instanton interaction.

n 0 0 0 1
κ -1 -2 1 -1

ωnκ /MeV 514.0 726.7 797.4 1104.9

The expression for the contribution of the two-body interaction L2 is somewhat
more complicated, involving also valence quark wave functions. Luckily, the terms
with σµν cancel out, leaving us with

〈N | : s̄Γs : |N〉L2 =
16

3
π4nρ6FqFs

∑
K,L,±

1

ωK + ωL

×
{∫
d3x s̄K (x)Γs

c
L(x)

∫
d3y s̄cL(y)γ±sK (y)

×
[
2q̄0,−1,12 (y) γ± q0,−1,12 (y) + q̄0,−1,−12 (y) γ± q0,−1,−12 (y)

]
+

∫
d3x s̄cK (x)ΓsL(x)

∫
d3y s̄L(y)γ±scK(y)

×
[
2q̄0,−1,12 (y) γ± q0,−1,12 (y) + q̄0,−1,−12 (y) γ± q0,−1,−12 (y)

]}
.

(29)

Here q0,−1,±12 (y) is the wave function of the ground state of the valence quark in
the bag, which we take to be the same for u and d quarks.

Going now to the three-body interaction L3, expressions become extremely long
and complicated, so we do not write them down here. In any case, as seen below,
it turns out that this contribution is much smaller than the preceding two.

After focusing on the scalar (s̄s) and pseudoscalar (s̄γ5s) strangeness as the
channels preferred by the QCD-vacuum fluctuations [76], we have checked the vector
(s̄γµs) and the axial-vector (s̄γµγ5s) channels, too.

The calculation of the contribution of the two-body, L2, and three-body, L3,
instanton interactions is tedious and in manipulation of all these formulae we have
relied heavily on Mathematica package [77] for symbolic computer calculations.
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To get a rough idea how the calculation in the MIT bag model was performed
and in which way such a model choice influences our results, we briefly sketch the
calculation with the one-body part L1 interaction bellow.

4.1. Scalar and pseudoscalar strangeness

Let us first consider the scalar strange current density s̄s inside the proton.
The expression for the matrix element can be written as

〈N(p′)|s̄s|N(p)〉 = As(q2)ūN(p′)uN(p) , (30)

where q2 = (p− p′)2, and uN ’s are nucleon spinors. As(q2) is the scalar form factor
accounting at q2 = 0 for the scalar strangeness of the proton.

Calculations inside the bag model can be performed by making the substitution
Γ = 1 and inserting the appropriate quark and antiquark wave functions in (28).
By a simple calculation, one can show that the surviving combination is the one
with κ = −1, κ′ = 1 and κ = 1, κ′ = −1. Therefore,

〈N | : s̄s : |N〉L1 = 4π2nρ3Fs
∑

K,L,κ,κ′=−1,1

′ 1

ωK + ωL

×
{∫
d3x s̄K (x)s

c
L(x)

∫
d3y s̄cL(y)sK (y) + (s↔ sc)

}
,

(31)

where
∑′
denotes the incomplete sum where the cases with equal κ quantum num-

bers are omitted, and

〈N | : s̄s : |N〉L1 = 4π2nρ3Fs
1∑
n=0

4

×
[
2N−1(xn,−1)N1(x0,1)

∫
r2drW+(n,−1)W−(0, 1)j0(xn,−1 r

R
)j0(x0,1

r

R
)

+W−(n,−1)W+(0, 1)j1(xn,−1 r
R
)j1(x0,1

r

R
)

]2
.

(32)

The normalizations N±1(xn,±1) and the W±-factors are given in the Appendix.
The above equation represents the contribution to the strange scalar form factor
As(q

2 = 0) coming from the one-body interaction. The remaining contributions
from the L2 and L3 instanton interactions can be calculated similarly and the
results are

〈N | : s̄s : |N〉L1 = 0.035 , (33)

〈N | : s̄s : |N〉L2 = 0.023 , (34)

〈N | : s̄s : |N〉L3 = 2.9 · 10−4 . (35)
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Summing them up gives

As(0)Linst = 0.058. (36)

