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The interaction of a quantum particle with a heat bath of quantum oscillators under the influence of an external force has been studied and the mean displacement of this particle has been computed up to second order approximation in the propagator. The heat bath has been considered as Brownian and the characteristic frequencies are close to the characteristic frequency of the particle .. The me;m displacement of the particle has been found to oscillate with time. The temperature dependence of the mean displacement follows an exponential function of e-11r. 

1. Introduction 

The behaviour of a quantum particle coupled with a heat bath has been studied by many authors. Iche and Nozieres 1 > have been considered a heavy particle in a thermal bath. The statistical · properties of a quantum mechanical system of quantum oscillators have been found to be of the generalized Langevin form (Lindenberg and West2 >). Caldeira and Leggett have been studied this mo,:el under the influence of an external force using a path integral approach 3• 
4>. The correlation functions of such a model have been calculated by Astangul, Pottier and Saint James5 >. 
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In this work we study the problem of a quantum particle in a thermal bath 
under the influence of an external force. The heat bath is initially in thermal equi
librium and the density operator obeys a Bolzmann distribution. The perturbed 
part of the Hamiltonian has been treated with the aid of Feynman's perturbation 
formula for the propagator. The propagator ha� been calculated up to second 
order approximation. 

In the calculation of the second order approximation to the propagator we 
considered another approximation involving the dependence on L'.1w1, where L'.1w, = 
= w 1 - w is the difference between the eigenfrequencies of the particle and the 
oscillators of the heat bath. 

In many cases one frequency is close to the frequency of the particle and 
the others do not contribute to the final result. 

2. Formulation of the problem 

a) Coherent states 

For the harmonic oscillator problem, we use the creation and annihilation 
operators, a+ and a, respectively, and a complete set of basis vectors. 

Glauber6> defined the eigenvector of the non Hermitian operator by: 

a la)= a la). (1) 
The coherent states la) can be shown to obey the following relation: 

(2) 

and they form a complete set of states, i. e. : 

I 
d2a -;-la) (al= I, (3) 

where 
d2a = d (Re a) d (Im a). (4) 

Coherent states have been extensively used, see for example Ref. 3. 
The operation of a+ upon the eigenstates I a) leads to the formula: 

a+ la) = (:a+ ;) la), (5) 
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where. the bar over a means complex conjugation. Another useful relation of the 
coherent states is: 

1«12 loc'l2 

<aJa') = e -2 e - -2- e««'. 

For more details on coherent states see Refs. 2, 4 and 6. 

b) The propagator 

(6) 

For a time independent Hamiltonian the evolution operator U (t/t') is given by: 

U(t/t') = exp (- ! H(t - t')], 

and the propagator associated with two different states is given by: 

_.!..y, K (a tJa' 0) = <ale fl la'). 

(7) 

(8) 

The difficulty arises when the terms consisting the Hamiltonian operator don't 
commute with each other, and so they can not be separated. For more details on 
non commuting operator see Ref. 10 and Baker-Hausdorft's theorem of group 
theory 1°. 

When the Hamiltonian consists of two parts 

H =H
0 +H' (9) 

that don't commute with each other, we use Feynman's perturbation the
ory12> to compute the propagator K (at J a' 0). In Eq. (9), H' is the perturbed 
part of the Hamiltonian. In what follows we are going to use the symbol 
K (t) for the propagator K (at J a' 0), which is the probability for a system 
being in state a' at time t = 0, to go to the state a at time t = t. 

The solution of the Schrodinger equation 

.. a 1/i ot Ko (t) = H0 K0 
(t) (10) 

is the zero-order approximation of the propagator of the system and is given by 

K0 (a tJa' 0) = <aJ e-iHot Ja'). (11) 

In order to find the first order approximation we use the known Feynman's 
formula: 

K1 (t) = K0 (t) - ! f K0 (tJ-r) H' (-r) Ko (-r) d-r, 
0 

where K0 (tJ-r) means K0 (t - i-). 
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In our work we go up to second order approximation for the propagator, which is given by: 
K2 (t) = K0 (t) - � J K0 (rj-r) H' (r) K 1 (r) d-r. 

