COSMOLOGICAL SOLUTIONS IN VARIABLE REST MASS THEORY OF GRAVITATION

G. S. KHADEKAR ${ }^{a}$, VRISHALI PATKI ${ }^{a}$ and R. RADHA ${ }^{b}$
${ }^{a}$ Department of Mathematics, Nagpur University, Nagpur, India
${ }^{b}$ Department of Mathematics and Statistics, Hyderabad University, Hyderabad, India.

Received 30 July 2004 Accepted 20 December 2004
Online 7 February 2005

We have obtained cosmological solutions in five-dimensional space-time-mass theory of gravitation by assuming components of energy momentum tensor, pressure $p=0$ and the role of p_{4} as a cosmological constant. The behaviour of the solution is discussed for the cases in which $k=-1,0,+1$.

PACS numbers: 04.20.Ex, 04.40.-b
UDC 530.12
Keywords: cosmology, five dimensional space, Wesson theory, Kaluza-Klein theory

1. Introduction

Many different theories of gravity alternative to Einstein's general general theory of relativity have been proposed in which either the gravitational constant G and the rest masses of the object vary with time. Wesson $[1,2]$ discussed the difficulties encountered by these different approaches and proposed a variable-mass theory of gravity where the mass is regarded as a geometrical coordinate in a continuum 5-dimensional (5D) space-time-mass (STM). In some sense, the 4 dimensional Einstein's theory would be embedded in it. In this Kaluza-Klein type theory, the fifth coordinate is closely related to the mass m through $x^{4}=G m / c^{2}$, where the gravitational constant G and the velocity of light c are true constants.

Although the addition of a fifth dimension to the usual four dimensions does not alter the numerical size of the line element for local problems, it might have noticeable consequences for cosmological problems because the x^{4} coordinate grows larger relative to the space coordinates. Such a possibility leads some authors to study cosmological solutions in vacuum. Wesson [3] found a vacuum solution with a vanishing cosmological constant. Chatterjee [4] and Fukui [5] obtained solutions
in which the space-time properties depend both on time and rest mass. In these solutions, the fifth coordinate has been introduced as a time-like coordinate. As this would allow the existence of closed time-like orbits in the time-mass plane, Gron [6] considered a Bianchi type-I form of the metric with a space like fifth coordinate to study the inflationary cosmology. Ma [7] interpreted the rest mass as the length of the fifth-dimension subspace. Berman and Som [8] studied the cosmological consequences of a perfect fluid and the role of the fifth component considered as a cosmological constant and obtained an infrastationary model.

In the present paper, we have generalized the work of $\mathrm{Ma}[7]$ and obtained the cosmological solution in a five dimensional STM theory of gravitation by assuming pressure $p=0$ and p_{4} as a cosmological constant.

2. Field equations and solutions

We assume that the cosmological principle could be extended to the 5 D space-time-mass and choose co-moving coordinates with $u_{0}=1$ and $u^{\mu}=0(\mu=1,2,3,4)$ for

$$
u^{i}=\frac{\mathrm{d} x^{i}}{\mathrm{~d} \tau}
$$

We consider the line element

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin \theta \mathrm{~d} \phi^{2}\right)+\mu^{2}(t) \mathrm{d} \psi^{2} \tag{1}
\end{equation*}
$$

where $a(t)$ is a spatial scale factor, $\mu(t)$ is the mass scale factor, $k=-1,0,+1$ and units are chosen such that $c=1$. The energy-momentum tensor for a perfect fluid is taken in the form suggested by Gron [6]

$$
\begin{equation*}
T_{j}^{i}=\operatorname{diag}\left(\rho,-p,-p,-p,-p_{4}\right) \tag{2}
\end{equation*}
$$