The evaluation of space-integrals was performed numerically, using the following
values for the parameters: the bag radius R=1/197.3 MeV−1 ≈1 fm, the average
instanton size ρ=1/600 MeV−1, and the instanton density n = 2.66 · 107 MeV4,
which is depleted instanton density in the MIT bag as found in [58]. Moreover,
we take the strange quark mass ms=200 MeV and the valence quark mass mu =
md ≡ mq=8 MeV. The quark condensate that follows from the Gell-Mann–Oakes–
Renner relation for these quark masses and the empirical meson masses is 〈0|q̄q|0〉 ≈
(−200MeV)3.
The pseudoscalar strange form factor Bs is defined as

〈N(p′)|s̄γ5se−iq·x|N(p)〉 = Bs(q2)ūN(p′)γ5uN(p) . (37)

For the pseudoscalar strange current s̄γ5s, (28) gives the vanishing one-body con-
tribution

〈N | : s̄γ5s : |N〉L1 = 0 . (38)

Analogously, we obtain the vanishing result for the other two instanton interactions,
i.e. 〈N | : s̄γ5s : |N〉Linst = 0 . We thus obtain

Bs(0)Linst = 0 , (39)

as the vanishing total instanton contribution to the pseudoscalar form factor.

4.2. Vector and axial-vector strangeness

Recently, there has been a lot of experimental activity [78,79] devoted to the
vector strangeness, described by Dirac (F1) and Pauli (F2) form factors in the
decomposition

〈N |s̄γµs |N〉 = ūN(p′)
[
F s1 (q

2)γµ + F
s
2 (q

2)
iσµνq

ν

2MN

]
uN(p) . (40)

For the comparison with the experimental data, the Sachs form factors, GE
(electric) and GM (magnetic) are widely used:

GE(q
2) = F1(q

2) +
q2

4M2N
F2(q

2) ,

GM (q
2) = F1(q

2) + F2(q
2) ,

(41)

with definitions eG
(0)
E = Q (charge) and (e/2MN )G

(0)
M = µ (magnetic moment). By

taking the non-relativistic nucleon spinor

uN (p, s) =

√
E +MN
2E

(
χs

σ · p
E +mχs

)
(42)
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in the Breit frame, defined by

qµ = (q0, q) = (0, qB) ,

p =
qB
2
, p′ = −qB

2
, (43)

the components of the vector current take the form

〈N(p′, s′)|V s0 |N(p, s)〉 =
m

E
χ†s′χsG

(s)
E (−q2B) ,

〈N(p′, s′)|V s|N(p, s)〉 = 1

2E
χ†s′i(σ × qB)χsG(s)M (−q2B) .

(44)

In order to calculate the contribution from the instanton induced vector strange
current inside the MIT bag, we must identify the form factors in (44) with the
Fourier transformed vector current within the bag

〈N(p′)| :V sµ (q2) : |N(p)〉Linst = 〈N(p′)| :
∫
d3re−iqB ·r s̄(r)γµs(r) : |N(p)〉Linst ,

(45)
in the static limit q → 0. Simple check with V s0 (q2) component of the vector current
gives zero, i.e. G

(s)
E (q

2 = 0)inst = 0 as it should be.

A similar calculation for the space components V s shows a non-trivial cancella-
tion among the contributions of quarks in the loop with different spin orientations,
producing the total result

GsM (0)Linst = 0 . (46)

This implies the vanishing strange magnetic moment

µs = F
s
2 (0) = 0 , (47)

which is compatible with the recent measurements at MIT/Bates [78] and with
even more recent ones at TJNAF (JLab) [79].

The estimation of the axial-vector strangeness can be done along the same
lines. The form-factor decomposition, assuming the G-parity symmetry of strong
interactions, has the form

〈N(p′)|s̄γµγ5s|N(p)〉
= ūN(p

′)
(
γµγ5G

s
1(q
2) +

qµ

2MN
γ5G

s
2(q
2)

)
ūN(p) .

(48)

The instanton contribution to such a matrix element can be calculated as

〈N(p′)| : Asµ : |N(p)〉Linst
= 〈N(p′)| :

∫
d3re−iqB·r s̄(r)γµγ5s(r) : |N(p)〉Linst

(49)

526 FIZIKA B (Zagreb) 8 (1999) 4, 505–534
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and should be compared with the axial form factors defined in the Breit frame as

〈N(p′, s′)|As|N(p, s)〉 = GsA(0)χ†s′σχs . (50)

Again, it turns out that the axial-vector strangeness induced by the instanton
interaction is vanishing,

GsA(0)Linst = 0 . (51)

5. Discussion and conclusions

The original MIT bag model [80–82] represents a suitable starting point in
predicting the low-energy properties of low-mass hadrons. In this model, Rbag
corresponds to the separations Rconfining ∼ 1 fm at which confinement effects are
important, arising at the scale ΛQCD ' 100 to 300 MeV. Short–distance effects are
supposedly taken care of by the perturbative one–gluon excahange.