0 

(13) 

The propagator associated with the Hamiltonian of the system can be used to propagate in time any operator describing a variable of the system. If A (t0) is an operator at time t = t 0, the same operator at time t is: 
A (t) = U+ (t/t0) A (t0) U (t/t0), 

where U + ( t It 0) is the Hermitian adjoint of U ( t / t 0). 

c) The density matrix 

(14) 

In order to compute mean values associated with our·system we use a procedure based on the density operator, which at time t = 0 is given by: 
e-/Jhwa+ a ( 1 ) R (a, a+ ) = Zo ' fJ = KT 

where Z0 is the normalizing factor given by the trace of the matrix 
d 2 a Zo =Tr e-fihwa+ a= f <aje-filiwa+ a\a)--. 

:n: 

The density operator at time t is given by: 
R(t) = U(tjO)R0 U+ (tjO). 

We evaluate thermal averages using the generalized Wick's theorem 13> . 
The Hamiltonian of our problem is such that 

u+ (t) = U(-t), 

(15) 

(16) 

(17) 

(18) 

because the annihilation and. creation operators obey the following property: 
(19) 

so the density operator ( 17) is given by: 
R (t) = U (t) R0 U+ ('-t). (20) 
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To find the matrix elements of our operators we make use of the well known (see for example Ref. 11) formula: 

(aJe-xa+ aJ a') =exp[e-xaa'-1�2 
_ ia�f]. (21) 

The matrix elements of the equilibriwn density operator are given by: 
, _ (aJe-Phwa+ala' )  eo(a,a)- Zo 

. 

From Eq. (16) we can find Z0 

(22) 

d 2 a I Zo = f (al e-6/iru a+ a I a) - = L e-Phw" = --� ----- (23) n n 1-e-/Jwh 
and from Eq. (21) we obtain 

(al e-Pllw a+ a Ja') = exp ( e-/J liw a a'_ I ar -!at)� (24) 
The equilibrium density matrix elements in (22) are given by: 

lad2 \o,'\l 

(!o (a, a')= (I -e-Pllw) exp (e-Pliw a a') e - 2 e - -2 (25) 
If we know the density matrix R, we can compute the mean value of any operator 
M, from the trace of the matrix MR: 

(M) = Tr (MR). (26) 

3. The density matrix for a particle in a thermal bath 

The Hamiltonian of a quantwn particle coupled to a thermal bath and driven by an external force F is given by: 
H = L liwK aKaK + liw a + a + L CK (a + + a) (a_t + aK) - F (a + + a). (27) 

K K 

The third term in the Hamiltonian represents Lhe internction of the particle with the bath and the coupling constants CK are small. 
The Hamiltonian (27) can be separated in two parts, HO and H', where 

H0 = L liwK a; aK + liw a + a 
K 
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is the Hamiltonian that corresponds to the particle and to the system of oscilla
tors, and 

H' = (a+ + a) 1: CK (ai + a,:) - F (a+ + a) 
K 

(29) 

which is the perturbed part of the Hamiltonian associated with a weak interaction 
of the particle with the oscillators and with the external force excerted on the 
particle. 

The system is initially in thermal equilibrium and its density operator is given 
by the following Boltzmann distribution 

e-/Jh (!: wx •iox+wa+ <1) 
R0 (aK,a;,a,a+)= x 

)" Tr (e-/JII Cl: wx a; a1r: + wo+a) 
X 

The matrix elements of the density operator are: 

<aKal R0 (aK, a;, a, a +) la� a')= II r1 - e-/Jliw1r:) (I - e-,liw) 

. exp (l: a.1: a� e-fJliw,c. + a a' e-Bliw) K 

(30) 

(31) 

4. First order approximation of the mean displacement of the particle 

We start our evaluations from the propagator K0 (tji-) corresponding to the 
Hamiltonian Ho· 

From Eq. (11) we can see that the matrix elements of the zero order propa
gator is: 

Ko (tlO) = expo: a.It a� e-iw1r: I + a a' e-iw ') 

(32) 

We proceed via Feynman's perturbation theory 12 > and with the aid of Eq. (12) 
we evaluate the first order approximation to the propagator. The matrix element 

<aK al U0 (tj-r) H' (r) U0 (-r!O) la; a') 
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(V0 (t) is the evolution operator associated with the zero order propagator K0 (t)) 
will be evalt•ated from the following integral : 

f < aKal  V0 (t/r) l a; a")  <a� a" I H' (r) V0 (r!O) l a� a ')  d2 a" IT d2 a;. (33) 
K 

For the second factor of this product we use the relation (A 12) given in Appendix II : 
<a� a"I  H' (.) Vo (r!O) \ a� a') = exp o:: a� a� e-iWI T  + a" a' e-iw r) . 

