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DYSON-SCHWINGER EQUATIONS, THE PION AND RELATED MATTERS
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We recapitulate the aspects of Dyson-Schwinger equation (DSE) studies relevant to
pseudoscalar mesons: lattice confirmation of the DSE prediction that propagators
are nonperturbatively dressed in the infrared; and exact results, e.g., the leptonic
decay constant vanishes for every pseudoscalar meson except the pion in the chiral
limit.
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1. Gap equation

The vast body of pion data available provides compelling evidence that this
composite particle is a Goldstone mode of the strong interaction associated with
the dynamical breaking of chiral symmetry. Therefore a legitimate understanding
of pion observables, including its mass, decay constants and form factors, requires
that an approach possesses a well-defined and valid chiral limit. This is impossible
without a detailed grasp of the connection between current- and constituent-quarks.

In QCD the running quark mass is obtained from the solution of

S−1(p) = Z2 (iγ · p + mbare) + Z1

Λ
∫

q

g2Dµν(p − q)
λa

2
γµ S(q) Γa

ν(q; p) . (1)

This is the Dyson-Schwinger equation (DSE) for the dressed-quark self energy
or, equivalently, QCD’s gap equation, and it is a keystone in understanding dy-
namical chiral symmetry breaking (DCSB) and the relation between current- and
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constituent-quarks. On the right-hand side of Eq. (1): Dµν(k) is the dressed-
gluon propagator; Γa

ν(q; p) is the dressed-quark-gluon vertex; mbare is the Λ-depen-

dent current-quark bare mass; and
Λ
∫

q

:=
Λ
∫

d4q/(2π)4 represents a translationally-

invariant regularisation of the integral, with Λ the regularisation mass-scale. In
addition, Z1,2(ζ

2,Λ2) are the quark-gluon-vertex and quark wave function renor-
malisation constants, which depend on Λ and the renormalisation point, ζ, as does
the mass renormalisation constant Zm(ζ2,Λ2) = Z4(ζ

2,Λ2)/Z2(ζ
2,Λ2). The solu-

tion of Eq. (1) has the form

S−1(p) = iγ · pA(p2, ζ2) + B(p2, ζ2) ≡
1

Z(p2, ζ2)

[

iγ · p + M(p2)
]

, (2)

where M(ζ2) ≡ m(ζ) := mbare(Λ)/Zm(ζ2,Λ2) is the running quark mass.

The behaviour of the nonperturbative solution of QCD’s gap equation is a long-
standing prediction of DSE studies [1 – 3], and typical results are illustrated in
Fig. 1. One critical feature is that so long as the kernel of the gap equation has
sufficient integrated strength at infrared momenta, one obtains a nonzero running
quark mass even in the chiral limit

Z4(ζ,Λ)m(ζ) ≡ 0 , Λ ≫ ζ . (3)

This effect is DCSB. It is impossible at any finite order of perturbation theory and
apparent in Fig. 1.

The dressed-quark propagator can be calculated in lattice-regularised QCD.
Results are available in the quenched truncation, and depicted in Fig. 1 are those
of Ref. [5] obtained with the current-quark masses (ζ = 19GeV)

amlattice 0.018 0.036 0.072

m(ζ)(GeV) 0.030 0.055 0.110
. (4)

The precise agreement with DSE results is not accidental. The essential agreement
between lattice results and DSE predictions was highlighted in Refs. [6], but Ref. [4]
pursued a different goal. Only recently has reliable information about the gap
equation’s kernel at infrared momenta begun to emerge, in the continuum [7] and on
the lattice [8]. Reference [4] therefore employed an Ansatz for the infrared behaviour
of the gap equation’s kernel in order to demonstrate that it is possible to correlate
lattice results for the gluon and quark Schwinger functions via QCD’s gap equation.
This required the gap equation’s kernel to exhibit infrared enhancement over and
above that observed in the gluon propagator alone, which could be attributed to
an amplification of the dressed-quark-gluon vertex whose magnitude is consistent
with that observed in quenched lattice estimates of this three-point function [9].
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Fig. 1. Upper panel – Dashed-curve: gap equation’s solution in the chiral limit;
solid curves: solutions for M(p2) obtained using the current-quark masses in Eq.
(4). (From Ref. [4].) Data, upper three sets: lattice results for M(p2) in GeV at
am values in Eq. (4); lower points (boxes): linear extrapolation of these results [5]
to am = 0. Lower panel – Dashed curve, Z(p2), and solid curve, M(p2) calculated
from the gap equation with m(ζ) = 55MeV [4]. Data, quenched lattice-QCD results
for M(p2) and Z(p2) obtained with am = 0.036 [5]. (Z(p2) is dimensionless.)
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2. Hadrons

