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Theoretical developments and applications of an effective QCD Hamiltonian in the
Coulomb gauge are summarized. BCS, TDA and RPA many-body diagonalizations
in the quark and gluon sectors are reported for meson and glueball spectra, re-
spectively. The model glueball Regge trajectories are in good agreement with the
established pomeron and a recently observed odd signature daughter. Using the
pomeron-glueball connection and vector meson dominance, glueball photoproduc-
tion cross sections and decays are calculated and a glueball experimental signature
is predicted. The pseudoscalar-vector meson mass splittings are also investigated
using a hyperfine interaction based upon transverse gluon exchange. An improved
meson spectrum is obtained and the dominant role of chiral symmetry in the π-ρ
mass difference is confirmed.
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1. Introduction

The non-Abelian, non-perturbative nature of QCD bound states has challenged
realistic numerical hadronic investigations for several decades. However, with more
powerful computational resources and improved theoretical formulations significant
progress has been achieved in understanding hadronic structure. In particular both
lattice simulations and effective Hamiltonian diagonalizations utilizing many-body
techniques have provided important insight regarding the structure of mesons [1, 2],
exotics glueballs [3, 4] and hybrid hadron [5] systems.

This paper summarizes recent highlights of a many-body effective Hamiltonian
approach. In the next few sections the Hamiltonian is discussed along with the
equations of motion: Bardin-Cooper-Schrieffer [BCS] gap equations for the vac-
uum, Tamm-Dancoff [TDA] and random phase approximation [RPA] for the hadron
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masses (excited states). In section 3, the low-lying model glueball states are com-
pared to lattice and the similarity to the pomeron is detailed including a recently
discovered odd signature daughter pomeron observed in deep inelastic scattering [6].
This section also contains glueball photoproduction cross section predictions and
decay widths. Section 4 provides numerical results utilizing a transverse effective
hyperfine interaction and a longitudinal confining potential that was determined
self-consistently from the model vacuum. An improved description of the light and
heavy meson spin splittings is obtained and the dominant contribution, almost
70%, from chiral symmetry to the π-ρ mass difference is verified in the presence of
a realistic hyperfine interaction.

2. Effective QCD Hamiltonian

Suppressing the Fadeev-Popov determinant, the QCD Hamiltonian in the
Coulomb gauge (∇·Aa = 0) with coupling constant g has the general structure

Heff =

∫

dxΨ†(x)
[

− iα ·∇ + β m
]

Ψ(x) − 1

2

∫

dxdy ρa(x)V (x,y) ρa(y)

+
1

2

∫

dx
[

Πa(x) · Πa(x) + Ba(x) · Ba(x)
]

+ g

∫

dxJa(x) · Aa(x) , (1)

with current quark mass, m, field, Ψ, quark/gluon color charge density ρa(x) =
Ψ†(x)T aΨ(x) +fabcAb(x) ·Πc(x), quark color current Ja = Ψ†

αT aΨ, gauge fields,
Aa, and conjugate momentum, Πa = −Ea (electric). The non-Abelian color mag-
netic field is Ba = ∇ × Aa + 1

2f
abcAb × Ac.

The fields are expanded in normal modes (color vectors ε̂c, ǫ
a
λ, with indices

Ψ(x) =
∑

cλ

∫

dk

(2π)3

[

uλ(k)bcλ(k) + vλ(−k)dc†λ (−k)
]

ε̂c eik·x , (2)

Aa(x) =

∫

dk

(2π)3
1√
2ωk

[aa(k) + aa†(−k)]eik·x , (3)

Πa(x) = −i

∫

dk

(2π)3

√

ωk
2

[aa(k) − aa†(−k)]eik·x , (4)

c = 1, 2, 3, a = 1, 2, ... 8, µ = ±1/2, λ = ±1) subject to the Coulomb gauge trans-
verse condition, k · aa(k) = 0, where aa(k) =

∑

λǫ
a
λ(k)aaλ(k).

