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We study nuclear shadowing for transverse and longitudinal photons. The coher-
ence length, which controls the onset of nuclear shadowing at small Bjorken-x, xBj,
is longer for longitudinal than for transverse photons. The light-cone Green func-
tion technique properly treats the finite coherence length in all multiple scattering
terms. This is especially important in the region xBj > 0.01, where most of the data
exist. NMC data on shadowing in deep inelastic scattering are well reproduced in
this approach. We also incorporate nonperturbative effects, in order to extrapolate
this approach to small photon virtualities Q2, where perturbative QCD cannot be
applied. This way, we achieve a description of shadowing that is based only on
quark and gluon degrees of freedom, even at low Q2.
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1. Introduction

The use of nuclei instead of protons in high energy scattering experiments,
such as deep inelastic scattering (DIS), provides unique possibilities to study the
space-time development of strongly interacting systems. In experiments with proton
targets, the products of the scattering process can only be observed in a detector
which is separated from the reaction point by a macroscopic distance. In contrast
to this, the nuclear medium can serve as a detector located directly at the place
where the microscopic interaction happens. As a consequence, with nuclei one can
study coherence effects in QCD which are not accessible in DIS off protons nor in
proton-proton scattering.

At high energies, nuclear scattering is governed by coherence effects which are
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most easily understood in the target rest frame. In the rest frame, DIS looks like
pair creation from a virtual photon, see Fig. 1. Long before the target, the virtual
photon splits into a qq̄-pair. The lifetime lc of the fluctuation, which is also called
coherence length, can be estimated with help of the uncertainty relation to be of
order ∼ 1/mNxBj, where xBj is Bjorken-x and mN ≈ 1 GeV is the nucleon mass.
The coherence length can become much greater than the nuclear radius at low xBj.
Multiple scattering within the lifetime of the qq̄ fluctuation leads to the pronounced
coherence effects observed in experiment.

�� �qq
Fig. 1. At low xBj and in the target rest frame, the virtual photon γ∗ converts into
a qq̄-pair long before the target.

The most prominent example for a coherent interaction of more than one nu-
cleon is the phenomenon of nuclear shadowing, i.e. the suppression of the nu-
clear structure function FA

2 with respect to the proton structure function F p
2 ,

FA
2 (xBj, Q

2)/(AF p
2 (xBj, Q

2)) < 1, at low xBj ∼
< 0.1. Shadowing in low xBj DIS

and at high photon virtualities is experimentally well studied by NMC [1].

What is the mechanism behind this suppression? If the coherence length is very
long, as indicated in Fig. 1, the qq̄-dipole undergoes multiple scattering inside the
nucleus. The physics of shadowing in DIS is most easily understood in a repre-
sentation, in which the pair has a definite transverse size ρ. As a result of color
transparency [2,3], small pairs interact with a small cross section, while large pairs
interact with a large cross section. The term ”shadowing” can be taken literally in
the target rest frame. Large pairs are absorbed by nucleons at the surface which cast
a shadow on inner nucleons. The small pairs are not shadowed. They have equal
chances to interact with any of the nucleons in the nucleus. From these simple ar-
guments, one can already understand the two necessary conditions for shadowing.
First, the hadronic fluctuation of the virtual photon has to interact with a large
cross section and second, the coherence length has to be long enough to allow for
multiple scattering.

2. Shadowing and diffraction in DIS

Like shadowing in hadron-nucleus collisions, shadowing in DIS is also intimately
related to diffraction [4]. The close connection between shadowing and diffraction
becomes most transparent in the formula derived by Karmanov and Kondratyuk
[5]. In the double scattering approximation, the shadowing correction can be related
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to the diffraction dissociation spectrum, integrated over the mass,

σγ∗A ≈ Aσγ∗p − 4π

∫
dM2

X

dσ(γ∗N → XN)

dM2
X dt

∣∣∣∣
t→0

×

∫
d2b F 2

A(lc, b). (1)

Here

F 2
A(lc, b) =

∣∣∣∣∣∣

∞∫

−∞

dz ρA(b, z)eiz/lc

∣∣∣∣∣∣

2

(2)

is the form factor of the nucleus, which depends on the coherence length

lc =
2ν

Q2 + M2
X

, (3)

where ν is the energy of the γ∗ in the target rest frame and MX is the mass of
the diffractively excited state. The coherence length can be estimated from the
uncertainty relation and is the lifetime of the diffractively excited state. If lc → 0,
the shadowing correction in Eq. (1) vanishes and one is left with the single scattering
term Aσγ∗p.