However, in order to account for the effects at intermediate distances, i.e. at
the momentum scales Q ∼ ΛχSB ' 0.6 GeV, the effective interaction (21)-(24),
induced by the liquid of small instantons (of the average size ρ = 1/3 fm) appears
appropriate. Of course, the effects of the instanton–induced interactions are not
included in Donoghue and Nappi’s [1] simple bag-model relation

〈N |s̄s|N〉 = −〈0|s̄s |0〉V (52)

for the scalar nucleon strangeness, and the relative importance of this naive
strangeness and the instanton effects is precisely what interests us here.

An advantage of the formula (19) is that in principle it treats the scalar, pseu-
doscalar, vector, axial, tensor or pseudotensor nucleon strangeness in a unified
manner; one just has to specify what is Γ. Within a chosen nucleon model, the
evaluation of (19) would proceed in essentially the same way for each Γ, except
for technical details. Nevertheless, these technical details make a huge difference in
practice because, as clarified in the previous section, even if the scalar and pseu-
doscalar cases are tractable, the tensor or pseudotensor cases seem prohibitively
hard to do. However, this is a significant difference only now, at the present ca-
pabilities of symbolic manipulation software, and will diminish with the certain
advancement of this software and computer power in the future.

In the scalar case (Γ = 1), the naive bag-model strangeness (52) is actually
rather large for standard values of parameters. For our values, given at the end of
subsection 4.1, it is

ANbags ≡ −〈0|q̄q|0〉Vbag = 4.36 , (53)

which is much larger than the instanton-induced contribution (36), and dominates
the summed strangeness

As ≡ ANbags +As(0)Linst = 4.42 . (54)

FIZIKA B (Zagreb) 8 (1999) 4, 505–534 527
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Owing to using a somewhat smaller value of the quark condensate, Dono-
ghue and Nappi [1] obtained 3.6 for this naive strangeness, which is still rather
large. ANbags depends very strongly on the model size parameter Rbag since
Vbag = R

3
bag4π/3. For example, A

Nbag
s would decrease by a factor of 2 if Rbag = 0.8

fm, a nucleon size which may be more acceptable, as the standard MIT bag value of
1 fm seems too large (e.g., see Ref. [83]). However, since the model dependence on
the bag radius is similar for other presently interesting matrix elements, the model
dependence largely cancels out when one forms ratios. In particular, the instanton-
induced contribution (36) remains small in comparison with the naive nucleon bag
strangeness,

ANbags

As(0)Linst
∼ 75 , (55)

for reasonable variations of the radius parameter.

Note that using Linst for LI in (19) enables one to see what happens in dif-
ferent models with the intriguing results of Steininger and Weise [45] concerning
the importance of the instanton-induced interaction for the scalar strangeness of
nucleons. Our results in the MIT bag model happen to disagree with their results in
the NJL model enlarged with ’t Hooft’s instanton-induced interaction. Our results
indicate that the instanton-induced interaction contributes just a small fraction to
the – otherwise rather large [1] – scalar strangeness of nucleons modeled as MIT
bags.

Obviously, the contribution due to the difference in the condensate with respect
to the true, non-perturbative QCD vacuum dominates the strangeness in the nu-
cleon bag. Admittedly, the instanton-induced contribution of this size would be
obtained in the calculation of (36) if one would — inside the MIT bag — use the
non-depleted instanton density n = 1.6·109MeV4 . However, we consider this merely
as a consistency check, and not as an alternative description of strangeness in the
MIT bag, because using the instanton density appropriate to the non-perturbative
QCD vacuum containing the large quark condensate, would imply assuming the
nonperturbative QCD vacuum and the quark condensate not only outside, but also
inside the bag. This would indeed enable As(0)Linst to replace ANbags in full, but
would also make the MIT bag description inconsistent [58].

