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For the first time a possibility of chaotic regime for a robotic equation is investi
gated, using equation for a model of robot with one degree of freedom with vis
cous and dry friction and hard-spring rigidity. The transient motion was not ex
cluded in this investigation. A chaotic regime is discovered in a particular scan, 
with enhanced rigidity, for the critical length parameter Le which exceeds the 
upper limit of Lin the standard parameter range by a factor of �so. In the chaotic 
regime a pronounced period three window is found. 

1. Introduction 

The concept of chaos in physics means that the system obeys deterministic 
laws of evolution, but the outcome is highly sensitive to small uncertainties in the 
specification of the initial state. In a chaotic system any small open ball of initial 
conditions, no matter how small, will in time spread over the phase space. Poin
care was the first who indicated the possibility of such behaviour in dynamical 
systems 1 > . Smoluchowski expressed the condition for applicability of the proba
bilistic conception to deterministic dynamical system by the famous phrase: >>little 
cause - big effects<<2 > . However, only in the recent time the large-scale applica
tions of computer simulations enabled the progress in this field. The first results 
have been chBotic solutions found in computational calculations for some simple 
low-dimensional systems: a simplified model of atmospheric convection (Lorenz 
model) 3 >, a simplified model for the motion of stars in the center of galaxy4 > and 
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the model of electric circuit with nonlinear inductance under the impression of 
a sinusoidal voltage5 >. 

In the last two decades the topic of chaotic mo�ion has foWld aboundant 
applications in a wide variety of physical phenomena, for example the problems 
of turbulence in fluids6 , buckling beams 7 , nonlinear wave interactions in plasma 5 >, 
chemically reacting systems 9>, charge density waves in solids 1 0>, laser modula
tion 1 1 >, magnetodynamic flow 12 >, sound emitting 1 3) etc. 

One-dimensional nonlinear systems present an important class of dynamical 
systems since there is an abundance of such systems in  science and technology. 
In spite of much work being done in investigations of these systems it is still far 
from complete understanding of their dynamical behaviour. Most of the attention 
has been devoted to periodically driven damped nonlinear oscillators, and in par
ticular to the Duffing oscillator 5 •7• 14 - 4 8). Duffing system represents dynan1ics 
of various physical systems, as for example a buckled bearn i , is - 17, 24 -26>, non
linear electrical circuits 5 • 1 4• 2 0• 3 3), charge density waves in solids 1 0>, modulated 
Jaser2 7

•
4 9> etc. Other one-dimensional systems being investigated comprise a pe

riodically driven damped pendulum 5 0> which is isomorphic to a current driven 
Josephson jW1ction s i - 5 B) and to transport in charge-density-wave systems5 8>, 
Toda-oscillator 59 • 60>, impact oscillator61 >, van der Pol oscillator62 > and Morse 
and cavitatior bubble models63 • 64>. The practical importance of forced dynamical 
systems shows up in many applications, for example, in the case of periodically 
stimulated cardiac cells driven by a sinusoidal current65> and the membranes of 
nerve cells driven by a sinusoidal current66>. 

In general, varying control parameters of a nonlinear system a wide variety 
of periodic, subharmonic, quasiperiodic and chaotic motion can be obtained. It 
was found that there are several possible routes to chaos, including Feigenbaum 
period doubling 6 n, intermittency68l, quasiperiodic route69) and crisis 70> . 

2. Equation of motion for a simple robot with one degree of freedom 

An important point in engineering is that if one chooses parameters which 
produce chaotic output, then one loses predictability. Therefore it is important 
to search for the range of parameters for which chaos may occur. 