2.1. The dipole approach

Note that Eq. (1) is valid only in double scattering approximation. For heavy
nuclei, however, higher-order scattering terms will become important. These can be
calculated if one knows the eigenstates of the interaction. Fortunately, the eigen-
states of the T matrix (restricted to diffractive processes) were identified a long
time ago in QCD [2, 6] as partonic configurations with fixed transverse separations
in impact parameter space. For DIS, the lowest eigenstate is the qq̄ Fock component
of the photon. The total γ∗-proton cross section is easily calculated, if one knows
the cross section σqq̄(ρ) for scattering a qq̄-dipole of transverse size ρ off a proton,

σγ∗p =
∑

T,L

∫
dα d2ρ

∣∣∣ΨT,L
qq̄ (α, ρ)

∣∣∣
2

σqq̄(ρ). (4)

Here, α is the longitudinal momentum fraction carried by the quark (see Fig. 1). The

light-cone wavefunctions ΨT,L
qq̄ (α, ρ) describe the splitting of a transverse (T) and

longitudinal (L) photon into a qq̄-pair. For small ρ, the light-cone wavefunctions can
be calculated in perturbation theory (see e.g. Ref. [7] for explicit expressions), but
at large ρ, non-perturbative effects become important. In Ref. [8], these effects have
been modeled by introducing a harmonic oscillator potential between the quark and
the antiquark, which leads to a modification of the light-cone wavefunctions. The
strength of this potential has been determined from data for photoabsorption on
protons. This justifies the application of the dipole formulation at low Q2 and makes
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this approach an alternative to the vector dominance model (see e.g. Ref. [9]). At
large Q2, of course, the modified light-cone wavefunctions reduce to the perturbative
ones.

The dipole cross section is governed by nonperturbative effects and cannot be
calculated from first principles. We use the phenomenological parameterization that
is fitted to HERA data on the proton structure function. Note that higher Fock-
states of the photon, containing gluons, lead to an energy dependence of σqq̄, which
we do not write out explicitly.

The diffractive cross section can also be expressed in terms of σqq̄. Since the
cross section for diffraction is proportional to the square of the T -matrix element,
|〈γ∗|T |X〉|2, the dipole cross section also enters squared,

∫
dM2

X

dσ(γ∗N → XN)

dM2
X dt

∣∣∣∣
t→0

=
〈σ2

qq̄(ρ)〉

16π
, (5)

where the brackets 〈. . .〉 indicate averaging over the light-cone wavefunctions like
in Eq. (4). We point out that in order to reproduce the correct behavior of the
diffractive cross section at large MX, one has to include at least the qq̄G Fock-state
of the γ∗. This correction is, however, of minor importance in the region where
shadowing data are available.

2.2. The Green function technique

If one attempts to calculate shadowing from Eq. (1) with the help of Eq. (5),
one faces the problem that the nuclear form factor, Eq. (2), depends on the mass
MX of the diffractively produced state, which is undefined in impact parameter
representation. Only in the limit lc ≫ RA, where RA is the nuclear radius, it is
possible to resum the entire multiple scattering series in an eikonal-formula

σγ∗A =

〈
2

∫
d2b

(
1 − exp

{
−

σqq̄(ρ)

2
T (b)

})〉
. (6)

The nuclear thickness function T (b) =
∞∫

−∞

dz ρA(b, z) is the integral of nuclear

density over longitudinal coordinate z and depends on the impact parameter b. The
condition lc ≫ RA makes sure that the ρ does not vary during propagation through
the nucleus (Lorentz time dilation) and one can apply the eikonal approximation.

The condition lc ≫ RA is, however, not fulfilled in experiment. For the case
lc ∼ RA, one has to take the variation of ρ during propagation of the qq̄ fluc-
tuation through the nucleus into account, see Fig. 2. A widely used recipe is to
replace M2

X → Q2, so that lc → 1/(2mNxBj) and one can apply the double scatter-
ing approximation. This recipe was, however, disfavored by our investigation [10].
Moreover, there is no simple recipe to include a finite lc into higher-order scattering
terms.
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q z

γ γ* *
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ρρ
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W(ρ , z | ρ2 2 1 , z1 )
1 2

21

Fig. 2. Propagation of a qq̄-pair through a nucleus. Shown is the case of a finite
coherence length, where the transverse motion is described by the Green function
W (~ρ2, z2|~ρ1, z1).