The diluteness of the instanton liquid justifies the one-instanton approximation
( i.e., the first order in the perturbation theory for Linst) indicated in Fig. 4. The
second–order contributions to (19) should be even smaller than the small first–
order results on instanton–induced strangeness we obtained in the MIT bag model.
This removes the motivation for evaluating them, at least in the framework of that
model. Of course, in some other models, and possibly also with some other LI , the
results on the nucleon strangeness it induces can be considerably higher, making
the evaluation of the second–order contributions more interesting. As commented
above, if one would find in different models that the second term in (19) is small in
comparison with the first term in (19), one would corroborate the result of Ref. [45]
that virtual kaon loops contribute little to the scalar strangeness. For the reasons
explained above, this conclusion indeed seems natural in the present approach.
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More generally, our result (19) may well help to clarify the relationship (which,
e.g., Ref. [49] judges as rather unclear) between the kaon loop contribution, and the
φ-meson pole contribution [13], or the vector-meson (φ, ω) dominance contribution
[50]. Namely, we believe that it will be possible (for Γ = γµ) to relate the first term
in (19) to such φ-meson contributions in a way similar to the relationship of the
second term in (19) with the kaon loop contribution. More recent evaluation [84]
based on the up-dated information on the (soft) nucleon-hyperon-K∗ form factors
yields the results reduced by more than an order of magnitude. This brings the
vector strangeness closer to our result (46), which is compatible with the recent
measurements.

The scalar strangeness is special because of non-vanishing scalar qq̄ condensates
of the QCD vacuum, which makes it more natural that it is larger than vector, axial
or other strangeness channels. This is especially clear in our approach applied to the
MIT bag model, where the scalar strangeness comes mostly from the difference of
the scalar qq̄ condensates in the true QCD vacuum and their absence in the pertur-
bative vacuum inside the cavity [1], while only the relatively small remainder comes
from the response of the valence ground state to the strangeness–sensitive probe.
However, such a response is all that exists in the case of the pseudoscalar, vector,
axial, etc., nucleon strangeness, since there are no pseudoscalar, vector, axial, etc.,
QCD-vacuum condensates either inside or outside the cavity. Since such responses
tend to be much smaller than the nonperturbative vacuum contributions, signifi-
cant differences in magnitude between the scalar and other kinds of strangeness are
very natural in our approach. In fact, in the present case of the MIT bag model, we
find the vanishing first–order contribution to the vector strangeness. The vanishing
first–order contributions are found also for the pseudoscalar and axial strangeness
of the nucleon.

This confirms the conjecture of Ref. [76] for the case of the scalar strangeness.
Our results are also consistent with the most recent measurements of the strange

vector form factors at low momentum transfer, Q2 <∼ 1 GeV. The experimental
strange magnetic form factor of the nucleon at Q2 = 0.1 (GeV/c)2, GsM = (0.23±
0.37± 0.15± 0.19)µN , obtained at MIT/Bates [78] is consistent with the absence
of strange quarks, but the error bars are large. However, the results and conclusions
of our approach, that channels other than the scalar one should not be appreciably
affected by strange quarks, seems to get support especially from the most recent and
very precise TJNAF (JLab) measurement [79] yielding the small strange vector form
factors at Q2 = 0.48 (GeV/c)2, GsE +0.39G

s
M = (0.023± 0.034± 0.022± 0.026)µN

This also makes understandable why the results on the “non-scalar” strange
quantities such as the strangeness nucleon magnetic form factor [13,26,48,51–56] or
the strangeness electric mean-square radius [13,26,46,48,50–56] vary so much, even
their sign, from one model to another: the “non-scalar” strange quantities should
all be rather small, and artifacts of various models very easily put in on either side
of the zero.
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Appendix: MIT bag–model wave functions

Quantum fields for quarks of flavour q = u, d or s in the MIT bag model are

q(x) =
∑
K

(
QK qK(r)e−iωKt +Qc†K qcK(r)eiωK t

)
, (A1)

q̄(x) =
∑
K

(
Q†K q̄K(r)eiωK t +QcK q̄cK(r)e−iωK t

)
, (A2)

where Q,Q†,Qc and Qc† are annihilation and creation operators for quarks and
antiquarks, respectively. Quark and antiquark wave functions, specified by the
quantum numbers K = {n, j, j3, l}, are [85]

qnjj3l(r) = Njl(xnjl)

 iW+(njl) jl
(
xnjl

r
R

)
φjj3l(r̂)

(l̄− l)W−(njl) jl̄
(
xnjl

r
R

)
φjj3l̄(r̂)

 , (A3)

qcnjj3l(r) = Njl(xnjl)

 iW−(njl) jl̄
(
xnjl

r
R

)
φjj3l̄(r̂)

(l̄ − l)W+(njl) jl
(
xnjl

r
R

)
φjj3l(r̂)