It is evident that reliable knowledge of QCD’s two-point functions (the propaga-
tors for QCD’s elementary excitations) is available. Direct comparison with exper-
iment requires an equally good understanding of bound states. Progress here has
required the evolution of an understanding of the intimate connection between sym-
metries and DSE truncation schemes. The best known scheme is the weak coupling
expansion, which reproduces every diagram in perturbation theory. This scheme is
valuable in the analysis of large-momentum transfer phenomena because QCD is
asymptotically free. However, it precludes any possibility of obtaining nonpertur-
bative information, and bound state phenomena are intrinsically nonperturbative.

The properties of the pion are profoundly connected with DCSB, and chiral
symmetry and its breaking are expressed through the axial-vector Ward-Takahashi
identity (k± = k ± P/2, {τ j , j = 1, 2, 3} are the Pauli matrices)

PµΓj
5µ(k;P ) = S−1(k+)iγ5

τ j

2
+ iγ5

τ j

2
S−1(k−)− iM(ζ) Γj

5(k;P )− Γj
5(k;P ) iM(ζ).

(5)

This identity connects the axial-vector vertex: Γj
5µ(k;P ), P is the total momen-

tum, with the dressed quark propagator: S = diag[Su, Sd], the pseudoscalar vertex:

Γj
5(k;P ), and the current-quark mass matrix: M(ζ) = diag[mu(ζ),md(ζ)]. The

propagator satisfies the gap equation but the vertices are determined by inhomo-
geneous Bethe-Salpeter equations; e.g.,

[

Γj
5µ(k;P )

]

tu
= Z2

[

γ5γµ

τ j

2

]

tu

+

Λ
∫

q

[χj
5µ(q;P )]sr Krs

tu (q, k;P ) , (6)

wherein χj
5µ(q;P ) := S(q+)Γj

5µ(q;P )S(q−) and K(q, k;P ) is the dressed-quark-
antiquark scattering kernel. The importance of DCSB entails that any truncation
useful in understanding low energy phenomena must be nonperturbative and pre-
serve Eq. (5), without fine tuning. This nontrivial constraint cannot be satisfied
without an intimate connection between K(q, k;P ) and the gap equation’s kernel.

One systematic truncation scheme has been identified that explicates this con-
nection and hence preserves QCD’s global symmetries [10]. It is a dressed-loop
expansion of the dressed-quark-gluon vertices that appear in the half-amputated
dressed-quark-antiquark scattering matrix: S2K. The leading order term is the
renormalisation-group-improved rainbow-ladder truncation, which underlies a one-
parameter model of the quark-quark interaction used successfully in ab initio cal-
culations of vector and flavour nonsinglet pseudoscalar meson properties [3].

2.1. Model-independent results

The existence of a nonperturbative, systematic and symmetry preserving trun-
cation scheme enables exact results to be proved. For example, it is a general fea-
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ture of QCD that the axial-vector and pseudoscalar vertices exhibit poles whenever
P 2 = −m2

πn
, where mπn

is the mass of the pion or any of its radial excitations.∗

This can be expressed for the axial-vector vertex via

Γj
5µ(k;P )

∣

∣

∣

P 2+m2
πn

≈0
=

τ j

2
γ5 [γµFR(k;P ) + γ · kkµGR(k;P ) − σµν kν HR(k;P )]

+ Γ̃j
5µ(k;P ) +

fπn
Pµ

P 2 + m2
πn

Γj
πn

(k;P ) , (7)

where: FR, GR, HR and Γ̃i
5µ are regular as P 2 → −m2

πn
, PµΓ̃i

5µ(k;P ) ∼ O(P 2)

and nonsingular; Γj
πn

(k;P ) is the 0−+ bound state’s Bethe-Salpeter amplitude:

Γj
πn

(k;P ) = τ jγ5 [iEπn
(k;P ) + γ · PFπn

(k;P )

+ γ · k k · P Gπn
(k;P ) + σµν kµPν Hπn

(k;P )] , (8)

which is determined by the homogeneous Bethe-Salpeter equation

[

Γj
πn

(k;P )
]

tu
=

Λ
∫

q

[χj
πn

(q;P )]sr Krs
tu (q, k;P ) ; (9)

and fπn
is the pseudoscalar meson’s leptonic decay constant

fπn
δij Pµ = Z2 tr

Λ
∫

q

1

2
τ iγ5γµχj

πn
(q;P ) , (10)

where the trace is over colour, flavour and spinor indices. Equation (10) is the
expression in quantum field theory for the pseudovector projection of the meson’s
Bethe-Salpeter wave function onto the origin in configuration space.