In Ref. [10] (see also Ref. [11]) a Green function technique was developed that
provides the correct quantum-mechanical treatment of a finite coherence length in
all multiple scattering terms. Like in Eq. (1), the total cross section is represented
in the form

σγ∗A = Aσγ∗p − ∆σ, (7)

where ∆σ is the shadowing correction,

∆σ =
1

2
Re

∑

T,L

∫
d2b

∞∫

−∞

dz1 ρA(b, z1)

∞∫

z1

dz2 ρA(b, z2)

×

1∫

0

dα

∫
d2ρ2

[
ΨT,L

qq̄ (~ρ2, α)
]
∗

σqq̄(ρ2)A(~ρ2, z1, z2, α),

with

A(~ρ2, z1, z2, α) =

∫
d2ρ1 W (~ρ2, z2|~ρ1, z1) e−iqmin

L
(z2−z1) σqq̄(ρ1)ΨT,L

qq̄ (~ρ1, α). (8)

Here,

qmin
L =

1

lmax
c

=
Q2α(1 − α) + m2

f

2να(1 − α)
(9)

is the minimal longitudinal momentum transfer when the photon splits into the qq̄
dipole (mf is the quark mass).

The shadowing term in Eq. (7) is illustrated in Fig. 2. At the point z1, the photon
diffractively produces the qq̄ pair (γ∗N → qq̄N) with a transverse separation ~ρ1. The
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pair propagates through the nucleus along arbitrarily curved trajectories, which are
summed over, and arrives at the point z2 with a separation ~ρ2. The initial and the

final separations are controlled by the light-cone wavefunctions ΨT,L
qq̄ (~ρ, α). While

passing the nucleus, the qq̄ pair interacts with bound nucleons via the cross section
σqq̄(ρ) which depends on the local separation ~ρ. The Green function W (~ρ2, z2|~ρ1, z1)
describes the propagation of the pair from z1 to z2, see Eq. (8), including all multiple
rescatterings and a finite coherence length. Note the diffraction dissociation (DD)
amplitude,

fDD(γ∗ → qq̄) = iΨT,L
qq̄ (~ρ1, α)σqq̄(ρ1), (10)

in Eq. (8). At the position z2, the result of the propagation is again projected onto
the diffraction dissociation amplitude. The Green function includes that part of
the phase shift between the initial and the final photons which is due to transverse
motion of the quarks, while the longitudinal motion is included in Eq. (8) through
the exponential.

The Green function W (~ρ2, z2; ~ρ1, z1) in Eq. (8) satisfies the two dimensional
Schrödinger equation,

i
∂W (~ρ2, z2|~ρ1, z1)

∂z2
=−

∆(ρ2)

2να(1−α)
W (~ρ2, z2|~ρ1, z1)−

i

2
σ(ρ2) ρA(b, z2)W (~ρ2, z2|~ρ1, z1)

(11)
with the boundary condition W (~ρ2, z1|~ρ1, z1) = δ(2)(~ρ2 − ~ρ1). The Laplacian ∆(ρ2)
acts on the coordinate ~ρ2. The kinetic term ∆/[2να(1 − α)] in this Schrödinger
equation takes care of the varying effective mass of the qq̄ pair and provides the
proper phase shift. The role of time is played by the longitudinal coordinate z2. The
imaginary part of the optical potential describes the rescattering. This equation has
recently been solved numerically by Nemchik [12].

The Green function method contains the Karmanov-Kondratyuk formula
Eq. (1) and the eikonal approximation Eq. (6) as limiting cases. In order to obtain
the eikonal approximation, one has to take the limit ν → ∞. In this case, the
kinetic energy term in Eq. (11) can be neglected, and with qmin

L → 0, one arrives
after a short calculation at Eq. (6). One can also recover the Karmanov-Kondratyuk
formula, when one neglects the imaginary potential in Eq. (11). Then W becomes
the Green function of a free motion.