 . (A4)

Here

l̄ = j ∓ 1
2
when l = j ± 1

2
, (A5)

and

W±(njl) =

√
ωnjl ±mq
ωnjl

. (A6)

The normalization constant is

N−2jl (xnjl) =
R3j2l (xnjl)

ωnjl(ωnjl −mq)
{
2ωnjl

[
ωnjl − (l̄− l)j +

1
2

R

]
+
mq

R

}
, (A7)

and the angular parts of the wave functions are

φjj3l(r̂) =
∑
l3s3

〈jj3|ll3, 1
2
s3〉Y l3l (r̂)χs3 , (A8)

φjj3l̄(r̂) = −σ · r̂φjj3l(r̂) . (A9)
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Here, Y l3l are spherical harmonics, χs3 Pauli spinors, 〈jj3|ll3, 12s3〉 Clebsch-Gordan
coefficients, σ Pauli matrices and jl(ρ) the spherical Bessel functions. R is the bag
radius, and mq the quark mass. The energy eigenvalues

ωnjl =

√
x2njl
R2
+m2q , (A10)

are determined by the roots xnjl of the equation

jl(x) = (l̄− l)
√
ωnjl−mq
ωnjl+mq

jl̄(x) = (l̄− l)
W−
W+
jl̄(x) . (A11)

Instead of {j, l}, we can use the quantum number {κ} such that

j = |κ| − 1
2
, (A12)

and

l = |κ|+ sign(κ) − 1
2

, (A13)

l̄ = |κ| − sign(κ) + 1
2

. (A14)

In this case, the wave functions are specified by the quantum numbers K =
{n, κ, j3} and are of the form

qnκj3(r) = Nκ(xnκ)

 iW+(nκ) jl
(
xnκ

r
R

)
φj3κ (r̂)

−sign(κ)W−(nκ) jl̄
(
xnκ

r
R

)
φj3−κ(r̂)

 , (A15)

qcnκj3(r) = Nκ(xnκ)

 iW−(nκ) jl̄
(
xnκ

r
R

)
φj3−κ(r̂)

−sign(κ)W+(nκ) jl
(
xnκ

r
R

)
φj3κ (r̂)

 , (A16)

where the normalization constant is

N−2κ (xnκ) =
R3j2l (xnκ)

ωnκ(ωnκ −mq)
{
2ωnκ

[
ωnκ +

κ

R

]
+
mq

R

}
, (A17)

the angular parts of the wave functions are

φj3κ (r̂) = −sign(κ)
√
|κ|+ sign(κ)(12 − j3)
2|κ|+ sign(κ) Y

j3− 12
l (r̂)χ

1
2

+

√
|κ|+ sign(κ)(12 + j3)
2|κ|+ sign(κ) Y

j3+
1
2

l (r̂)χ−
1
2 , (A18)

FIZIKA B (Zagreb) 8 (1999) 4, 505–534 531
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and ωnκ’s are given by the equation

jl(x) + sign(κ)
W−
W+
jl̄(x) = 0 . (A19)

Our conventions follow those of [85].
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STRANOST NUKLEONA KAO ODZIV NA STRANO-OSJETLJIVU PROBU U
JEDNOJ KLASI HADRONSKIH MODELA

Pored valentnih kvarkova, cjelovito osnovno stanje nukleona može sadržavati znatnu
primjesu parova ss̄ već pri malim prijenosima impulsa. Ovdje raspravljamo stra-
nost u modelu nukleona sa srednjim poljem i provodimo eksplicitne račune u MIT
modelu vreće uz prisutnost instantona. Računamo doprinos instantona stranosti u
MIT vreći (povrh standardnog doprinosa stranosti u tom modelu). Iako se u biti
primjenjuje račun smetnje, izlažemo podroban izvod izraza za nuklearne matrične
elemente bilinearnih operatora stranih kvarkova, preko modelnog stanja valentnog
nukleona i medudjelovanja koja tvore fluktuacije kvark-antikvark povrh onih od va-
lentnog stanja. To se radi podrobno kako bismo objasnili da konačan izraz, dobiven
u okviru kvarkovskih modela sa srednjim poljem (kada postoji Fockov razvoj i nuk-
leonsko se stanje može složiti od jednokvarkovskih stanja), prelazi okvire računa
smetnje. Primjenjuje se evolucijski operator koji sadrži izvore stranosti i Feynman-
Hellmannov teorem.
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