3. Gluon gap equation and glueballs

In our gluon sector calculations, the color magnetic fields Ba are replaced by
their Abelian components Ba

A = ∇ × Aa and only the gluon color charge density
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is retained. The hyperfine interaction (last term in Eq. (1)) is also suppressed so
there is no coupling to the quark sector (quenched approximation). Because the
gluon coupling effect on the quark sector is significant, this interaction is included
in our meson calculations described in the next section. The complicated confining
interaction V is also replaced by a Cornell potential, V (r) = |x−y|) = −αs/r+σr,
with string tension, σ = 0.135 GeV2, from lattice gauge calculations and αs = 0.2.
A cut-off parameter, Λ = 4 GeV, is used to regularize the logarithmic divergence
in the gap equation.

Next, the gluon Fock operators are dressed by a similarity transformation (BCS

rotation) to a quasiparticle basis αaλ (k) = coshΘk a
a
λ(k) + sinhΘk a

a†
λ (−k), where

Θk = Θ(k), is the BCS angle. Then, the Hamiltonian is diagonalized variationally,
δ〈Ω|Heff−E|Ω〉 = 0, for the ground state (vacuum), |Ω〉, with the gluon self-energy,
given by ωk = ke−2Θk , the variational parameter. This generates an improved BCS
vacuum with correlated Cooper pairs (gluon condensates). The variation yields the
nonlinear gluon mass gap equation

ω2
k = k2 − 3

4

∫

dq

(2π)3
V (|k − q|)(1 + (k̂·q̂)2)

(

w2
q − w2

k

wq

)

. (5)

The non-zero quasiparticle constituent mass can be extracted from the gluon self-
energy at low momentum and is about 800 MeV. The gap angle also determines
the gluon condensate, 〈αsGaµνGµνa 〉 = (433 MeV)4, which has been regularized and

is in good agreement with the QCD sum rule result (441 MeV)4.

The TDA glueball wavefunction for two constituent gluons is given by

|ΨJPC
LS 〉 =

∑

aλ1λ2

∫

dk

(2π)3
ΦJPCLSλ1λ2

(k)αa†λ1
(k)αa†λ2

(−k)|Ω〉 . (6)

Here J = L + S is the total angular momentum, P is the parity, C is the C-parity,
L is the orbital anglular momentum and S = 0, 1 or 2 is the total intrinsic gluon
spin. Using this quasiparticle basis, the excited glueball spectrum was computed
by diagonalizing the above specified Hamiltonian in the TDA truncated at the 1p-
1h quasiparticle level. See Refs. [3] and [4] for further details. The TDA JPC =
0++, 2++ and 3++ states are plotted in Fig. 1 along with lattice gauge measurements
(horizontal lines) [7] for states up to JPC = 4++. The lattice errors are large,
but notice the proximity of the theoretical states to the pomeron and recently
discovered [6] odd signature daughter pomeron having trajectories given by α(t) =
bt+ α(0), with b ≈ 0.25 GeV−2 and intercepts 1.08 and .88, respectively. Related,
a new lattice study reports [8] a 6++ glueball (not shown) which is also close
to the conventional pomeron. The 0++ (L = S = 0) glueball (dark circle) is
precluded by definition from both pomerons and lies on an even signature but lower
daughter trajectory (dashed line). The slopes of all (not shown) TDA trajectories
are the same and as represented by the S = 0 glueball predictions (dark circles for
J = L = 0, 2 and 4).
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Fig. 1. Even and odd signature pomerons (solid lines) compared to the TDA (boxes
and dark circles) and lattice (horizontal lines) glueball states.