In the present paper a possibility of chaotic regime is investigated for a sin1ple 
model of a robot with one degree of freedom, described by the equation of mo
tion 11 - 14>; 

with 

34 

. { 
l , if xxJ > 1 

@"(Jxl)
= 

1-·1 ·f1-1 1 XX , 1 !XX < , 

(I) 

(2) 
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The second and third term on the 1. h. s. of Eq. (1) are dissipative terms, corres
ponding to viscous and dry friction, respectively. The damping function (2) in 
dry friction was introduced here in order to enable numerical integration of Eq. 
(1). In the calculation the value x = 10 is used; generally, the value of x should 
increase with increasing value of the dry friction parameter y 2• The parameters 
a 2 1 and a 2 3 are the coefficients of rigidity and a 2 l < 0, a 2 3 < 0 correspond to 
the rigidity with the effect of a hard spring. The first term on the r. h. s. of Eq. (l) 
is the periodic driving force with driving frequency w 0 and driving amplitude 

2 

L ?.Y2_c>_ where L denotes the length. This term corresponds to the control minimi
,r; 

zing the Hamiltonian 7 5 >_ The last two terms present the initial drive with strengths 
given by 

1: 
a2 • 2 

'> 21 = -- . /., 
C 

., 
., 

(3) 

The parameters i. 21 and J. 22 denote the roots of the system in the regime of closed 
regulation loop. A more descriptive formulation of the model (1) and investi
gation of sensitivity of solutions to the perturbation terms will be presented else
where 74l. In the present paper we report preliminary results of the investigations 
of possible chaotic solutions associated with the robotic equation (1). It is obvious 
that the rigidity terms on the r. h. s. of Eq. (1) can be relevant only in the transient 
regime, but not in the stationary one. Thus, there are three nonlinearities giving 
rise to the chaotic behaviour: the cubic anharmonicity (the a 23-term), the viscous 
friction (the /J 2-term) and dry friction (the y2-term). In the present preliminary 
investigation we have fixed the strengths of these nonlinearities within the realistic 
range, while the investigation of their relative importance will be presented in a 
forthcoming publication. A further comment is needed regarding relation of the 
model (1) to the Duffing oscillator. The dry-friction term for small values of\ xi 

resembles the friction in Duffing oscillator, while for the values larger than_!_ 
:II: 

it stays constant, which is the basic difference with respect to the behaviour of the 
corresponding term in Duffing model. Furthermore, the viscous term in the ro
botic model (1) has no counterpart in the Duffing model. 

3. Calculation of Poincare maps and power spectra for robotic equa
tion in a scan with enhanced rigidity and variable length 

The robotic equation (1) is solved numerically and the solutions are investi
gated using three descriptors: phase portrait, Poincare map and power spectrum. 
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In comparison to the one-dimensional systems investigated previously from the 
point of view of chaos, the system ( 1 )  is characterized by some completely novel 
features : the viscous and dry friction and the initial drive The influence of these 
inte ractions on the chaotic behaviour was not considered so far. 

The equation ( 1 )  is cast in the form of an autonomous system 

X = y 

y = ,82 y2 
+ y2 0,. ( ly J ) sign (y) + 0 2 1  x + 0 2 3  x 3 + 

(4) 

Z = W o  

with z (0) = 0. This system was integrated using the fourth-order Runge-Kutta 
method 7 7l.  

The shape of potential in Eq. ( 1) is responsible for globally bounded solutions, 
for V (x) � oo as x � oo. A specific feature of this potential is the existence of a 
single well .  In this connection one should note that the single-well Duffing system 
revealed the existence of chaotic rnlutions in spite of the absence of homoclinic 
orbit for the unperturbed problem. 

We have first investigated the robotic equation ( 1 )  for parameters within the 
standard range 7 4l, corresponding to a realistic robot model. In accordance with the 
expectations, the system governed by Eq. ( I )  is in the periodic regime : it shows a 
limit cycle behaviour with the period of driving force. 

