THE $J^{\pi}=2^{+}$AND $0^{+}, T=0^{8}$ Be LEVELS AT ABOUT $E_{x}=20 \mathrm{MeV}$
 PLACIDO D'AGOSTINO, ALBERTO D'ARRIGO, GIOVANNI FAZIO, GIORGIO GIARDINA, ANTONIO ITALIANO, ANNA TACCONE

Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina, and Dipartimento di Fisica dell'Universitá, Salita Sperone 31, Vill. S. Agata 98166 Messina, Italia
and
ROCCO PALAMARA
Istituto di Tecnologia dell'Universitá, Via Diana 5, 89125 Reggio Calabria, Italia
Received 18 October 1991
UDC 539.128
Original scientific paper
The ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha \alpha) \mathrm{n}$ reaction induced by deuterons of an incident energy of 7 MeV has been used to excite the ${ }^{8} \mathrm{Be}$ nucleus in the region of excitation energy E_{x} of about 20 MeV . Each of the obtained $\alpha \alpha$ coincidence spectra was fitted by an incoherent sum of the $J^{\pi}=2^{+}$and $0^{+}, T=0^{8} \mathrm{Be}$ levels at $E_{x}=20.1$ and 20.2 MeV , respectively. The results show that the experimental data are well fitted when the Γ values deduced for these levels are 0.90 and 0.70 MeV , respectively.

1. Introduction

In a recent work ${ }^{1)}$ an appropriate choice of the beam energy and detector geometry allowed us to observe the ${ }^{8} \mathrm{Be}$ excitation energy region around 20 MeV by the ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha \alpha) \mathrm{n}$ reaction. In fact, the analysis of the $\alpha \alpha$ bidimensional spectra obtained by the above reaction at 7 MeV deuteron incident energy shows the $J^{\pi}=2^{+}$and $0^{+}, T=0{ }^{8} \mathrm{Be}$ contributions at $E_{x}=20.1$ and 20.2 MeV , respectively. The width values deduced ${ }^{1)}$ for the two ${ }^{8} \mathrm{Be}$ states are $(0.85 \pm 0.25) \mathrm{MeV}$ and $(0.75 \pm 0.25) \mathrm{MeV}$ for the 2^{+}and 0^{+}states, respectively.

These results represent the first quantitative estimate of the width of the two ${ }^{8} \mathrm{Be}$ states. Therefore, it is necessary to perform new experiments leading to the
formation of both even-spin positive-parity states in the ${ }^{8} \mathrm{Be}$ excitation energy region around 20 MeV , extended the research range and improving the analysis conditions of the above-mentioned work.

In the ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha \alpha) \mathrm{n}$ experiment, performed by Arena et al. ${ }^{1)}$, the choice of 7 MeV incident energy and of detection geometries allowed us to obtain, for kinematic reasons, the $\alpha \alpha$ bidimensional spectra free from the $16.76 \mathrm{MeV}{ }^{5} \mathrm{He}$ state and from the contributions of ground, 3.04 and $11.4 \mathrm{MeV}{ }^{8} \mathrm{Be}$ states. Moreover, for dynamical reasons, the contributions of the first excited ${ }^{5} \mathrm{He}$ state were absent, while the ground state ones of the same nucleus were present at such a low level ($4-5 \%$) that no correction to the data was necessary for them. Thus the $\alpha \alpha$ coincidences region of interest can be populated by the ${ }^{8} \mathrm{Be}$ levels that fall in the E_{x} regions close to 17 and 20 MeV . The above mentioned ${ }^{8} \mathrm{Be}$ levels decay also in the α-channel.

Now, bearing this in mind, we analyzed the $\alpha \alpha$ bidimensional spectra coming from the ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha \alpha) \mathrm{n}$ reaction at a beam incident energy of 7 MeV in the detector configurations that populate: i) both the 17 and 20 MeV excitation energy regions; ii) the $17 \mathrm{MeV} E_{x}$ region only. At lower deuteron incident energies it is not possible to excite the two above 2^{+}and $0^{+}{ }^{8} \mathrm{Be}$ levels; at higher incident energies the high spin $\left(4^{+}\right){ }^{8} \mathrm{Be}$ state at 19.86 MeV excitation energy - with a (700 ± 100) keV width ${ }^{2)}$ - can be excited and entirely populate the kinematical region of our concern. Furthermore, in the above experiment the $\alpha \alpha$ spectra were obtained by using a thinner ${ }^{7} \mathrm{Li}$ target to improve the energy resolution.