The glueball-pomeron connection permits glueball photoproduction predictions
by simply substituting phenomenological pomeron-hadron couplings for the re-
quired glueball-hadron vertex constants. Invoking vector meson dominance [VMD]
and universality for the vector meson-glueball couplings (gluons are flavor blind),
the exclusive cross section for p(γ,G → V V )p was computed and is displayed in
Fig. 2 versus the invariant mass for the two decaying vector mesons. Both ρ and ω t
channel exchange along with s and u channel proton Born terms are included. Con-
trast the cross section enhancement for glueball formation and decay to ρρ and ωω
with the lower curve for two vector meson production without glueball formation.
The remaining curve at higher invariant mass represents φφ photoproduction which
has a threshold above the 0++ glueball state. Because of the dominant ρ→ ππ and
ω → πππ decays, a distinctive glueball signature emerges as an enhanced four and

30 FIZIKA B 13 (2004) 1, 27–36



cotanch: coulomb gauge hamiltonian: advances and applications

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
Mv v [GeV]

10
-4

10
-3

10
-2

10
-1

1

10

dσ
/d

td
M

vv
[µ

b/
G

eV
3 ]

p(γ,G(0
++

)->V V)p

φ
ρ/ω

E
lab

γ= 5.8 GeV

θ cm= 0
o

Fig. 2. Glueball photoproduction and decay to two vector mesons.

six pion correlation observed in the 1.7 GeV region. Related, if the glueball mass
is slighter larger, which may shift due to mixing with scalar mesons, the ωφ decay
channel might be open which would lead to a novel π+π0π−KK̄ decay.

Finally, from VMD the decay widths for several two-body channels have been
computed. The vector meson and radiative decay rates are: ρρ, 133.2 MeV; ωω,
34.6 MeV; ργ, 0.866 keV; ωγ, 0.844 keV; φγ, 0.454 keV; γγ, 2.6 keV.

4. Quark gap equation and mesons

For the quark sector, the hyperfine interaction is now included. Only a synopsis
is provided here but a more complete discussion can be found elsewhere [9]. The
explicit gluon degrees of freedom can be removed from the hyperfine Hamiltonian
term by P,Q projections or similarity transformations. The resulting effective quark
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hyperfine interaction has the general transverse vector-vector form

HT =

∫

dxdyJai (x)Uij(x,y)Jaj (y) , (7)

where Uij is a complicated, but non-confining, kernel. In the simplest approximation
of one gluon exchange, Uij → δijαs/|x−y|, where αs = g2/4π. Consistency requires
implementing the Coulomb gauge constraint and the specific transverse hyperfine
interaction used in this work is

HT =
1

2

∫

dxdyJai (x)Jaj (y)

(

δij −
∇i∇j

∇2

)

x

U(|x − y|) . (8)

The hyperfine potential U and confining interaction V specifies the quark Hamil-
tonian. Instead of adopting the simple linear and Coulomb potentials used previ-
ously [1, 2], an improved confining interaction is now incorporated that was devel-
oped in Ref. [10]. That work determined both the quasiparticle basis and confining
interaction self-consistently and reproduced lattice gauge simulations. This result-
ing interaction, which is similar to the Cornell potential, is more fundamentaly
connected to the QCD model vacuum and can be accurately represented by the
analytic form

V (p) = C(p) ≡ −8.07

p2

log−0.62
(

p2/m2
g + 0.82

)

log0.8
(

p2/m2
g + 1.41

) for p > mg ,

V (p) = L(p) ≡ −
12.25m1.93

g

p3.93
for p < mg . (9)

The free parameter, mg, sets the scale and is equivalent to a string tension.

The hyperfine potential is phenomenological and to study model sensitivity, four
different interactions were used. Model 1 is a square well

U1(p) = 0 for p > Λ ,

U1(p) = −Uh for p < Λ , (10)

with strength, Uh, and range, Λ. Model 2 reflects a massless transverse gluon
exchange and is a Coulomb-like potential

U2(p) = C(p) for p > mg ,

U2(p) = −Ch
p2

for p < mg . (11)

Model 3 entails a modified Coulomb/square well potential having a UV Coulomb
tail matched to a constant in the IR

U3(p) = C(p) for p > mg ,

U3(p) = −Ch for p < mg . (12)
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Lastly, model 4 is a Yukawa-type potential corresponding to the exchange of a
constituent gluon with mass mg

U4(p) = C(p) for p > mg ,

U4(p) = − Ch
p2 +m2

g

for p < mg . (13)

The potential C(p) for the last three models is the same as in Eq. (9). The
constant Ch was determined by matching the UV and IR regions at the transition
scale mg and there was no qualitative sensitivity to this scale.