In a s earch for a possible chaotic regime in the state space of the robotic equa
tion ( 1 ), the following scanning outside the standard parameter range is employed : 
The length parameter L is treated as a control parameter. The standard range 
is O ::;; L ::;; I .  The other model parameters are fixed at the values : w 0 = 2:rr, 
.A. 2 1 = - 10 .5, /. 2 2  = - 1 1 . 5, Z2 = 0.0 1 ,  Z4 = 0.0 1 ,  /32 = - 5 . 1 8  · 1 0 - 6, )' 2 = 
= -0.00298, 0 2 1 = -0.76 1 1 ,  0 2 3  = -0.0 127 which will be referred to as para
metrization (I) . It should be noted that in this sc:m y2 = 2.5  · 0 2 (min), 0 21 = 
= 1 00 2 1  (min), 0 2 3  = 1 00 2 3  (min), where the labels min stand for the lower l i
mits of the standard parameter range 74l, The values of other parameters in (I) 
iie within the standard parameter range. Initial conditions in the calculation are 
naturally x0 = 0, x 0 = 0. 

Phase portraits, Poincare maps and power spectra have been calculated in 
the scan (I) with the control parameter L varied from L = 0. 1 to L = 100. The 
characteristic results of calculations are preserted in Figs. 1 and 2 for Poincare 
maps and power spectra, respectively. It is evident that the L = 49 and L = 99 
cases are chaotic, while the situation for other values of L presented in Figs. 1, 2 
corresponds to a quasiperiodic motion. Furthermore, it turns out that in the pro
posed scan the system is characterized by transients of long duration which in
creases with increasing L. Thus, it should be noted that the most of the points 
in some figures belong to the transient regime, so that the attractors art not clearly 
extracted from their basins. Consequently, the accompanying power spectra exhi
bit a superposed transient nd stationary pattern. For example, in Figs . 1 .a-d all 
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Fig. 1 (a) 

Fig. 1 (b) 
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Fig. 1 (c) 

Fig. 1 (d} 
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Fig. 1 (g) 

Fig. 1 (h) 
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Fig. 1 .  Poincare maps for robotic equation ( !) with parametrization (I) and the characteristic 
values of the control parameter L :  (a) L = 0. 1 ,  (b) L = I, (c) L = 37, (d) L = 47, (e) L = 48, 

(f) L = 49, (g) L = 74, (h) L = 99. 
In the upper left corner t I and t 2 denote the initial and final time of the evolution of orbit 

presented in figure and dt denotes the time interval employed in numerical integration. Each 
Poincare map is obtained by considering the surface of sections in the phase plane (x, .x) at times 
when w 0 t = 2:rrn, where ,z = 0, I ,  2, 3, . . . .  
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points belong to the transient regime which i s  o f  a very long duration. Thus, the 
parallel is drawn between the transient regime of the robotic model ( I) and the 
periodic attractor of the Curry-Yorke mapping. In this way, this comparison re
lates different physical regimes, and strictly speaking it is not necessary to intro
duce the complete definition of the model (5) .  Thus, in the comparison considered, 
here, the formula of Curry-Yorke model should be considered only as a convenient 
parametrization for the present results of the transient regime. 

4. Ouasiperiodic and chaotic regime for L-scan with increased rigidity 

Poincare maps in Figs . I (a)-(d) are characterized by one attracting point 
for the transient pattern. Fig. I (a) (L = 0. 1 )  exhibits pseudosymmetry of order 
seven. Namely, starting from the initial pcint (0, 0) in the clockwise d irection, 
the following seven points (labelled ( 1-7)) l ie approximately on a circle. The 
following point (8) is placed near the point of departure in the first sequence ( I ), 
but is slightly shifted in the clockwise direction and closer to the .attracting point. 
The points 8-14 of the second sequence l ie approximately on a circle centered 
at the attracting point, of slightly smaller radius than for the circle of the first 
sequence and each point is slightly shifted in the clockwise direction. An analogous 
structure appears for the third sequence of points ( 1 5-21 )  with still smaller ra
rlius etc. As a result the points '.appear to l ie on seven curved l ines spiralling 
towards the attracting point (Fig. 1 (a)). Such a pattern resembles (in a sense dis
cussed in the previous section) the result of the mapping given by the composi
tion of two homomorphisms .of the type introduced in the Curry-Yorke model 8 0 > :  