2. Experimental details

The ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha \alpha) \mathrm{n}$ experiment was carried out at the Van de Graaf CN accelerator of the National Laboratories in Legnaro (Padova). The intensity of the 7 MeV deuteron beam current (about 80 nA) was measured by a Faraday cup charge integrator. The target was made by evaporating LiF (enriched to 99.9% in ${ }^{7} \mathrm{Li}$), until the thickness of $100 \mu \mathrm{~g} / \mathrm{cm}^{2}$ was reached.

The experimental apparatus was the same as the one shown in a previous work ${ }^{3}$. Now, in order to perform kinematically complete measurements, the $\alpha \alpha$ coincidence spectra are obtained by two solid state detectors ($100 \mu \mathrm{~m}$ thick) placed at ϑ_{1} and ϑ_{2} angles on the opposite sides with respect to the beam direction. The different detector configurations were chosen in the order to allow formation of the two $J^{\pi}=2^{+}$and $0^{+}, T=0{ }^{8} \mathrm{Be}$ levels at $E_{x}=20.1$ and 20.2 MeV , respectively, by the ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha \alpha) \mathrm{n}$ reaction. We measured the energy of the two α particles and the time-of-flight difference by means of a standard electronic set-up. The energy of each event was corrected for the loss in the target and spurious coincidences were suppressed by the time window of 10 ns selected off-line.

The true events were projected onto the central kinematical curve (the one corresponding - in the E_{1}, E_{2} plane - to the ϑ_{1} and ϑ_{2} angles defined by the beam direction and detector axes) by standard tecniques ${ }^{4)}$. In such a way one easily takes into account the effects coming from the finite geometry and energy resolution of the detectors.

3. Results and discussion

Fig. 1 shows the αa coincidence distribution versus the curvilinear abscissa s - representing the arclength of the rectified kinematical curve - at $\vartheta_{1}=82^{\circ}$ and $\vartheta_{2}=80^{\circ}$. Owing to the identity of the detector particles (a particles), in our spectra any contributions due to a resonant state are present in two peaks. Each of these peaks is contributed by the unresolved ${ }^{8} \mathrm{Be}$ levels at $E_{x}=16.6$ and 16.9 MeV (see E_{1-2} curve representing the relative energy of the aa system), while the spectrum is free from the ${ }^{5} \mathrm{He}_{g \cdot 5}$. contributions (see E_{1-3} and E_{2-3} curves representing the relative energy of the α n system when the ${ }^{5} \mathrm{He}$ decay a-particle, in coincidence with the other a-particle emitted at the first step of the reaction, is

Fig. 1. Distribution of the $\alpha \alpha$ coincidences along the rectified central kinematical curve versus curvilinear abscissa s for the ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha a) \mathrm{n}$ reaction at $E_{d}=7 \mathrm{MeV}, \vartheta_{1}=82^{\circ}$ and $\vartheta_{2}=80^{\circ}$. For the meaning of the dotted lines labelled with E_{1-2}, E_{1-3} and E_{2-3}, see text. Dash-dotted line is a guide to the eye.
detected at the angles ϑ_{1} and ϑ_{2}, respectively). Here the error bars represent only the statistical error.

Figs. 2 and 3 show the $\alpha \alpha$ coincidence spectra at $\vartheta_{1}=82^{\circ}, \vartheta_{2}=62^{\circ}$ and 76°, respectively. As one can see, in both the spectra three well separated peaks appear. The two lateral peaks can clearly be attributed to the formation of the ${ }^{8} \mathrm{Be}$ states at excitation energies of about 17 MeV (see E_{1-2} curve). Analogously, the central can be attributed to the formation of ${ }^{8} \mathrm{Be}$ at E_{x} of about 20 MeV .

Now, if we rule out the $19.86 \mathrm{MeV}{ }^{8} \mathrm{Be}$ state formation because of the 4^{+} high spin of this state and the relatively low incident energy, the ${ }^{8} \mathrm{Be}$ states which can decay into the 2α channel are the $16.6,16.9,20.1$ and 20.2 MeV ones. However, the two lateral peaks are populated by the 16.6 and $16.9 \mathrm{MeV}{ }^{8} \mathrm{Be}$ levels, while the central peak is mainly populated by the two above ${ }^{8} \mathrm{Be}$ levels in the 20 MeV E_{x} region (the unresolved 20.1 and 20.2 MeV).

Fig. 2. Same as Fig. 1 but with $\vartheta_{2}=62^{\circ}$. The dashed line is the result of the fit for the ${ }^{8} \mathrm{Be}$ levels in the region at about $E_{x}=20 \mathrm{MeV}$.