Calculations in the Green function approach are compared to NMC data in
Fig. 3. Note that the leading twist contribution to shadowing is due to large dipole
sizes, where nonperturbative effects, such as an interaction between the q and the
q̄, might become important (see above). Therefore, the solid curve is calculated
with the modified light-cone wavefunctions of Ref. [8]. The dashed curve is calcu-
lated with the conventional, perturbative light-cone wavefunctions, but including
a constituent quark mass. Both curves are in reasonable agreement with the data.
We stress that the Green function technique also takes into account some higher
twist corrections to shadowing. This is essential for a successful description of the
NMC data. In fact, it has been demonstrated in Ref. [14] that the leading twist
approximation only poorly reproduces NMC data for shadowing in calcium.
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Fig. 3. The xBj dependence of shadowing in DIS for the structure function of tin
relative to carbon. The data are from NMC [1]. The full curves are calculated in the
Green-function approach, including the nonperturbative interaction between the q
and the q̄. The dashed curve does not include this interaction. The figure is from
Ref. [13].

Note that for the data shown in Fig. 3, the coherence length is of the order of the
nuclear radius or smaller. Indeed, shadowing vanishes around xBj ≈ 0.1, because the
coherence length becomes smaller than the mean internucleon spacing. Therefore,
the eikonal approximation, Eq. (6), cannot be applied for the kinematics of NMC,
and a correct treatment of the coherence length becomes crucial. We emphasize
that the calculation in Fig. 3 does not contain any free parameters. Following the
spirit of the Glauber theory, all free parameters are adjusted to DIS off protons.
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2.3. Higher Fock states and the leading twist gluon shadowing

The shadowing for quarks discussed in the previous subsection is dominated
by the transverse photon polarization. Longitudinal photons, on the other hand,
can serve to measure the gluon density because they effectively couple to color-
octet-octet dipoles. This can be understood in the following way: the light-cone
wave function for the transition γ∗

L → qq̄ does not allow for large, aligned jet
configurations as is the case of transversely polarized photons. Thus, all qq̄ dipoles
from longitudinal photons have size 1/Q2 and the double-scattering term vanishes
∝ 1/Q4. The leading-twist contribution for the shadowing of longitudinal photons
arises from rescattering of the |qq̄G〉 Fock state of the photon. Here again, the
distance between the q and the q̄ is of order 1/Q2, but the gluon can propagate
relatively far from the qq̄-pair. In addition, after radiation of the gluon, the pair is
in an octet state. Therefore, the entire |qq̄G〉-system appears as a GG-dipole, and
the shadowing correction to the longitudinal cross section can be identified with
gluon shadowing.

A critical issue for determining the magnitude of gluon shadowing is the distance
the gluon can propagate from the qq̄-pair in impact parameter space, i.e. knowing
how large the GG dipole can become. This value has been extracted from single
diffraction data in hadronic collisions in Ref. [8] because these data allow the dif-
fractive gluon radiation (the triple-Pomeron contribution in Regge phenomenology)
to be unambiguously singled out. The diffraction cross section (∝ ρ4) is even more
sensitive to the dipole size than the total cross section (∝ ρ2) and is, therefore, a
sensitive probe of the mean transverse separation. It was found in Ref. [8] that the
mean dipole size must be of the order of r0 = 0.3 fm, considerably smaller than a
light hadron. A rather small gluon cloud of this size surrounding the valence quarks
is the only way that is known to resolve the long-standing problem of the small
size of the triple-Pomeron coupling. The smallness of the GG dipole is incorporated
into the LC approach by a nonperturbative interaction between the gluons.
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Fig. 4. The x- and Q2-dependence of gluon shadowing for carbon, copper and gold.
The x-dependence is shown for Q2 = 20 GeV2, while the figure on the right is
calculated for x = 10−4.
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We calculate the gluon shadowing as a function of x at fixed Q2 and as a
function of Q2 at fixed x, integrated over the impact parameter b. The results are
shown in Fig. 4. In the left-hand plot, one observes that gluon shadowing vanishes
for x > 0.01. This happens because the lifetime of the |qq̄G〉-fluctuation becomes
smaller than the mean internucleon distance of ∼ 2 fm as x exceeds 0.01. Indeed,
in Ref. [15] an average coherence length of slightly less than 2 fm was found for
the |qq̄G〉-state at x = 0.01 and large Q2 ≫ 1/r2

0. Note that the gluon shadowing
sets in at a smaller value of x than quark shadowing because the mass of a |qq̄G〉-
state is larger than the mass of a |qq̄〉-state. We also point out that the gluon
shadowing is weaker than the quark shadowing in the x-range plotted, because the
small size of the GG-dipole overcompensates the Casimir factor in the GG-proton
cross section, σGG = (9/4)σqq̄. However, note that at this time, almost nothing is
known about gluon shadowing from experiment, and theoretical approaches differ
vastly (see e.g. Ref. [16] for a comparison of different models). The plot on the
right-hand side of Fig. 4 shows the Q2-dependence of gluon shadowing and clearly
demonstrates that gluon shadowing is a leading-twist effect, with RG only very
slowly (logarithmically) approaching unity as Q2 → ∞.