1JJ = 1JJ 1 ° 1P2  

_ f e. + 1 = s in ( 1 � rch) 
1P t 

l ek + 1 = ek � eo 
(5) 

Here, o denotes the composition of mappings : 1P 1 defines, in polar coordinates 
(e, fJ), the (k + 1 )-st iterate as a function of the k-th, s ?- 0, 8 0 > 0 are the con
trol parameters and initial values are g «: I and fJ 1 ; 1/f 2 relates the Cartesian 
coordinates (X, Y) of two consecutive iterates. For fJ0 R:; 

2; the mapping (5) 
gives the pattern which is similar to the Poincare map 1 (a) . Furthermore, the pse
udosymmetry of order seven is consistent with the power spectrum which exhi
bits two fundamental frequencies, the driving frequency w 0 and the frequency 
of the system, labelled w 1 •  For L = O. I the calculation of Fourier spectrum gives 
W o/W 1 R:; 7.39. 

It should be noted that (1) 1 (L = 0 . 1 )  is close to the frequency of undriven 
system (I) 1 (L = 0) R:; 7.46 (1) 0 •  In the range of control parameter L between L = 
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= 0.1 and L = 48 the qausiperiodic regime with two pronounced freqeuncies 
persists and the frequency of the system, w 1 , is slowly increasing with L :  the ratio 
w 0/w 1 gradually decreases from w 0(oJ 1 R::; 7.39 to w0/oJ 1 R::! 3 . 5. As a guideline, 
for L ;.S 48 one can use an estimate 

(J) 0 

(•) l 

-0.7 L + 7. 3 .  (6) 

The Poincare map for L = l (Fig. 1 (b)) has a more complex structure than 
for the L = 0.1 case : Along the outer circle there are five intertwinned sequences, 
seven points each. Moving in the clockwise direction, the seven points of the first 
sequence (labelled 1-7) are regularly placed on the circle, in a similar ,vay as in 
the previous case. The next sequence of seven points, however, l ies on the same 
circle, each point being shifted in the counter-clockwise direction, by a polar angle 

of R=< }�, from the position of the corresponding point of the first sequence.  In 

analogy, the points of the next three sequences move approxirhately along the same 
circle. Thus, one obtains a pattern consisting of 36 points, almost uniformly distri 
buted on the circle in the order of appearance I ,  30, 23, 1 6, 9, 2, 31, 24, 1 7, 10, 7, 
36, 29, 22, 1 5, 8. The spacing between each pair of neighbouring points is approxi
mately equal along the outer circle. The following six sequences of points, 37, 66, 
59, 52, 45, 38, . . . appear near the points I ,  30, 23, 16, 9, 2, . . .  , respectively, but 
closer to the attracting point ; they lie on the first inner circle. 

Density of points in the spiralling inward structure rapidly increases with 
the control parameter L, and tends to uniformly fill up a section of the phase plane. 
Hence, a difference between chaotic and quasiperiodic motion may not be evident 
from the Poincare map alone. In the present quasiperiodic case the motion of 
point is not random, although they fill a section of the phase plane;  the points 
progress along dense spirals. This transient motion is of long duration so that 
even after rather long time there 1emains an empty central circular region around 
the attracting point, as seen in Figs. I (c)-(e). 

Power spectra in the control parameter range up to L = 48 show a quasi
periodic behaviour with two fundamental frequency, as already noted. For L=37  
and L = 47  in  the power spectrum (Figs. 2 (c) and (d), respectively) the ratio of 
two fundamental frequencies is w0fw 1 R::! 4. 7 and w0f w 1 R::! 3.6, respectively. In 
addition, in both cases one observes a weak peak ( R::! 10- 4 of the strength of two 
fundamental frequencies) at the combination frequency R=iw0 - 2w 1 • For L = 47 
one observes three even weaker peaks which are close to the combination frequen
cies 4w 1 - w0 , 2w0 - 5w 1 and 3w i, respectively. 