This statement is true because the ${ }^{5} \mathrm{He}_{g . s}$. in the central region of each spectrum (the one of our concern) contributes at a low level, as already partly described in one of our previous works ${ }^{1)}$.

In fact, by using the plane wave approximation (PWA) to determine the direction of a symmetry axis for the angular correlation ${ }^{5)}$ of the α particles, for the angle ϑ_{s} (the angular shift with respect to the recoil ${ }^{5} \mathrm{He}$ nucleus direction) where the angular correlation shows a symmetry axis, we found the values of 14° (for the pick-up process) and 51° and -165° (for the heavy particle stripping process). Owing to these ϑ_{s} values the ${ }^{5} \mathrm{He}_{g \cdot s}$. contribution is at its maximum in the spectrum at about $\vartheta_{2}=60^{\circ}$ - for the case of pick-up and of compound nucleus decay and at $\vartheta_{2}=59^{\circ}$ - for one $\left(\vartheta_{s}=51^{\circ}\right)$ of the two symmetry axes predicted by the heavy particle stripping. Therefore, following the same procedure in the previously mentioned work ${ }^{1)}$, the event contribution corresponding to the ${ }^{5} \mathrm{He}_{g \cdot s}$. in the cen-

Fig. 3. Same as Fig. 2 but with $\boldsymbol{\vartheta}_{2}=76^{\circ}$.
tral region of the spectrum at $\vartheta_{2}=62^{\circ}$ (Fig. 2) is calculated as being small. For the other symmetry axis $\left(\vartheta_{s}=-165^{\circ}\right)$ predicted by the heavy particle stripping process, one can observe that if the correlation function is represented by the form $W\left(\vartheta_{r e t}=K\left[1+3 \sin ^{2}\left(\vartheta_{r e t}-\vartheta_{s}\right)\right]\right.$ (where the angle $\vartheta_{\text {ret }}$ refers to the $\alpha-$ particle emission direction in the relative coordinate system with respect to the recoil ${ }^{5} \mathrm{He}$ nucleus axis) one has to choose the spectrum at $\vartheta_{2}=76^{\circ}$ in order to have the ${ }^{5} \mathrm{He}_{g . s}$. contribution at its maximum. But in this case one has to observe that the ${ }^{8} \mathrm{Be}$ levels at excited energies of about 17 MeV also exist (in the spectrum region contributed from the ${ }^{5} \mathrm{He}_{g . s}$.), while the central region of this spectrum at $E_{x} \simeq 20 \mathrm{MeV}$ is almost free from other contributions. If $W\left(\vartheta_{r e t}\right)$ is represented by the form $K\left[1+3 \cos ^{2}\left(\vartheta_{\text {ret }}-\vartheta_{s}\right)\right]$, one has to choose the spectrum at $\vartheta_{2}=66^{\circ}$ where the ${ }^{5} \mathrm{He}_{g \cdot s}$. contribution appears in the central region of the spectrum entirely overlapped by the ${ }^{8} \mathrm{Be}$ levels at $E_{x} \simeq 20 \mathrm{MeV}$. This spectrum has already been considered in our previous work ${ }^{1}$.

In order to analyze the central peak present in the spectra at $\vartheta_{2}=62^{\circ}$ and 76°, we separated the $20 \mathrm{MeV}{ }^{8} \mathrm{Be}$ contributions from the others ($17 \mathrm{MeV}{ }^{8} \mathrm{Be}$ and ${ }^{5} \mathrm{He}_{g . s}$. contributions). In Figs. 2 and 3 circles indicate the events pertaining to the whole of the $J^{\pi}=2^{+}$and $0^{+}, T=0^{8} \mathrm{Be}$ level contributions. Now, by assuming that each contribution due to the 2^{+}and $0^{+}, T=0^{8} \mathrm{Be}$ states in its own relative coordinate system (RCS) can be represented by a Lorentzian form and that such contributions can be summed incoherently, the MINUIT code performs an autoconsistent calculation ${ }^{6)}$ and gives the normalization constant and the width of the two above ${ }^{8} \mathrm{Be}$ states as a result of the fit. Namely, each of such contributions is represented by

$$
\left(J_{3-12}\right)^{-1} \cdot \frac{C \Gamma^{2}}{\left(E_{x}-E_{1-2}\right)^{2}+(I / 2)^{2}}
$$

in the laboratory system (LS), where J_{3-12} is the LS-RCS transformation Jacobian, E_{1-2} is the relative energy of the $\alpha \alpha$ system and C a normalization constant. Now, by assuming 20.1 and 20.2 MeV for the E_{x} values, the fit takes the experimental data of the central peak well into account and gives the C and Γ values for the two mentioned ${ }^{8} \mathrm{Be}$ states.