K 

[(a" + a' e-iwr) :E CK (a; + a� e-iWJ[T) - F (a" + a' e-iw r)] . 

(34) 

The first factor of Eq. (33) is the zero order propagator K0 (t/r) given by (32) 
at time t - T. 

The integral (33) can be written as follows : 

f exp (I: UK al( e -i WJ[ (t-r) + (1 a" e-i w (1-r)) • 
K 

. exp (- I: J aKf _ � - I: l �Kl 2 � j a" l 2
) 

K 2 2 K 2 2 

. [(a" + a' e-iw r) :E CK (a; + a� e-iWJ[ T) - F (a" + a' e-iw •)] . 

• exp (I: (l�U � e-iWJ[ T + a" U 1 e-ia») 
K 

. . exp (- I: I a� 1 2 - EJ� - I: I a�l 2 - E'_f) d 2 a" IT d 2 aK. (35) 
x 2 2 x 2 2 K 

The integrations over a; and a ' will be performed with the aid of the generating 
function given in Appendix I. The corresponding formulae from Appendix I are 
(A4) and (A5) and the matrix element <aKal V0 (t/r) H' (-r) V0 (r/O) \ a; a' )  i s :  

K0 (t/r) H' (r) K0 (r/0) = [(a e-iw (t-•l) + a' e-iw ,) . 

L CK (aK e - i w11: (t-r) + a� e - iw11: r) - F (a e-iw (1-T) + a' e-iwr )] : . 
K 

. exp ( I: Ut; a� e-iWJ< t  + a a' e-iw t) . 
K 

. exp (- L l aK \
l 

- EL_ _ :E la�r - �). 
;.: 2 2 K 2 2 
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Feynman's formula ( 12) requires an integration of (36) over r, that can be easily 
performed 

The final result for the first approximation of the propagator K1 (t) is : 

K1 (a  ax t I a� a' 0) = exp (L <ix a� e-iw.c: t + a a' e-iw t) 
K 

[ 1  + L Dx (t) (a.x a +  a; a') + L Ex (t) (a.K a' + a; a) + A (t ) (a + a') ]  · 
K K 

(37) 

where 
__/ . ( e-i(w.c:+W)t _ ] ) DK (t) = CK Ii (wK + w) 

, 

(e-iwK t - e-iw t) EK (t) = CK ---- ---, 
Ii (wK - w) 

A (t) = :W ( ] - e-iw t). 

(38) 

(39) 

(40) 

This is the first approximation to the propagator of our system and we use this 
propagator to compute the first approximation to the density matrix of our system, 
which was initially in thermodynamical equilibrium. The first order approxi
mation of the density matrix is given by : 

( 41 ) 

where R 0 is given by (30) . 
To compute the matrix elements of R 1 (t ), we use the same method as be

fore, i. e. we insert a complete set of states between the operators, i. e. 

Q i  (aK, a, a:, a', t) = (a,: aJ R 1 (t) \  a; a') =  f f  (aK al U1 (t ) \ a; a") · 

' ( " "I R \ '" "') ( '" " ' I U (-t) \  , ') d2 • II d 2 "d2 , , ,  II d2 '" a.c: a o. a.c: . a a.c: a 1 a.c: a a a.c: a . a.c: . 
K K 

(42) 
The mathematical work can be seen in Appendix III  up to first order approxi
mation to the density matrix and the result is given by (A20). 