We restrict ourselves to the case $p=0$. The 5D gravitational field equations

$$
G_{i j}=-8 \pi G T_{i j}
$$

can be written as

$$
\begin{align*}
3\left(\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}}+\frac{\dot{a} \dot{\mu}}{a \mu}\right) & =8 \pi G \rho, \tag{3}\\
2 \frac{\ddot{a}}{a}+\frac{\ddot{\mu}}{\mu}+\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}}+2 \frac{\dot{a} \dot{\mu}}{a \mu} & =0 \tag{4}\\
\frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{2}}+\frac{k}{a^{2}} & =-\frac{p_{4}}{3}, \tag{5}
\end{align*}
$$

where overhead dot represents the differentiation with respect to t. Similarly, the expansion factor θ and the scalar shear σ are given by

$$
\begin{align*}
\theta & =3 \frac{\dot{a}}{a}+\frac{\dot{\mu}}{\mu} \tag{6}\\
\sigma^{2} & =\frac{3}{8}\left(\frac{\dot{a}}{a}-\frac{\dot{\mu}}{\mu}\right)^{2} . \tag{7}
\end{align*}
$$

The covariant energy conservation law $T_{; j}^{i j}=0$ gives the equation

$$
\begin{equation*}
\dot{\rho}+\rho\left(3 \frac{\dot{a}}{a}+\frac{\dot{\mu}}{\mu}\right)=\frac{3 \Lambda}{8 \pi G} \frac{\dot{\mu}}{\mu}, \tag{8}
\end{equation*}
$$

where $\Lambda=-p_{4} / 3$, which can also be derived from Eqs. (3)-(5). The solution of Eqs. (4) and (5) are given by

$$
\begin{align*}
& a^{2}(t)=\left\{\begin{array}{cc}
c_{1} \mathrm{e}^{\sqrt{2 \Lambda} t}+c_{2} \mathrm{e}^{-\sqrt{2 \Lambda} t}+\frac{k}{\Lambda}, & \Lambda>0 \\
c_{1} \cos (\sqrt{-2 \Lambda} t)+c_{2} \sin (\sqrt{-2 \Lambda} t)+\frac{k}{\Lambda}, & \Lambda<0
\end{array}\right. \tag{9}\\
& \mu(t)=\left\{\begin{array}{cc}
\left(c_{3} \cos (\sqrt{\Lambda} t)+c_{4} \sin (\sqrt{\Lambda} t)\right) a^{-1}(t), & \Lambda>0 \\
\left(c_{3} \mathrm{e}^{\sqrt{-\Lambda} t}+c_{4} \mathrm{e}^{-\sqrt{-\Lambda} t}\right) a^{-1}(t), & \Lambda<0
\end{array}\right. \tag{10}
\end{align*}
$$

where c_{1}, c_{2}, c_{3} and c_{4} are arbitrary constants of integration.
Using Eqs. (9) and (10) in Eqs. (3) and (8), we get

$$
\begin{equation*}
\bar{\rho}=\frac{k}{a^{2}} \tag{11}
\end{equation*}
$$

$+\frac{\Lambda}{\sqrt{2} \mu a^{3}}\left\{\begin{array}{l}\left(c_{1} \mathrm{e}^{\sqrt{2 \Lambda} t}-c_{2} \mathrm{e}^{-\sqrt{2 \Lambda} t}\right)\left(c_{4} \cos (\sqrt{\Lambda} t)-c_{3} \sin (\sqrt{\Lambda} t)\right), \quad \Lambda>0, \\ \left(c_{3} \mathrm{e}^{\sqrt{-\Lambda} t}-c_{4} \mathrm{e}^{-\sqrt{-\Lambda} t}\right)\left(c_{2} \cos (\sqrt{-2 \Lambda} t)-c_{1} \sin (\sqrt{-2 \Lambda} t)\right), \Lambda<0,\end{array}\right.$

```
KHADEKAR ET AL.: COSMOLOGICAL SOLUTIONS IN VARIABLE REST MASS . .
```