Another feature of Poincare maps in the quasiperiodic regime is the appea
rance of islands. For L = 37 there appears one chain of five islands, in accordance 
·with w0(w 1 R::! 5. For L = 47 we find two chains of islands, the outer chain com
posed of 1 1  islands and the inner of 8 islands. For L = 48 we observe three chains 
of islands. In the l ast case however, a signature of a close-lying chaotic motion 
(at L = 49) can be detected : around the three corners of the map pattern there 
appear some random points, in particular during the initial transient motion, while 
the chains of islands become more compressed and with less regular boundaries. 
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For L == 49 we find the first appearance of chaos when the control parameter 
L increases along the parameter scan used in this paper. This chaotic Poincare 
map (Fig. 1 (f)) exhibits a finer structure : it consists of a chaotic transient charac
terized by a random distribution of points on the accessible surface, similar to a 
cloud of unorganized points obtained in the case of Hamiltonian or low-dissipa
tion systems 8 1 1 • On the other hand the chaotic asymptote for L = 49 resembles 
the shape of a strange attractor characteristic for dissipative systems in the chaotic 
regime. The power spectrum in Fig. 2 (d) shows a broad-band structure typical 
of chaotic motion. 

On the basis of these calculations, it seems that the possible scenario for the 
route to chaos could be : fixed point - >- limit cycle � quasi-periodic two-dimensional 
thorus -> strange attractors, with periodic windows after. In the present conside
ration we include the transient regime and therefore the precise value of the critical 
parameter L is influenced by the transient behaviour. In the forthcoming investi
gation we will investigate in more details the neighborhoods of critical points in 
the stationary regime. 

Further increasing the control parameter L, the system (1) stays in the chaotic 
regime until the appearance of a pronounced periodic window at L = 74. (However, 
possible existence of some narrow periodic windows which do not show up in the 
present scan, with iJL = l ,  cannot be excluded.) The corresponding Poincare 
map (Fig. 1 (g)) and power spectrum (Fig. 2 (e)) show a pronounced period three 
frequency locking :  Poincare map is close to a three-point system and the ratio of 
fundamental frequencies in the power spectrum is w 0/w 1 "" 3. In this connection 
it should be pointed out that in the mathematical literature much attention has 
been attached to the period three modes generated beyond the chaotic region 8 2 >. 

For the values of control parameter L above this periodic window the chaotic 
motion appears again. As an example, in Figs. I (h) and 2 (f) the Poincare map 
and power spectrum for L = 99 are presented. 
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Fig. 2 (f) 
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Fig. 2. Power spectra for solutions of robotic equation (1) with parametrization (I) and the characteristic values of the control parameter L :  (a) L = 1 ,  (b) L = 37, (c") L = 47, (d) L = 49, 
(e) L = 74, (f) L = 99. In each case, the Fourier analysis encompasses a time series consisting of N = 2084 elements, starting from t 1 = 0. 

Fast Fourier transform (FFT) calculation was performed using N consecutive sampled 
values x (t.) ; tk = k · LI, k = O, I, 2, . . .  , N - 1  where N = 2", n = integer. The sampling 
time interval was L'.l = T0/30 = 2n/(30w0). The periodogram estimate of the power spectrum 
for discrete Fourier transform Ct is defined at 1; + I frequencies as 7 7l :  

P (O) = ! Co l 2/N2 

N P (wk) = c 1c. 1 2 
+ /CN - k l 2)/N2, k = I, 2, . . .  , 2  - 1 
P (w,v1 2) = ICN12 l 2JN2 

k where w, = NLJ' 

It should be noted that the power spectra of chaotic motion for L = 49 and 
L = 99 do not show peaks of fundamental frequencies superimposed on the broad 
band. Furthermore, these power spectra do not obey the 1/w law for low frequency ; 
the calculated distributions are closer to the white noise asymptote. 