Now the question is : What is the behaviour of a quantum particle coupled 
to a thermal bath and under the influence of an external force? Or, in other words, 
what is the average displacement of such a particle? This question can be answered, as 
long as we know the density matrix. In terms of the creation and annihilation 
operators the operator associated with the position of a particle is a + + a. So 
the mean value of the displacement of the particle (according to Eq. (26)) will be 
given by : 

(a+ + a) = Tr ((a+ + a) R 1 (t)). (43) 

188 FIZIKA B 1 (1992) 3, 181-196 



KOSTAKIS AND KOSTAKIS : SECOND ORDER APPROXIMATION . . .  

We use again the substitution a + __,. a, a __,. a� mentioned i n  Appendix II, to eva
luate the matrix elements of ( 43). To find the trace required in ( 43) of all these 
states we choose only the diagonal ones, and we integrate over all these states 

where 
1 

i o:1 2 

§12 a =  - e  - 2 d2 a, n (45) 

There areonly two kinds of integrals that will appear in (44) and that they will 
not vanish. Th<"se integrals are the following : 

J exp (i a l 2 e-/Jliw) f2 2 a =  _!__ J exp [- \ a l 2 ( l - e-/Jli'°)]  d2a = _ _  l _ _  
n l - e-B liru 

- oo  
(46) 

O(J 

f \ a\ 2 exp ( \ a \ 2 e-Pliw) f2 2 a = �f \ al 2 exp [- \al 2 ( 1 - e-P li.,)] d 2 a =  

(47) 

The general formula in computing these integrals is given by (A9). 
Using ( 46) and ( 4 7) in ( 44) we compute the average displacement of the particle 

+ F ( . . ) <a + a) = - e-•rot + e-•w t - 2 . 
tiw 

(48) 

This is a result already known from Ref. 5 but the procedure followed is very 
interesting because we can go up to higher order approximation, as we are going 
to do in what follows. 

5. Second order approximation 

The first order approximation to the mean displacement of the quantum par
ticle coupled to a system of other quantum particles does not show dependence on 
the motion of the other particles and the coupling of the test particle with them. 
The displacement of the particle is sinusoidal as we can see from ( 48) and de
pends only on the external force acting on it, a result in agreement with previ-
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ous ones. We use the same method as in the previous paragraph for the second 
order approximation of the propagator. This can be evaluated with the aid of 
Feynman's formula (13). 

The propagator K1 (-rJ O) from (37) will be used in ( 1 3) and the matrix elemen 

will be evaluated according to the following integrations 

f <a� aJ K0 (t/-r) ja; a") <a; a"j H' (-r) K1 (-r/0)1 a�a') 2) 2 a" IT �2 a;. 

(49) 
The first factor of ( 49) is given by (32) with the following substituticn : 

t � t - 'l', a' -r a", 

The second factor of (49) can be evaluated with the aid of (AI2) of Appendix II. 
In our problem we consider a set of particles with frequencies close to the 

frequency of the particle. Then the thermal bath will affect the motion of the 
particle although the coupling is weak. The differences wK - w are small and in 
our result we keep only the terms involving 1 and higher order terms ; all wK - w 
the other terms are neglected because they are small compared to this. In order 
to find the propagator K2 (aK, a, a;, a', t) we perform the integration over -r in 
Eq. (13). 

The second order approximation to the density matrix is given by : 

(50) 

where U 2 (t) is the evolution operator associated to the propagator with the fol
lowing formula :  

(51) 

The matrix elements of (50) can be evaluated as before, i. e. by inserting a com
plete set of states between the operators and then by integrating over these states. 
So the matrix elements of (50) arc: 

e2 (aK, a, a�, a', t) = f f  K2 (aK, a, a�·, a" ', t) Ro (a�·,  a"', a;, a", t) 

· K2 Ca;, a", a;, a', - t) 2) 2 a"' 2)2 a" IT 2) 2 a�· 2) 2 a;. (52) 

The integrations involving the coherent states can be performed with the aid of (A4) - (A8). 
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Finally the displacement of the particle up to second order approximation 
will be given by : 

<a + + a) = J [ ( a +  !-) (! 2  (a, aK, a', a�, t)] ' �2 a II !!Jl a.a:, (53) . u a '"1:-lll: K «'-er. 

According to Eq. (5 1)  the propagator K0 (cix, a, a�, a', t) will be given by : 

where 

K2 Cax, a, a;, a', t) = exp C:E ax a; e-ia>a: I + a a' e-iwt) 
K 

[I - j1 (t) a1 a' - Ji (t) a; a - g1 (t) a; a2 + g1 (t) a, a?] 

