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For the first time a possibility of chaotic regime for a robotic equation is investi-
gated, using equation for a model of robot with one degree of freedom with vis-
cous and dry friction and hard-spring rigidity. The transient motion was not ex-
cluded in this investigation. A chaotic regime is discovered in a particular scan,
with enhanced rigidity, for the critical length parameter L, which exceeds the
upper limit of L in the standard parameter range by a factor of ~50. In the chaotic
regime a pronounced period three window is found.

1. Introduction

The concept of chaos in physics means that the system obeys deterministic
laws of evolution, but the outcome is highly sensitive to small uncertainties in the
specification of the initial state. In a chaotic system any small open ball of initial
conditions, no matter how small, will in time spread over the phase space. Poin-
care was the first who indicated the possibility of such behaviour in dynamical
systems!’. Smoluchowski expressed the condition for applicability of the proba-
bilistic conception to deterministic dynamical system by the famous phrase: »little
cause — big effects«?). However, only in the recent time the large-scale applica-
tions of computer simulations enabled the progress in this field. The first results
have been chsotic solutions found in computational calculations for some simple
low-dimensional systems: a simplified model of atmospheric convection (L.orenz
model)®, a simplified mode! for the motion of stars in the center of galaxy*’ and
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the model of electric circuit with nonlinear inductance under the impression of
a sinusoidal voltage®.

In the last two decades the topic of chaotic motion has found aboundant
applications in a wide variety of physical phenomena, for example the problems
of turbulence in fluids® , buckling beams’ , nonlinear wave interactions in plasma®’,
chemically reacting systems®’, charge density waves in solids!?, laser modula-
tion!?, magnetodynamic flow!?’, sound emitting*?® etc.

One-dimensional nonlinear systems present an important class of dynamical
systems since there is an abundance of such systems in science and technology.
In spite of much work being done in investigations of these systems it is still far
from complete understanding of their dynamical behaviour. Most of the attention
has been devoted to periodically driven damped nonlinear oscillators, and in par-
ticular to the Duffing oscillator 7-'#~4®_ Duffing system represents dynamics
of various physical systems, as for example a buckled beam7-13-17-24=26) non-
linear electrical circuits®:1#-29:33  charge density waves in solids!?, modulated
laser?7:49 etc. Other one-dimensional systems being investigated comprise a pe-
riodically driven damped pendulum?®® which is isomorphic to a current driven
Josephson junction®!~%8 and to transport in charge-density-wave systems3®,
Toda-oscillator®?:¢®, impact oscillator®?’; van der Pol oscillator®?’ and Morse
and cavitatior bubble models®3-¢#}, The practical importance of forced dynamical
systems shows up in many applications, for example, in the case of periodically
stimulated cardiac cells driven by a sinusoidal current®* and the membranes of
nerve cells driven by a sinusoidal current®®,

In general, varying control parameters of a nonlinear system a wide variety
of periodic, subharmonic, quasiperiodic and chaotic motion can be obtained. It
was found that there are several possible routes to chaos, including Feigenbaum
period doubling®?”’, intermittency®®’, quasiperiodic route®® and crisis’?,

2. Equation of motion for a simple robot with one degree of freedom

An important point in engineering is that if one chooses parameters which
produce chaotic output, then one loses predictability. Therefore it is important
1o search for the range of parameters for which chaos may occur.

In the present paper a possibility of chaotic regime is investigated for a simple
model of a robot with one degree of freedom, described by the equation of mo-
tion71- 74);
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The second and third term on the 1. h. s. of Eq. (1) are dissipative terms, corres-
ponding to viscous and dry friction, respectively. The damping function (2) in
dry friction was introduced here in order to enable numerical integration of Eg.
(1). In the calculation the value % = 10 is used; generally, the value of x should
increase with increasing value of the dry friction parameter j3,. The parameters
d,, and d,; are the coefficients of rigidity and 9,, << 0, 0,5 < 0 correspond to
the rigidity with the effect of a hard spring. The first term on the r. h. s. of Eq. (1)

is the periodic driving force with driving frequency wg, and driving amplitude
2

) . sl
L ;)—° where {. denotes the length. This term corresponds to the control minimi-

zing the Hamiltonian?*’. The last two terms present the initial drive with strengths
given by

§21 = ==+ A
,
bz 5
=Eapp
§22 ¢ 22
a, = (2 — 1) - 2; (3)