2.4. The mean coherence length

The importance of the coherence length lc was already mentioned above: this
quantity controls the onset of quark and gluon shadowing at small xBj and, there-
fore, governs shadowing in the kinematical region that is of interest for most ex-
periments. The Green function technique is the only known way to include the
quantum mechanically correct coherence length into all multiple scattering terms.
However, since lc is not well defined in the impact parameter space, it appears only
implicitly in the Green function approach. Therefore, it is useful to introduce the
concept of a mean coherence length, as it was done in Ref. [15].

A photon of virtuality Q2 and energy ν can develop a hadronic fluctuation for
a lifetime

lc =
2 ν

Q2 + M2
qq̄

=
P

xBj mN
, (12)

where Mqq̄ is the effective mass of the fluctuation, and the factor P−1 = (1 + M2
qq̄/Q2).

The usual approximation is to assume that M2
qq̄ ≈ Q2 since Q2 is the only large

dimensional scale available. In this case P = 1/2.

The effective mass of a non-interacting qq̄-pair is well defined, M2
qq̄ = (m2

f +

p2
T)/α(1 − α), where pT and α are the transverse momentum and fraction of the

light-cone momentum of the photon carried by the quark, respectively. Therefore,
P has a simple form,

P (kT, α) =
Q2 α (1 − α)

p2
T + ε2

, (13)

where ε2 = α(1 − α)Q2 + m2
f .
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To find the mean lifetime of those fluctuations that contribute to shadowing,
one should define the averaging procedure as

〈P 〉 =

〈
f(γ∗ → qq̄)

∣∣∣P (pT, α)
∣∣∣f(γ∗ → qq̄)

〉

〈
f(γ∗ → qq̄)

∣∣∣f(γ∗ → qq̄)
〉 , (14)

where f(γ∗ → qq̄) is the amplitude of diffractive dissociation of the virtual photon
on a nucleon, Eq. (10). That way, P is weighted with the interaction cross section
squared σ2

qq̄(ρ) in the averaging procedure. Then, the mean value of the factor
P (α, pT) reads for the transverse and longitudinal photons,

〈
PT,L

〉
=

1∫
0

dα
∫

d2ρ1 d2ρ2

[
ΨT,L

qq̄ (~ρ2, α)
]
∗

σqq̄ (ρ2) P̃ (~ρ2−~ρ1, α)ΨT,L
qq̄ (~ρ1, α) σqq̄ (ρ1)

1∫
0

dα
∫

d2ρ
∣∣∣ΨT,L

qq̄ (~ρ,α) σqq̄ (ρ)
∣∣∣
2

(15)
with

P̃ (~ρ2 − ~ρ1, α) =

∫
d2pT

(2π)
2 exp {−i ~pT · (~ρ2 − ~ρ1)}P (α, ρ). (16)
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Fig. 5. The mean coherence length as function of Q2. The curves are for qq̄ fluctua-
tions of transverse and longitudinal photons, and for qq̄G fluctuation, from the top
to bottom, respectively. Dotted curves correspond to calculations with perturbative
wavefunctions and an approximate dipole cross section ∝ ρ2. Dashed curves are the
same, except that the realistic parameterization of σqq̄(ρ) is employed (see Ref. [15]
for details). The solid curves are calculated with the nonperturbative wavefunctions
of Ref. [8].
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Numerical results are shown in Fig. 5. Note that the nonperturbative interaction
also modifies the invariant mass of the qq̄ pair from Eq. (13). This was taken into
account in Ref. [15]. One observes that the mean coherence length for longitudinal
photons is approximately twice as long as for transverse photons. However, shadow-
ing for the qq̄ Fock component of a longitudinally polarized photon is higher twist
(see above). The coherence length for the qq̄G Fock state of a longitudinal photon,
which gives rise to leading twist gluon shadowing, is much shorter, resulting in a
delayed onset of shadowing for gluons.