The analogous expression in the case of the pseudoscalar vertex is

iΓj
5(k;P )

∣

∣

∣

P 2+m2
πn

≈0
= regular terms +

ρπn

P 2 + m2
πn

Γj
πn

(k;P ) , (11)

iρπn
(ζ) δij = Z4 tr

Λ
∫

q

1

2
τ iγ5χ

j
πn

(q;P ) . (12)

Equation (12) expresses the pseudoscalar projection of the meson’s Bethe-Salpeter
wave function onto the origin in configuration space.

∗The hadron spectrum exhibits a sequence of J
PC = 0−+ mesons, with π(140) being the

lowest mass entry. In quantum mechanical models the other members of this sequence: π(1300),
π(1800), . . . , are described as radial excitations of the π(140). Aspects of this interpretation persist
in Poincaré covariant studies in quantum field theory and hence we retain the nomenclature.
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Inserting Eqs. (7) and (11) into Eq. (5), and subsequently equating pole terms,
one obtains the model-independent result [11]

fπn
m2

πn
= [mu(ζ) + md(ζ)] ρπn

(ζ) . (13)

In the chiral limit, Eq. (3), the axial-vector Ward-Takahashi identity becomes

PµΓj
5µ(k;P ) = S−1(k+)iγ5

τ j

2
+ iγ5

τ j

2
S−1(k−). (14)

Assume that chiral symmetry is dynamically broken so that the dressed-quark
propagator has a nonzero Dirac-scalar term, i.e., B /=0 in Eq. (2). It then follows
[11] that there is a massless pseudoscalar bound state, mπ0

= 0, for which

f0
π0

Eπ0
(k; 0) = B(k2) , (15)

with similar relations for the other scalar functions in Eq. (8). This is clearly
the ground state, and finiteness of the right hand side in Eq. (15) entails f0

π0
/=0.

Moreover, for the ground state pion in the chiral limit [11]

ρπ0
(ζ) → ρ0

π0
(ζ) =

1

f0
π0

Z4 tr

Λ
∫

q

S0(q) = −
1

f0
π0

〈q̄q〉0ζ , (16)

where 〈q̄q〉0 is the vacuum quark condensate. Hence the Gell-Mann–Oakes–Renner
relation for the ground state pion appears as a corollary of Eq. (13). Another
important corollary of Eq. (13), valid for pseudoscalar mesons containing at least
one heavy-quark, is described in Ref. [12].

It is plain that mπn /=0
> mπn=0

for all radial excitations and hence in the chiral
limit mπn /=0

> 0. In this limit it is impossible to avoid the fact that the absence of
a pole contribution on the right hand side of Eq. (14) forces

f0
πn /=0

= 0 ; (17)

thus, in the chiral limit, the leptonic decay constant vanishes for every one of the
pion’s radial excitations.† In general

fπn

fπ0

=
m2

π0

m2
πn

ρπn

ρπ0

. (18)

†A discussion of this result in chiral quark models is presented in Ref. [13]. We thank M.K.
Volkov and V.L. Yudichev for bringing this to our attention.
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3. Quantitative illustration

The manner in which these results are realised in QCD can be illustrated us-
ing the one-parameter renormalisation-group-improved ladder model for the quark-
antiquark scattering kernel introduced in Ref. [14], and reviewed in Ref. [3]. One
first solves the gap equation, Eq. (1), whose solution is required to complete the
specification of the Bethe-Salpeter equation, Eq. (9), and then solves this for the
pion and its first radial excitation.