The parameters 7,; and Z,, denote the roots of the system in the regime of closed
regulation loop. A more descriptive formulation of the model (1) and investi-
gation of sensitivity of solutions to the perturbation terms will be presented else-
where’®). In the present paper we report preliminary results of the investigations
of possible chaotic solutions associated with the robotic equation (1). It is obvious
that the rigidity terms on the r. h. s. of Eq. (1) can be relevant only in the transient
regime, but not in the stationary one. Thus, there are three nonlinearities giving
rise to the chaotic behaviour: the cubic anharmonicity (the d ,3-term), the viscous
friction (the f,-term) and dry friction (the y,-term). In the present preliminary
investigation we have fixed the strengths of these nonlinearities within the realistic
range, while the investigation of their relative importance will be presented in a
forthcoming publication. A further comment is needed regarding relation of the
model (1) to the Duffing oscillator. The dry-friction term for small values of | x|

resembles the friction in Duffing oscillator, while for the values larger than —
x

it stays constant, which is the basic difference with respect to the behaviour of the
corresponding term in Duffing model. Furthermore, the viscous term in the ro-
botic model (1) has no counterpart in the Duffing model.

3. Calculation of Poincare maps and power spectra for robotic equa-
tion in a scan with enhanced rigidity and variable length

The robotic equation (1) is solved numerically and the solutions are investi-
gated using three descriptors: phase portrait, Poincare map and power spectrum.
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In comparison to the one-dimensional systems investigated previously from the
point of view of chaos, the system (1) is characterized by some completely novel
features: the viscous and dry friction and the initial drive The influence of these
interactions on the chaotic behaviour was not considered so far.

The equation (1) is cast in the form of an autonomous system

:'x:}'

®? 21, daz
+L3:°lcos:,-— Eyew0 T — &, ewo 4
.;" = Mo

with z (0) = 0. This system was integrated using the fourth-order Runge-Kutta
method’ 7,

The shape of potential in Eq. (1) is responsible for globally bounded solutions,
for VV (x) — oo as x — oo. A specific feature of this potential is the existence of a
single well. In this connection one should note that the single-well Duffing system
revealed the existence of chaotic solutions in spite of the absence of homoclinic
orbit for the unperturbed problem.

We have first investigated the robotic equation (1) for parameters within the
standard range’*’, corresponding to a realistic robot model. In accordance with the
expectations, the system governed by Eq. (1) is in the periodic regime: it shows a
limit cycle behaviowr with the period of driving force.

In a search for a possible chaotic regime in the state space of the robotic equa-
tion (1), the following scanning outside the standard parameter range is employed:
The length parameter L is treated as a control parameter. The standard range
is 0 < L << 1. The other model parameters are fixed at the values: w, = 2a,
Aoy = —10.5, /iy = —11.5, 5, =0.01, 2z, =0.01, g, = —5.18 - 10-6, +, =
= —0.00298, 4,; = —0.7611, 6,5 = —0.0127 which will be referred to as para-
metrization (I). It should be noted that in this scan 3, = 2.5 - §, (min), 6,, =
= 100,, (min), 6,3 = 10,3 (min), where the labels min stand for the lower li-
mits of the standard parameter range’*. The values of other parameters in (I)
lie within the standard parameter range. Initial conditions in the calculation are
naturally x, = 0, x5 = 0.

Phase portraits, Poincare maps and power spectra have been calculated in
the scan (I) with the control parameter L varied from L = 0.1 to L = 100. The
characteristic results of calculations are preserted in Figs. 1 and 2 for Poincare
maps and power spectra, respectively. It is evident that the L = 49 and L = 99
cases are chaotic, while the situation for other values of L presented in Figs. 1, 2
corresponds to a quasiperiodic motion. Furthermore, it turns out that in the pro-
posed scan the system is characterized by transients of long duration which in-
creases with increasing L. Thus, it should be noted that the most of the points
in some figures belong to the transient regime, so that the attractors are not clearly
extracted from their basins. Consequently, the accompanying power spectra exhi-
bit a superposed transient nd stationary pattern. For example, in Figs. l.a—d all
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Fig. 1. Poincare maps for robotic equation (1) with parametrization (I) and the characteristic
values of the control parameter L: (a) L = 0.1, (b) L = 1, (c) L = 37, (d) L = 47, (e) L = 48,

() L =149,(g) L =174, (h) L = 99.