. exp (- 1  ai 2 
_ l a' l 2 

_ l a1 i 2 
_ l a; l 2) 

2 2 2 2 ' 

e-iw I - e- ia11 t 
I, (t) = :E c, Ii ( ) l w, - w 

e- iw1 t - e-2i w r  
g1 (t) = F :E C, /i2 ( ) ( 2 ) . I W1 - OJ W1 - W 

(54) 

(55) 

(56) 

We perform the integrations in (52), then the integrations in (53) and we keep 
only the real part for the mean displacement (a+ + a). 

The final result is : 

FCf <a + + a) = 2 :E --�' I - e - B liw, 
I 1 

li3 (w, - w) 2 (w, - 2w) 

· { [-cos (w, - 2w) t + l + cos w t  - cos (co, - w) t] e-"fl ""'  + 

+ [cos (co1 - 2w) t + I + cos w t  - cos (w, - co) t] e-2/J liw, e-"1 "' + 

+ 2 [cos (w, - 2co) t - cos w t  - 1 + cos (w, - w) t] e-2.a 11w,} . (57) 

This is the approximation involving the third order dependence of the mean dis
placement of the particle in the inverse Llw. 

The 1esult involves a summation over all frequencies that are close to the 
eigenfrequency of the particle. Usually only one frequency, say wg, is close to 
that of the particle and only one term remains in (57), the term involving w.1: . 

The result (57) shows an oscillation of the mean displacem("nt of the particle 
and it is positive. 
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6. Summary 

The problem of interaction of a quantum particle with a thermal bath has 
been studied up to second order in coupling and up to third order in the diffe
rence of the eigenfrequency of the particle with the frequencies of the quantum 
ocillato1s ot the bath. 

The procedure followed involved a perturbation method for the propagators 
of the problem and the use of the density matrix for the evaluation of the averages. 
The results, up to first order approximation in the propagator, are in agreement 
with previous ones (see for example Ref. 5), but with the method used, we can 
proceed up to higher order approximations in the propagator. 

\Ve wave computed the mean displacement of such a particle in the presence 
of an external force and the results shows an oscillation of the particle as expected. 

Appendix I 

In order to perform some complex integrations, that otherwise would require 
a lot of work, we use a generating function. 

where a = x + iy is a complex variable and 

d2 a = d (Re a) d (Im a) = dx dy. 

The integration of (A l )  gives the generating function 

l � 
F ()., µ) = - e r .  

y 

(Al)  

(A2) 

(A3) 

Using this formula we can compute the following integrals, that we are going to 
use our work : 

192 

� f \ a\ 2 e- l"! 2 + J. o: + 1• ii d2 a = ( l + ). µ) e).µ 
n 

( A4) 

( A5 � 

(A6) 
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1 
- J  a e- lo:l2 d2 a =  0 n 
I - f a e- 111 12 d 2 a = 0 n 
1 n '  - f J a J 2n e- .a [ aJ2 d2 a = _._ n ;.n+ 1 ·  

Some other useful relations are : 

- I a a 2 e - Y J o:J 2 + -' a + I' ii d 2 a = - + _!!__ C Y 
I (2). ;. 2 ) � 
n y3  y4  

Appendix II 
We are going to show that 

(A7) 

(AS) 

(A9) 

(AIO) 

(Al l) 

<al H (a, a+) U (a, a+) j a') = H (:a' a) K (a, a') (Al2) 
where H (a, a +) is a Hamiltonian of the form 

and U (a, a+ ) is the evolution operator with matrix elements : 
\ rtJ 2 l«'J2 

(A13) 

(a] U (a, a +) J a ') = K (a, a') =  e A « + B o:' + C aa' + D  e- T  e- T. (AI4) 
In ( Al l) we used K (a, a') instead of K (at/a' 0) or K (t) to indicate that the propagator is a function of a and a'. 