The quark gap equation is determined the same way as in the gluon sector
and constituent quarks are generated by dressing the current quarks through the
quasiparticle transformation Bcµ(k) = cos(θk/2) bcµ(k) − µ sin(θk/2), dc†µ (−k) and

Dc
µ(−k) = cos(θk/2) dcµ(−k) + µ sin(θk/2) bc†µ (k). The quark gap angle, φk, is con-

nected to the BCS angle, θk, by tan (φk−θk) = m/k. The running constituent quark

mass, Mk, is related to the gap angle by Mk = Ek sin φk, with Ek =
√

M2
k + k2.

The BCS quark condensate, 〈qq〉 ≡ 〈Ω|Ψ(0)Ψ(0)|Ω〉 = −(3/π2)
∫

k2 sinφk dk, di-
verges quadratically for non-zero current quark mass and is regulated, 〈qq〉reg =

−(3/π2)
∫

k2
(

sinφk − m
Ek

)

dk, by subtracting the trivial condensate.

Performing the BCS vacuum variation generates the quark gap equation

k sk −mq ck =
2

3

∫

dq

(2π)3
[V (|k − q|)(skcqx− sqck) (14)

−4(cksqU(|k − q|) − cqskW (|k − q|))] ,

with sk ≡ sin φk, ck ≡ cos φk and x = k̂ · q̂. The transversality operator,
(

δij −∇i∇j/∇2
)

x
, in the hyperfine interaction generates an additional kernel

W (|k − q|) ≡ U(|k − q|)x(k
2 + q2) − qk(1 + x2)

|k − q|2 . (15)

The meson states were calculated using both the TDA and RPA, the latter being
essential to preserve chiral symmetry. The TDA and RPA states are respectively

|ΨnJPC
TDA 〉 = Q†

nJPC(TDA)|Ω〉, |ΨnJPC
RPA 〉 = Q†

nJPC(RPA)|ΩRPA〉, with radial-node
quantum number n. The two meson operators are

Q†
nJPC(TDA) =

∑

cµµ

∫

dk

(2π)3
ΨnJPC
µµ (k)Bc†µ (k)Dc†

µ (−k) , (16)

Q†
nJPC(RPA) =

∑

cµµ

∫

dk

(2π)3
[XnJPC

µµ Bc†µ (k)Dc†
µ (−k) − Y nJPCµµ Bcµ(k)Dc

µ(−k)] .
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The TDA and coupled RPA equations are given in Refs. [1] and [2]. For the vector
mesons ρ, J/ψ, the wavefunctions have been generalized to include both s and d
waves leading to four coupled RPA equations. The detailed form of the kernels and
equations is specified in Ref. [9].

TABLE 1. Hyperfine effective interactions.

Model Parameters

1. square well Uh = GeV−2, Λ = 3mg = 1.95 GeV

2. Coulomb mg = 0.47 GeV

3. modified Coulomb mg = 0.65 GeV

4. Yukawa mg = 0.6 GeV

TABLE 2. Calculated masses, condensates and data in MeV.

Quantity Model 1 Model 2 Model 3 Model 4 Experiment
†mu = md 1 1 1 1 1.5-8.5
†mc 730 675 675 675 1000-1400

Mu = Md 104 191 124 125 200-300

Mc 1370 1512 1408 1420 1500

− < q̄q >1/3 150 206 165 177 236

Mπ 165 129 158 150 138

Mπ(1300) 1298 1149 1322 1243 1300

Mπ(1800) 1949 1628 2019 1884 1801

Mρ 714 751 740 712 771

Mρ(1450) 1348 1151 1384 1304 1465

Mρ(1700) 1554 1292 1564 1493 1700

Mηc(1S) 2972 2980 2990 2978 2980

Mηc(2S) 3572 3425 3604 3541 3594

Mηc(3S) 4031 3708 4034 3929 ?