3. Summary

DIS at low xBj is most naturally described in the color dipole formulation, be-
cause partonic configurations with fixed transverse separations in impact parameter
space are eigenstates of the interaction. This salient feature allows one to calcu-
late multiple scattering effects, such as nuclear shadowing, in a very easy way: at
very high energies, one can simply eikonalize the dipole cross section. At realistic
energies, however, corrections due to the finite lifetime lc of the qq̄-pair become
important. In Ref. [10], we succeeded in generalizing the Gauber-Gribov theory of
nuclear shadowing by incorporating a finite lc into all multiple scattering terms,
using a Green function technique. Since nuclear shadowing is dominated by large
dipole sizes, a nonperturbative interaction in form of an harmonic oscillator poten-
tial between the quarks was introduced in Ref. [8]. This makes the dipole approach
applicable at low Q2. However, note that it is not necessary for this model to re-
produce the vector meson masses or the coherence length of the vector dominance
model [15].

The main nonperturbative input to all formulae, the dipole cross section, cannot
be calculated from first principles. Instead, we use a phenomenological parameter-
ization for this quantity, which is determined from low xBj DIS. In the spirit of
Glauber theory, nuclear effects are then calculated without introducing any new
parameters. This way, a good description of NMC data on shadowing in DIS is
achieved. We did not attempt to include antishadowing, since this effect probably
is beyond the standard shadowing dynamics.

The parameterization of the dipole cross section effectively also includes higher
Fock states (containing gluons) through its energy dependence. These higher Fock
states are however excluded from nuclear effects, if one eikonalizes only the qq̄ cross
section. The most striking consequence is that gluon shadowing (i.e. shadowing for
longitudinal photons) appears to be higher twist. This problem is overcome by
calculating the rescattering of the |qq̄G〉-Fock state of the virtual photon, which
gives rise to the leading twist gluon shadowing. A detailed calculation is published
in Refs. [8,17]. We emphasize that gluon shadowing sets in at smaller xBj than
shadowing for quarks, because the larger mass of the |qq̄G〉-Fock state leads to a
shorter coherence length. This result is supported by a calculation of the mean
coherence length [15]. Shadowing disappears, when the coherence length becomes
shorter than the mean internucleon separation (∼ 2 fm).
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The main advantage of the dipole formulation and our motivation for pursuing
this approach is the insight it provides into the dynamical origin of nuclear effects,
which are calculated without free parameters. Note that a variety of other processes
can be described in the dipole language, e.g. Drell-Yan (DY) dilepton production
[18], gluon radiation [19] heavy quark [20] and quarkonium production [21]. A
parameter free calculation of nuclear shadowing for DY for example is needed, if
one aims at extracting the energy loss of a fast quark propagating through nuclear
from DY data [22]. Furthermore, this approach can also be applied to calculate the
Cronin effect at RHIC [23].

Finally, we point out that even though the mechanism of a hard reaction looks
quite differently in the dipole formulation from what one is used to in the parton
model, the equivalence between the dipole approach and the conventional parton
model has been demonstrated (for single scattering) numerically [18] and analyti-
cally [24] for several processes.
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DULJINA KOHERENCIJE I NUKLEARNO ZASJENJIVANJE ZA POPREČNE
I UZDUŽNE FOTONE

Proučavamo nuklearno zasjenjivanje za poprečne i uzdužne fotone. Duljina koheren-
cije, koja odred–uje nastanak nuklearnog zasjenjivanja za male Bjorkenove x, xBj,
je dulja za uzdužne nego za poprečne fotone. Metodom Greenovih funkcija na sv-
jetlosnom konusu ispravno se opisuje konačna duljina koherencije za sve članove
vǐsestrukog raspršenja. To je posebno važno u području xBj > 0.01 u kojem postoji
najvǐse podataka. Podaci NMC o zasjenjivanju u duboko neelastičnom raspršenju
dobro se opisuju ovim pristupom. Uključujemo takod–er neperturbativne efekte kako
bi ovaj pristup ekstrapolirali do malih virtualnosti Q2, za koje se ne može prim-
ijeniti perturbativni QCD. Tako postižemo opis zasjenjivanja zasnovan samo na
stupnjevima slobode kvarkova i gluona, čak i za male Q2.
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