In the upper left corner ¢, and z, denote the initial and final time of the evolution of orbit
presented in figure and dr denotes the time interval employed in numerical integration. Each
Poincare map is obtained by considering the surface of sections in the phase plane (x, X) at times

when wqt = 2an, where n =0,1, 2,3,

49
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points belong to the transient regime which is of a very long duration. Thus, the
parallel is drawn between the transient regime of the robotic model (1) and the
periodic attractor of the Curry-Yorke mapping. In this way, this comparison re-
lates different physical regimes, and strictly speaking it is not necessary to intro-
duce the complete definition of the model (5). Thus, in the comparison considered,
here, the formula of Curry-Yorke model should be considered only as a convenient
parametrization for the present results of the transient regime.

4. Quasiperiodic and chaotic regime for L-scan with increased rigidity

Poincare maps in Figs. 1 (a)—(d) are characterized by one attracting point
for the transient pattern. Fig. | (a) (L = 0.1) exhibits pseudosymmetry of order
seven. Namely, starting from the initial peint (0, 0) in the clockwise direction,
the following seven points (labelled (1—7)) lie approximately on a circle. The
tollowing point (8) is placed near the point of departure in the first sequence (1),
but is slightly shifted in the clockwise direction and closer to the attracting point.
The points 8—14 of the second sequence lie approximately on a circle centered
at the attracting point, of slightly smaller radius than for the circle of the first
sequence and each point is slightly shifted in the clockwise direction. An analogous
structure appears for the third sequence of points (15—21) with still smaller ra-
dius etc. As a result the points appear to lie on seven curved lines spiralling
rowards the attracting point (I'ig. 1 (a)). Such a pattern resembles (in a sense dis-
cussed in the previous section) the result of the mapping given by the composi-
tion of two homomorphisms of the type introduced in the Curry-Yorke model®?’:

=Y, oY

fOx+1 =eln(l — o)
P = L — 0 (5)
{Os) = O, - @,

. Xiv1 = Xi
Ve Yien = ¥ o+ Xi»-

Here, o denotes the composition of mappings: %, defines, in polar coordinates
(0, @), the (b — 1)-st iterate as a function of the k-th, ¢ > 0, ®, > 0 are the con-
trol parameters and initial values are o < | and @,; Y, relates the Cartesian

. : . . 2% .
coordinates (X, Y) of two consecutive iterates. For @, ~ —- the mapping (5)

gives the pattern which is similar to the Poincare map 1 (a). Furthermore, the pse-
udosymmetry of order seven is consistent with the power spectrum which exhi-
bits two fundamental frequencies, the driving frequency w, and the frequency
of the system, labelled w,. IFor L = 0.1 the calculation of Fourier spectrum gives
wojw, ~ 7.39.

It should be noted that w, (L = 0.1) is close to the frequency of undriven
system @, (L = 0) &~ 7.46 w,. In the range of control parameter L between L =
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= 0.1 and L = 48 the qausiperiodic regime with two pronounced freqeuncies
persists and the frequency of the system, o, is slowly increasing with L: the ratio
wof/w gradually decreases from wyfem, ~ 7.39 to ws/m, ~ 3.5. As a guideline,
for L < 48 one can use an estimate

28 —0.7 L + 1.5, (6)

),

The Poincare map tor L = 1 (Fig. 1 (b)) has a more complex structure than
for the L = 0.1 case: Along the outer circle there are five intertwinned sequences,
seven points each. Moving in the clockwise direction, the seven points of the first
sequence (labelled 1—7) are regularly placed on the circle, in a similar way as in
the previous case. The next sequence of seven points, however, lies on the same
circle, each point being shitted in the counter-clockwise direction, by a polar angle

. 2x .. . .
of ~ 3¢ from the position of the corresponding point of the first sequence. In

analogy, the points of the next three sequences move approximately along the same
circle. Thus, one obtains a pattern consisting of 36 points, almost uniformly distri

buted on the circle in the order of appearance 1, 30, 23, 16, 9, 2, 31, 24, 17, 10, 7,
36, 29, 22, 15, 8. The spacing between each pair of neighbouring points is approxi-
mately equal along the outer circle. The following six sequences of points, 37, 66,
59, 52, 45, 38,... appear near the points 1, 30, 23, 16, 9, 2,..., respectively, but
closer to the attracting point; they lie on the first inner circle.