5. Conclusions 

In the present paper we have investigated the one-dimensional robotic model 
(1), including the transient regime. Thus, the calculated Poincare sections and 
power spectra reflect the transients and the onset of the stationary regime. (In some 
cases of the fixed-point type, with very long transients, the moderate-size compu
tation does not even reach the stationary regime.) 
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For the parameter scan used i n  this paper we have found a quasiperiodic 
route to chaos. A broad range of quasiperiodic motion is characterized by two 
incommensurate fundamental frequencies, w 1 and w0 , and below the critical value 
of control parameter L we observe in the power spectrum a weak peak of the third 
frequency at R::i w0 - 2w 1 • It remains to be seen whether this frequency is exactly 
the combination frequency built from the two fundamental frequencies or whether 
it is the third independent frequency giving rise to instabi lity of the corresponding 
thorns and its replacement by a strange attractor due to Newhouse-Ruelle-Takens 
scenario 6 9 > . As is well known, the third frequency may or may not be detectable 
m the spectrum before chaos i s  identified8 3 > . 

Another interesting question which requires further investigation is related 
to the asymptotic symmetry associated with invariance under transformation 

X --+ -x, X -+ - X, , T t -+ t , -
2 (7) 

where T denotes the period of the driving force. The system ( I )  is invariant under 
the transformation (7) in the limit t -+ w, fJ 2 --+ 0. It should be noted that the 
Duffing and pendulum systems are exactly invariant under transformation (7) 1 9 • 2 8 • 

5 8 •  8 4 > . As a consequence of symmetry (7), even multiples of fundamental frequency 
should be absent in the power spectrum. Indeed, in the calculated power spectra 
no peak is observed at the frequency 2w0 • Closer information on the effects of 
symmetry spectra in Fig. 2 is masked due to noise caused by truncation of the time 
series used in the present calculation of Fourier transforms. 

We have found an illustration for symmetry (7) (L = 99 with all parameters 
taken as in the parametrization (I) except for driving frequency w0 = 3.283) 
with a frequency locking of period five, showing peaks in the power spectrum at 
w0/5, 3w0/5, w, 7w 0/5, 9w 0/5 and l l w0/5. (The two highest peaks, corresponding 
to the fundamental frequencies are w0/5 and w0

). All even multiples of w0/5, on 
the other hand, are missing in the power spectrum. 

In the present paper the onset of chaos was investigated for a particular scan 
and the corresponding critical value of the control parameter Le = 49 was found. 
It remains to be investigated what is a functional dependence of the critical value 
of control parameter on other quantities in the robotic equation, primauily on the 
frequency w0 and dissipation parameters /Jo and y0 • One should search for a pos
sible analogy with the Holmes criterion for Duffing system 7l, which was based 
on the existence of homoclinic orbit in the unperturbed system. (As already noted, 
a straightforward generalization of this criterion is not possible, because of the 
absence of homoclinic orbit in the present case.) 

A more complete investigation of the state diagram in the parameter space 
driving parameters (L, w0), with exclusion of transient motion, is in progress 74l .  
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KAOTICKA I KVAZIPERIODICNA RJESENJA ROBOTICKE JEDNADZBE 
S JEDNIM STUPNJEM SLOBODE 

VLADIMIR PAAR 
Fizicki odjel, Prirodoslovno-matem:uicki f akultet, Sveu'5iliste u Zagrebu, 4 1000 Zagreb, Hrvatska 

UDK 621 .3 .018 
Originalni znanstveni rad 

Po prvi put istraz1vana je mogucnost hotickog rezima za roboticku jednadzbu, 
koristeci jednadzbu za model robota. s jednim stupnjem slobode uz viskozno i suho 
trenje i krutosti tvrde opruge. U istrazivanju nije iskljuceno tranzijentno gibanje. 
Kaoticki rezim je otkriven u specijalnom podrucju parametara, s povecanom kru
toscu, za kriticku vrijednost parametra duljine Le koji za 50% premasuje gornju 
granicu u standardnom rasponu parametara . U kaotickom rezimu otkriven je na
glaseni prozor regularnosti s periodom tri . 
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