where $\bar{\rho}=8 \pi G \rho / 3$ and

$$
\begin{align*}
& \sigma^{2}= \tag{12}\\
& \left\{\begin{array}{l}
\frac{3 \Lambda}{8}\left[\frac{\sqrt{2}}{a^{2}}\left(c_{1} \mathrm{e}^{\sqrt{2 \Lambda} t}-c_{2} \mathrm{e}^{-\sqrt{2 \Lambda} t}\right)-\frac{c_{4} \cos (\sqrt{\Lambda} t)-c_{3} \sin (\sqrt{\Lambda} t)}{c_{4} \sin (\sqrt{\Lambda} t)+c_{3} \cos (\sqrt{\Lambda} t)}\right]^{2}, \\
\frac{-3 \Lambda}{8}\left[\frac{\sqrt{2}}{a^{2}}\left(c_{2} \cos (\sqrt{-2 \Lambda} t)-c_{1} \sin (\sqrt{-2 \Lambda} t)\right)-\frac{c_{3} \mathrm{e}^{\sqrt{-\Lambda} t}-c_{4} \mathrm{e}^{-\sqrt{-\Lambda} t}}{c_{3} \mathrm{e}^{\sqrt{-\Lambda} t}+c_{4} \mathrm{e}^{-\sqrt{-\Lambda} t}}\right]^{2}, \Lambda<0,
\end{array}\right. \\
& \theta=\left\{\begin{array}{l}
\frac{\sqrt{2 \Lambda}}{a^{2}}\left(c_{1} \mathrm{e}^{\sqrt{2 \Lambda} t}-c_{2} \mathrm{e}^{-\sqrt{2 \Lambda} t}\right)+\frac{\sqrt{\Lambda}}{a \mu}\left(c_{4} \cos (\sqrt{\Lambda} t)-c_{3} \sin (\sqrt{\Lambda} t)\right), \Lambda>0, \\
\frac{\sqrt{-2 \Lambda}}{a^{2}}\left(c_{2} \cos (\sqrt{-2 \Lambda} t)-c_{1} \sin (\sqrt{-2 \Lambda} t)+\frac{\sqrt{-\Lambda}}{a \mu}\left(c_{3} \mathrm{e}^{\sqrt{-\Lambda} t}-c_{4} \mathrm{e}^{-\sqrt{-\Lambda} t}\right), \Lambda<0,\right.
\end{array}\right. \tag{13}
\end{align*}
$$

The constants $c_{1}, c_{2}, c_{3}, c_{4}$ can be determined using the initial conditions at $t=t_{0}$ such that $a\left(t_{0}\right)=\alpha, \dot{a}\left(t_{0}\right)=\beta, \mu\left(t_{0}\right)=\gamma$ and $\dot{\mu}\left(t_{0}\right)=\delta$. Without loss of generality, we can choose $t_{0}=0$, i.e, $a(0)=\alpha, \dot{a}(0)=\beta, \mu(0)=\gamma$ and $\dot{\mu}(0)=\delta$. Hence, in view of the dimensionless variables as

$$
\begin{equation*}
R(x)=a(t) / \alpha, \quad A(x)=\mu(t) / \gamma, \quad x=\beta t / \alpha \tag{14}
\end{equation*}
$$

we get $\dot{a}(t)=\beta R^{\prime}(x), \ddot{a}(t)=\beta^{2} R^{\prime \prime}(x) / \alpha, \quad \dot{\mu}(t)=(\beta \gamma / \alpha) A^{\prime}(x), \quad \ddot{\mu}(t)=$ $\beta^{2} \gamma A^{\prime \prime}(x) / \alpha^{2}$, where prime represents the differentiation with respect to the variable x. Thus we have the solution in the form of dimensionless variables as