Density of points in the spiralling inward structure rapidly increases with
the control parameter L, and tends to uniformly fill up a section of the phase plane.
Hence, a ditference between chaotic and quasiperiodic motion may not be evident
from the Poincare map alone. In the present guasiperiodic case the motion of
point is not random, although they fill a section of the phase plane; the points
progress along dense spirals. This transient motion is of long duration so that
even after rather long time there 1emains an empty central circular region around
the attracting point, as seen in Figs. 1 (c)—(e).

Power spectra in the control parameter range up to L == 48 show a quasi-
periodic behaviour with two fundamental frequency, as already noted. For L=37
and L = 47 in the power spectrum (Figs. 2 (¢) and (d), respectively) the ratio of
two fundamental frequencies is wy/w, &~ 4.7 and wo/w, ~ 3.6, respectively. In
addition, in both cases one observes a weak peak (~10~* of the strength of two
tfundamental frequencies) at the combination frequency ~m, — 2w,. For L = 47
one observes three even weaker peaks which are close to the combination frequen-
cies 4w, — wy, 2wy — 5w, and 3w, respectively.

Another feature of Poincare maps in the quasiperiodic regime is the appea-
rance of islands. For L = 37 there appears one chain of five islands, in accordance
with wofw, ~ 5. For L = 47 we find two chains of islands, the outer chain com-
posed of 11 islands and the inner of 8 islands. For L. = 48 we observe three chains
of islands. In the last case however, a signature of a close-lying chaotic motion
{at L = 49) can be detected: around the three corners of the map pattern there
appear some random points, in particular during the initial transient motion, whilc
the chains of islands become morc compressed and with less regular boundaries.
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Tor L -= 49 we find the first appearance of chaos when the control parameter
L increases along the parameter scan used in this paper. This chaotic Poincare
map (Fig. I (f)) exhibits a finer structure: it consists of a chaotic transient charac-
terized by a random distribution of points on the accessible surface, similar to a
cloud of unorganized points obtained in the case of Hamiltonian or low-dissipa-
tion systems®!’, On the other hand the chaotic asymptote for L = 49 resembles
the shape of a strange attractor characteristic for dissipative systems in the chaotic
regime. The power spectrum in Fig. 2 (d) shows a broad-band structure typical
of chaotic motion.

On the basis of these calculations, it scems that the possible scenario for the
route to chaos could be: fixed point — limit cycle — quasi-periodic two-dimensional
thorus - strange attractors, with periodic windows after., In the present conside-
ration we include the transient regime and therefore the precise value of the critical
parameter L is influenced by the transient behaviour. In the forthcoming investi-
gation we will investigate in more details the neighborhoods of critical points in
the stationary regime,

Further increasing the control parameter L, the system (1) stays in the chaotic
regime until the appearance of a pronounced periodic window at L = 74. (However,
possible existence of some narrow periodic windows which do not show up in the
present scan, with /[L =1, cannot be excluded.) The corresponding Poincare
map (Fig. 1 (g)) and power spectrum (Fig. 2 (e)) show a pronounced period three
tfrequency locking: Poincare map is close to a threc-point system and the ratio of
fundamental frequencies in the power spectrum is wy/m; & 3. In this connection
it should be pointed out that in the mathematical literature much attention has
been attached to the period three modes generated beyond the chaotic region®?.

For the values of centrol parameter L above this periodic window the chaotic
motion appears again. As an example, in Figs. 1 (k) and 2 (f) the Poincare map
and power spectrum for L = 99 are presented.
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Fig. 2. Power spectra for solutions of robotic equation (1) with parametrization (I) and the cha-

racteristic values of the control parameter L: (a) L =1, (b) L = 37, (¢) L =47, (d) L = 49,

(e) L =174, () L = 99. In cach case, the Fourier analvsis encompasses a time series consisting
of N = 2084 elements, starting from z; = 0.