The operator a+ is the Hermitian adjoint of the operator a and operates only on the bra form ((al) of the state vector j a) .  We start from the left hand side of (AI2) and we proceed by using the complex integrations of Appendix I 
(al H (a, a+) U (a, a+) I a') = 

= [A 1 (A + Ca') + B 1 a +  C1 a (A + C a') + D 1 ] 
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!ixl 1 !a'! 2 • eA ii +  B rr.' +  c a: rr.' + D e - 2 e 2- = 

- � _ 1 rr.·12 ( a  ) · e 2 e 2 = H oa' a K (a, a '). (Al 5) 
Note that according to our notation in the differentiation of K ( a, a') we do not lrr. 1 2 1«' 12 

include e - 2 e - T which remains unchanged. 
Appendix III 

Evaluation of the matrix elements of the first order. approximation of the density matrix 
(aK a l  R1 (t) l a�a ' )  = (aK a l  U1 (t) R 0 U1 (-t) j a; a'). (A16) 

We start by computing the following integral : 
f < " "I R I "' "' ) ( "' "'I U (- t) I 1 ') d 2 , , ,  II d 2 '" a1: a O a.1: a a.1: a 1 a.1: a a a.1: . 

K 
(A17) 

The second matrix element of (Al 7) is given by (37), if we substitute t by - t  and ag, a by  a�', a'". The integral (Al 7) can be written as follows: 
f c 1 - e-8/iw) II c1 - e-fJliw.1:) exp er. a:; a�· e-fJ h w.1: + a" a"' e-fJ liw) 

K K 

. exp er. a�· a� ei w.1: t  + a"' a' ei w t) . 
. [l + L DK (-t) (a�· a"' +  a; a') + L El( (- t) (a�· a' + a; a"') + 

K K 

+ A (-t) (a'" + a ')] . exp (- L I a�·1 2 - I a'" l 2 -

K 2 2 
- �

i a;\ 2 
_ j ar) d2 a" '  II d 2 a�·. 

The integrations can be performed with the aid of (A4) and (AS). 
(A18) 
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In order to find the matrix elements given in (Al 7) we multiply K 1 ( a aKt J a; a" 0) given by (37) with the result of the integration (Al 8). 
The final result for the first order approximation to the density matrix is : 

e 1  (a, ag, a', a;, t) = (1 - e-D fl w) II ( l  - e-B l'iw) . 
K 

· exp (L <tg a; e-flfiwr. + a a' e-flllw) (1 + DK (t) (ag a +  
K 

+ a� e-/lfiOJr. eiOJr_ t a' e-/lfi OJ ei OJ t) + L Ex (t) (ag a' e-(JfiOJ ei OJ t  + 
K 

+ a� e- /I OJr. ei .,r. t a) + A (t) (a + a' e-(Jfiro  ei w  ')] . 
[ l  + L Dx (-t) (ag e-i OJr. 1 e-/lllwr. a e-iw c e-11 h cu - a; a') + 

K 

+ L Ex (-t) (ag e-icu1: t  e-(J1icu1: a' +  a� a e-i w 1 e-/lA"') + 
K 

+ A (-t) (a e-iOJ t e-/l l'iw + a')] exp (- t J aKJ z _ J aJ z - L J a;J z _ I a'l 2) . 
K 2 2 K 2 2 

(Al9) 
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KOSTAKIS AND KOSTAKIS: SECOND ORDER APPROXIMATION . . . 

APROKSIMACIJA DRUGOG REDA ZA SREDNJI POMAK CESTICE URON.'. ENE U TOPLINSKU KUPKU UZ PRISUSTVO VANJSKE SILE 
GEORGIA C. KOSTAKIS 1 i CONSTANTIN G. KOSTAKIS 2 

1 Hellenic Air Force Academy, Rodon 27, KijiHia 14564, Greece 

> Technological Institute of Pireaus, Athens, Greece 

UDK 530. 145 

Originalni znanstveni rad 

Razmatrano je medudjelovanje kvantne cestice s toplinskom kupkom kvantnih oscilatora uz prisustvo vanjske sile. Odreden je srednji pomak cestice do pri blizenja drugog reda za  propagator. Toplinska kupka Brownovskog je tipa s karakteristicnim frekvencijama bliskim karakteristicnoj frekvenciji  cestice. Nadeno je da srednji pomak cestice osci lira u vremenu. 
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