The homogeneous Bethe-Salpeter equation is an eigenvalue problem, with the
bound state masses: P 2 = −m2

πn
, being the eigenvalues. We want only the first two

eigenvalues and eigenvectors. They can be obtained from the modified equation

l(P 2)
[

Γj
πn

(k;P )
]

tu
=

Λ
∫

q

[χj
πn

(q;P )]sr Krs
tu (q, k;P ) , (19)

with l(P 2) a scalar, which has a solution for every value of P 2 and can therefore
be solved by iteration. To explain this, consider the equation written in the form

l(P 2) |g〉 = M(P 2) |g〉 , (20)

where the matrix M(P 2) denotes the full kernel of the Bethe-Salpeter equation.
One fixes a value of P 2 and “guesses” a solution: |g(0)〉. The kernel, M(P 2),
has a complete set of real eigenvectors |gi〉 with eigenvalues λi, ordered such that
λ0 > λ1 > . . ., and therefore

|g(0)〉 =

∞
∑

i=0

ai|gi〉 , (21)

where ai are real constants and the vector is canonically normalised. It is clear that

M(P 2)N |g(0)〉 =
∞
∑

i=0

λN
i ai|gi〉 = λN

0

{

a0|g0〉 +
∞
∑

i=1

λN
i

λN
0

ai|gi〉

}

(22)

and hence for sufficiently large N ,

M(P 2)N+1 |g(0)〉 ≈ λ0 M(P 2)N |g(0)〉. (23)

Thus repeated operation of the kernel on the initial “guess” produces the largest
eigenvalue, l0(P

2) = λ0, and its associated eigenvector to any required accuracy.

One completes this exercise for a range of values of P 2 and thereby obtains
a trajectory l0(P

2) that maps the P 2-evolution of the integral equation’s largest
eigenvalue. It is then straightforward to find that P 2 for which l0(P

2) = 1. This
is the solution of Eq. (9) so that P 2 = −m2

π0
and the associated eigenvector is the

ground state pion’s Bethe-Salpeter amplitude.
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The procedure can also be applied to determine the first excited state. One fixes
P 2 < −m2

π0
, and finds the largest eigenvalue and associated eigenvector for this

new mass-scale. That completed, one again “guesses” the Bethe-Salpeter amplitude
but now projects out the eigenvector associated with the largest eigenvalue at this
P 2:

|g̃(0)〉 = |g(0)〉 − |g0〉
1

〈g0|g0〉
〈g0|g(0)〉 . (24)

The iterative procedure then applied as before to |g̃(0)〉 yields the second largest
eigenvalue and its associated eigenvector. One thereby obtains the P 2-evolution of
the second largest eigenvalue, l1(P

2). The solution of l1(P
2) = 1 gives the mass of

the first excited state and at this P 2 the eigenvector is that state’s Bethe-Salpeter
amplitude. Any finite number of excited states can be studied in this way.

We have not yet specified the meaning of the inner product used implicitly in
Eq. (24). For models in the class characterised by the rainbow-ladder truncation

〈h|g〉 := tr

Λ
∫

q

h(q;−P )S(q+) g(q;P )S(q−) . (25)

The condition 〈h|g〉 = 0 then expresses a statement that the momentum-dependent
g → h vacuum polarisation (overlap amplitude) vanishes at P 2, which is akin to
saying that the P 2-dependent mass-mixing matrix for the states g, h does not
possess off-diagonal terms.

We have obtained the mass and amplitude for the ground state pion, using the
complete expression in Eq. (8), and found: fπ0

= 0.092 GeV; mπ0
= 0.14 GeV;

ρπ0
= (0.81GeV)2, at a current-quark mass md(1GeV) = mu(1GeV) = 5.5MeV,

reproducing the results in Ref. [14].

Our study of the first excited state is in its early stages and hitherto we have
only employed the leading amplitude, Eπ1

, in Eq. (8), and obtained an estimate for
the mass

mπn=1
≈ 1.1GeV. (26)

Assuming ρπn=1
≤ ρπ0

, which is supported by our preliminary estimates, it follows
from Eq. (18) that at the physical current-quark mass

fπn=1
≤ 0.016 fπn=0

= 1.5MeV. (27)

4. Epilogue

We have necessarily been brief. There are many other applications of interest
to this community, among them the ab initio calculation of electromagnetic and
transition pion form factors, and a calculation of the pion’s valence-quark distrib-
ution function whose discrepancy with extant data raises difficult questions. These
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and other studies are reviewed in Ref. [3]. A pressing contemporary challenge is
the extension of the framework to the calculation of baryon observables, aspects of
which we are beginning to be understand [15].
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DYSON-SCHWINGEROVE JEDNADŽBE, PIONI I POVEZANE ČINJENICE

Dajemo sažet pregled izglednosti proučavanja Dyson-Schwingerove jednadžbe
(DSE) koja se odnose na pseudoskalarne mezone: potvrdu računa na rešetki da su
u infracrvenom području propagatori neperturbativno obučeni, i egzaktni ishodi,
npr., da u kiralnoj granici leptonska konstanta raspada trne za sve pseudoskalarne
mezone izuzev piona.
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