Fast Fourier transform (FFT) calculation was performed using N consecutive sampled
values x(te); txy =k -4, k=0,1,2, ., N—1 where N = 2", n = integer. The sampling
time interval was -3 = 7,/30 = 273/(30w,). The periodogram estimate of the power spectrum

T

. . . N . .
for discrete Fourier transform C, is defined at 57 4- 1 frequencies as” 7

P(0) = |Co[?IN*?
: e N
Pw) ={Cd® + {CaoslNY, k=12, — 1
P{wy,) = {Cnial}IN?
where @, = -k—
: =
It should be noted that the power spectra of chaotic motion for L = 49 and
L = 99 do not show peaks of fundamental frequencies superimposed on the broad
band. Furthermore, these power spectra do not obey the 1/w law for low frequency;
the calculated distributions are closer to the white noise asymptote.

5. Conclusions

In the present paper we have investigated the one-dimensional rototic model
(1), including the transient regime. Thus, the calculated Poincare sections and
power spectra refiect the transients and the onset of the stationary regime. (In some
cases of the fixed-point type, with very long transients, the moderate-size compu-
tation does not even reach the stationary regime.)
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For the parameter scan used in this paper we have found a quasiperiodic
route to chaos. A broad range of quasiperiodic motion is characterized by two
incommensurate fundamental frequencies, w, and w,, and below the critical value
of control parameter L we observe in the power spectrum a weak peak of the third
frequency at &~ w, — 2w,. It remains to be seen whether this frequency is exactly
the combination frequency built from the two fundamental frequencies or whether
it is the third independent frequency giving rise to instability of the corresponding
thorus and its replacement by a strange attractor due to Newhouse-Ruelle-Takens
scenario®?. As is well known, the third frequency may or may not be detectable
in the spectrum before chaos is identified®3’.

Another interesting question which requires further investigation is related
to the asymptotic symmetry associated with invariance under transtormation

X —x, k> — & Iol4 (7)

where T denotes the period of the driving force. The system (1) is invariant under
the transtormation (7) in the limit ¢z -> oo, §, — 0. It should be noted that the
Duffing and pendulum systems are exactly invariant under transformation (7)*%:2%
58:34)  Ag a consequence of symmetry (7), even multiples of tundamental frequency
should be absent in the power spectrum. Indeed, in the calculated power spectra
no peak is observed at the frequency 2w,. Closer information on the effects of
symmetry spectra in I'ig. 2 is masked due to noise caused by truncation of the time
series used in the present calculation of Fourier transforms.

We have found an illustration tor symmetry (7) (L = 99 with all parameters
taken as in the parametrization (I) except for driving frequency w, = 3.283)
with a frequency locking of period five, showing peaks in the power spectrum at
wo!5, 3wo[5, ®, Two[5, Ymo/5 and 11we/5. (The two highest peaks, corresponding
to the fundamental frequencies are w,/5 and wg). All even multiples of w,/5, on
the other hand, are missing in the power spectrum.

In the present paper the onset of chaos was investigated for a particular scan
and the corresponding critical value of the control parameter L. = 49 was found.
It remains to be investigated what is a functional dependence of the critical value
of control parameter on other quantities in the robotic equation, primarily on the
frequency w, and dissipation parameters p, and ;,. One should search tor a pos-
sible analogy with the Holmes criterion for Duffing system?”, which was based
on the existence of homoclinic orbit in the unperturbed system. (As already noted,
a straightforward generalization of this criterion is not possible, because of the
absence of homoclinic orbit in the present case.)

A more complete investigation of the state diagram in the parameter space
driving parameters (L, w,), with exclusion of transient motion, is in progress’®.
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KAOTICKA I KVAZIPERIODICNA RJESENJA ROBOTICKE JEDNADZBE
S JEDNIM STUPNJEM SLOBODE

VLADIMIR PAAR
Fizi¢ki odjel, Prirodoslovno-matematiéki fakultet, SveusiliSte u Zagrebu, 41000 Zagreb, Hrvatska
UDK 621.3.018

Originalni znanstveni rad

Po prvi put istrazivana je moguénost kaotickog rezima za roboticku jednadzbu,
koristeéi jednadzbu za model robota s jednim stupnjem slobode uz viskozno i suho
trenje i krutosti tvrde opruge. U istraZivanju nije iskljuCeno tranzijentno gibanje.
Kaotic¢ki rezim je otkriven u specijalnom podrudju parametara, s poveéanom kru-
tos¢u, za kriticku vrijednost parametra duljine L. koji za 50°, premasuje gornju
granicu u standardnom rasponu parametara. U kaoti¢kom reZimu otkriven je na-
glaseni prozor regularnosti s periodom tri.
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