MJ/ψ(1S) 3090 3146 3117 3109 3097

Mψ(2S) 3653 3462 3651 3586 3686

Mψ(3770) 3679 3483 3665 3600 3770

†
adjusted

Table 1 lists the different interactions and parameters while Table 2 summa-
rizes the current quark masses for the u/d and c flavors and the calculated consti-
tutent quark masses and condensates. The pseudoscalar and vector RPA masses,
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along with two radial excited states, are given in Table 2. The hyperfine poten-
tial parameters were adjusted to fit the charmonium ground state splittings since
chiral symmetry does not effect this system. However, in achieving the desired
ηc – J/ψ 120 MeV mass difference, the constituent charmed quark mass also ap-
preciably increased which in turn required a significantly smaller, 675 MeV, charm
current mass to reproduce the observed charmonium spectra. This surprising result
is due to the Ward identity governing the interaction in the gap equation which
generates a much larger self-energy from the hyperfine potential. Then with all in-
teractions fixed, the remaining meson masses were predicted although it was again
necessary to reduce the degenerate u/d current quark mass to 1 MeV to obtain a
reasonable π mass.

It is significant that this approach is able to simultaneously describe the small
charmonium and large π-ρ splittings with the same hyperfine interaction. This is
possible because the RPA meson operator commutes with the chiral charge and
preserves chiral symmetry yielding a light Goldstone pion. Indeed, the TDA pion
for the same Heff has mass about 500 MeV. Hence chiral symmetry is predomi-
nantly responsible for the large π – ρ splitting, contributing about 400 MeV. Note
that the model also describes the excited state spin splittings, typically less than
200 MeV, which are entirely from the hyperfine interaction. These states are not
governed by chiral symmetry and the TDA and RPA results agree to within a
few percent. Finally, the hyperfine interaction yields an improved condensate be-
tween −(150MeV)3 and −(206MeV)3. The previous result [2] without a hyperfine
potential was too small, 〈q̄q〉 = −(110MeV)3.

5. Summary

The many-body effective Hamiltonian approach provides a unified quark-gluon
framework for realistically describing both glueballs and mesons. The glueball
Regge trajectories are in good agreement with the traditional pomeron and re-
cently discovered odd signature daughter. This suggests a strong pomeron-glueball
connection which in turn permits predicting glueball production and decay rates
and a novel multi-pion detection signature. The same Heff , supplemented with a
hyperfine interaction, also produces light and heavy meson spin-splitting spectra
in good agreement with observation. The model quark, and especially gluon, con-
densates are also in reasonable agreement with known results, however, this now
requires much smaller current quark masses which is a topic for further study.
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COULOMBOV BAŽDARNI HAMILTONIJAN: NAPREDAK I PRIMJENE

Daje se pregled teorijskog razvoja i primjena efektivnog Hamiltonijana QCD u
Coulombskoj baždarnosti. Navode se vǐsečestične BCS, TDA i RPA dijagonalizacije
u kvarkovskom i gluonskom sektoru za spektre mezona i gluonskih lopti. Reggeove
putanje modelskih gluonskih lopti su u dobrom skladu s potvrd–enim pomeronom
i nedavno opaženom kćeri s neparnim znakom. Primjenom veze pomeron – glu-
onska lopta i prevladavanja vektorskih mezona, izračunali smo udarne presjeke za
fototvorbu gluonskih lopti i njihovih raspada, i predvid–aju se značajke za eksperi-
mentalno nalaženje. Takod–er se istražuju cijepanja masa pseudoskalarno-vektorskih
mezona zasnovana na poprečnoj izmjeni gluona. Postigli smo pobolǰsan spektar
mezona i potvrdili prevladavajuću ulogu kiralne simetrije glede razlike masa π i ρ.
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