$$
\begin{align*}
& R^{2}(x)= \begin{array}{ll}
c_{1} \mathrm{e}^{\sqrt{2 \lambda} x}+c_{2} \mathrm{e}^{-\sqrt{2 \lambda} x}+\frac{k}{\lambda \beta^{2}} & \lambda>0 \\
-\frac{k}{\beta^{2}} x^{2}+c_{1} x+c_{2} & \lambda=0 \\
c_{1} \cos (\sqrt{-2 \lambda} x)+c_{2} \sin (\sqrt{-2 \lambda} x)+\frac{k}{\lambda \beta^{2}} & \lambda<0
\end{array} \tag{15}\\
& A(x)= \begin{cases}\left(c_{3} \cos (\sqrt{\lambda} x)+c_{4} \sin (\sqrt{\lambda} x)\right) R^{-1}(x) & \lambda>0 \\
\left(c_{3} x+c_{4}\right) R^{-1}(x) & \lambda=0 \\
\left(c_{3} \mathrm{e}^{\sqrt{-\lambda} x}+c_{4} \mathrm{e}^{-\sqrt{-\lambda} x}\right) R^{-1}(x) & \lambda<0\end{cases} \tag{16}
\end{align*}
$$

where $\lambda=\frac{-p_{4} \alpha^{2}}{3 \beta^{2}}=\frac{\Lambda \alpha^{2}}{\beta^{2}}$.

The constants $c_{1}, c_{2}, c_{3}, c_{4}$ in Eqs. (15) and (16) are to be determined using the initial conditions as

$$
\begin{equation*}
R(0)=1, \quad R^{\prime}(0)=1, \quad A(0)=1, \quad A^{\prime}(0)=\frac{\alpha \delta}{\beta \gamma} \tag{17}
\end{equation*}
$$

when $\lambda>0$:
$c_{1}=\frac{1}{2}+\frac{k}{2 \lambda \beta^{2}}+\frac{1}{\sqrt{2 \lambda}}, \quad c_{2}=\frac{1}{2}+\frac{k}{2 \lambda \beta^{2}}-\frac{1}{\sqrt{2 \lambda}}, \quad c_{3}=1, \quad c_{4}=\frac{1}{\sqrt{\lambda}}\left(1+\frac{\alpha \delta}{\beta \gamma}\right)$,
when $\lambda=0$:

$$
c_{1}=2, \quad c_{2}=1, \quad c_{3}=1+\frac{\alpha \delta}{\beta \gamma}, \quad c_{4}=1
$$

when $\lambda<0$:
$c_{1}=1+\frac{k}{\lambda \beta^{2}}, \quad c_{2}=\sqrt{-\frac{2}{\lambda}}, \quad c_{3}=\frac{1}{2}+\frac{1}{2 \sqrt{-\lambda}}\left(1+\frac{\alpha \delta}{\beta \gamma}\right), \quad c_{4}=\frac{1}{2}-\frac{1}{2 \sqrt{-\lambda}}\left(1+\frac{\alpha \delta}{\beta \gamma}\right)$.
Now, $R^{\prime}=0$ leads to the maximum of R, say R_{m} at $x=x_{\mathrm{m}}$, where

$$
\begin{align*}
x_{\mathrm{m}} & =\frac{1}{2 \sqrt{2 \lambda}} \log \frac{c_{2}}{c_{1}} \\
R_{\mathrm{m}}^{2} & =2 \sqrt{c_{1} c_{2}}+\frac{k}{\lambda \beta^{2}} \tag{18}
\end{align*}
$$

for $\lambda>0$, and

$$
\begin{align*}
x_{\mathrm{m}} & =\frac{1}{\sqrt{-2 \lambda}} \tan ^{-1} \frac{c_{2}}{c_{1}} \\
R_{\mathrm{m}}^{2} & =c_{1} \cos \left(\tan ^{-1} \frac{c_{2}}{c_{1}}\right)+c_{1} \sin \left(\tan ^{-1} \frac{c_{2}}{c_{1}}\right)+\frac{k}{\lambda \beta^{2}} \tag{19}
\end{align*}
$$

for $\lambda<0$.