The result of the fit is displayed as dashed-line in both Figs. 2 and 3 and the Γ average values deduced for the 2^{+}and $0^{+}{ }^{8} \mathrm{Be}$ levels

$$
\Gamma\left(2^{+}\right)=(0.90 \pm 0.20) \mathrm{MeV} \quad \text { and } \quad \Gamma\left(0^{+}\right)=(0.70 \pm 0.20) \mathrm{MeV}
$$

are in line with the ones found in a previous work ${ }^{1)}$ and with the values adopted in literature ${ }^{2)}$.

As one can see, the hypothesis that the central peak in both spectra is mainly populated by the two ${ }^{8} \mathrm{Be}$ levels at excitation energies of 20.1 and 20.2 MeV is satisfactory. However, the l-values found by us ${ }^{1)}$ for the two mentioned ${ }^{8} \mathrm{Be}$ states are very reliable results, although in the analysis of the experimental data we summed the contributions due to the mentioned 2^{+}and 0^{+}states incoherently.

Acknowledgements

The authors are grateful to the Istituto Nazionale di Fisica Nucleare and to the Comitato Regionale per le Ricerche Nucleari e di Struttura della Materia for the financial support which made this work possible. We also would like to thank Dr. L. Hobbins for useful suggestions during the revision of the English text.

References

1) N. Arena, Seb. Cavallaro, A. D'Arrigo, G. Fazio, G. Giardina, A. Italiano and A. Taccone, J. Phys. Soc. Jpn. 60 (1991) 2175;
2) F. Ajzenberg-Selove, Nucl. Phys. A490 (1988) 1;
3) N. Arena, Seb. Cavallaro, P. D'Agostino, G. Fazio, G. Giardina, A. Italiano, F. Mezzanares, M. Herman and M. Lombardi, Nuovo Cimento A102 (1989) 1327;
4) N. Arena, Seb. Cavallaro, G. Fazio, G. Giardina and F. Mezzanares, Lett. Nuovo Cimento 34 (1982) 97; N. Arena, C. Barbagallo, Seb. Cavallaro, P. D'Agostino, G. Fazio, G. Giardina and F. Mezzanares, Lett. Nuovo Cimento 36 (1983) 135; N. Arena, Seb. Cavallaro, G. Fazio, G. Giardina, A. Italiano and F. Mezzanares, Phys. Rev. Lett. 57 (1986) 1839;
5) C. Milone and R. Potenza, Nucl. Phys. 84 (1966) 25;
6) N. Arena, Seb. Cavallaro, A. D'Arrigo, G. Fazio, G. Giardina, A. Italiano, M. Herman and M. Lombardi, Phys. Rev. C 40 (1989) 1126; N. Arena, Seb. Cavallaro, P. D'Agostino, A. D'Arrigo, G. Fazio, G. Giardina, A. Italiano, R. Palamara and A. Taccone, Few-Body Systems 10 (1991) 187.

STANJA $J^{\pi}=2^{+}$I $0^{+}, T=0^{8}$ Be NA ENERGIJAMA POBUĐENJA OKO 20 MeV

PLACIDO D'AGOSTINO, ALBERTO D'ARRIGO, GIOVANNI FAZIO, GIORGIO GIARDINA, ANTONIO ITALIANO, ANNA TACCONE

Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina, and Dipartimento di Fisica dell'Universitá, Salita Sperone 31, Vill. S. Agata 98166 Messina, Italia
i
ROCCO PALAMARA
Istituto di Tecnologia dell'Universitá, Via Diana 5, 89125 Reggio Calabria, Italia
UDK 539.128
Originalni znanstveni rad
Reakcija ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha \alpha) \mathrm{n}$ inducirana deuteronima energije 7 MeV je iskorištena za proučavanje jezgre ${ }^{8} \mathrm{Be}$ na energijama pobuđenja E_{x} oko 20 MeV . Koincidentni $\alpha \alpha$ spektri poravnani su nekoherentnim zbrojem stanja $J^{\pi}=2^{+}$na $E_{x}=20,1$ MeV i $J^{\pi}=0^{+}$na $E_{x}=20,2 \mathrm{MeV}$. Rezultati pokazuju da su eksperimentalni podaci najbolje opisani ako se za širine navedenih stanja uzmu vrijednosti $0,90 \mathrm{MeV}$ odnosno $0,70 \mathrm{MeV}$.