3. Conclusion

In this section, we have given some physical properties of the model. When the universe is spatially closed, i.e. $k=1, A(x)$ contracts and $R(x)$ expands and vice-a-versa. $R(x)$ has maximum value R_{m} where $R_{\mathrm{m}}^{2}=2 \sqrt{c_{1} c_{2}}+k / \Lambda \beta^{2}$. When $c_{2} c_{4}<0$ and $c_{3} c_{1}<0$, then the energy condition $\bar{\rho}(t)$ must be positive.

The ratio σ / θ tends to a finite limit as $t \rightarrow \infty$. Therefore the model is highly anisotropic for large t.

```
KHADEKAR ET AL.: COSMOLOGICAL SOLUTIONS IN VARIABLE REST MASS ..
```

Equations (4)-(6) are integrated in view of Eqs. (14) and (17) for dimensionless variables $R, A, \bar{\rho}$ as given in Eq. (14). The behaviour of the variables $R, A, \bar{\rho}$ versus x are depicted in Figs. 1-8. Figs. 1-3 and Figs. 4-6 exhibit the behaviour of $R(x)$ and $A(x)$ respectively for different values of λ and k, where as Figs. 7 and 8 show the nature of density for $k=0$ and $k=+1$.

Fig. 1 (left). Behaviour of $R(x)$ for $k=-1$ and different values of λ.
Fig. 2. Behaviour of $R(x)$ for $k=0$ and different values of λ.

Fig. 3 (left). Behaviour of $R(x)$ for $k=1$ and different values of λ.
Fig. 4. Behaviour of $A(x)$ for $k=-1$ and different values of λ.

KHADEKAR ET AL.: COSMOLOGICAL SOLUTIONS IN VARIABLE REST MASS ...

Fig. 5 (left). Behaviour of $A(x)$ for $k=0$ and different values of λ.
Fig. 6. Behaviour of $A(x)$ for $k=1$ and different values of λ.

Fig. 7 (left). Behaviour of $\bar{\rho}(x)$ for $k=0$ and different values of λ.
Fig. 8. Behaviour of $\bar{\rho}(x)$ for $k=1$ and different values of λ.
It can be observed from the figures that as the cosmological constant λ, i.e. $-p_{4}$, increases, the region of existence of $R(x), A(x)$ and $\bar{\rho}$ decreases for $k=-1,0,+1$. For the same value of λ and k, one can notice that if $R(x)$ increases then $A(x)$ decreases as x increases and vice-a-versa. Figures 7 and 8 exhibit a rapid decrease of density as λ increases.

```
KHADEKAR ET AL.: COSMOLOGICAL SOLUTIONS IN VARIABLE REST MASS ...
```


Acknowledgements

The author wishes to thanks University Grant Commission (UGC) New Delhi, India for the financial support under the minor research project No. Dev/RAD/270.

References
[1] P. S. Wesson, Astron. Astrophy. 119 (1983) 145.
[2] P. S. Wesson, Gen. Rel. Grav. 16 (1984) 196.
[3] P. S. Wesson, Astron. Astrophy. 165 (1986) 1.
[4] S. Chaterjee, Astron. Astrophy. 179 (1987) 122.
[5] T. Fukui, Gen. Rel. Grav. 19 (1987) 43.
[6] O. Gron, Astron. Astrophy. 193 (1988) 1.
[7] Guang-wen Ma, Physics Letters A 143 (1990) 4.
[8] M. S. Berman and M. M. Som, Astrophysics and Space Science 207 (1993) 105.

KOZMOLOŠKA RJEŠENJA TEORIJE GRAVITACIJE S PROMJENLJIVOM MASOM MIROVANJA

Izveli smo kozmološka rješenja u petdimenzijskoj prostor-vrijeme-masa teoriji gravitacije pretpostavljajući komponente tenzora energije-impulsa, tlak $p=0$, te uzevši $p_{4} \mathrm{u}$ ulozi kozmološke konstante. Raspravljamo značajke rješenja za $k=+1,0,-1$.

