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We have obtained cosmological solutions in five-dimensional space-time-mass the-
ory of gravitation by assuming components of energy momentum tensor, pressure
p = 0 and the role of p4 as a cosmological constant. The behaviour of the solution
is discussed for the cases in which k = −1, 0,+1.
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1. Introduction

Many different theories of gravity alternative to Einstein’s general general the-
ory of relativity have been proposed in which either the gravitational constant G
and the rest masses of the object vary with time. Wesson [1,2] discussed the dif-
ficulties encountered by these different approaches and proposed a variable-mass
theory of gravity where the mass is regarded as a geometrical coordinate in a contin-
uum 5-dimensional (5D) space-time-mass (STM). In some sense, the 4 dimensional
Einstein’s theory would be embedded in it. In this Kaluza-Klein type theory, the
fifth coordinate is closely related to the mass m through x4 = Gm/c2, where the
gravitational constant G and the velocity of light c are true constants.

Although the addition of a fifth dimension to the usual four dimensions does
not alter the numerical size of the line element for local problems, it might have
noticeable consequences for cosmological problems because the x4 coordinate grows
larger relative to the space coordinates. Such a possibility leads some authors to
study cosmological solutions in vacuum. Wesson [3] found a vacuum solution with
a vanishing cosmological constant. Chatterjee [4] and Fukui [5] obtained solutions
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in which the space-time properties depend both on time and rest mass. In these
solutions, the fifth coordinate has been introduced as a time-like coordinate. As
this would allow the existence of closed time-like orbits in the time-mass plane,
Gron [6] considered a Bianchi type-I form of the metric with a space like fifth
coordinate to study the inflationary cosmology. Ma [7] interpreted the rest mass
as the length of the fifth-dimension subspace. Berman and Som [8] studied the
cosmological consequences of a perfect fluid and the role of the fifth component
considered as a cosmological constant and obtained an infrastationary model.

In the present paper, we have generalized the work of Ma [7] and obtained the
cosmological solution in a five dimensional STM theory of gravitation by assuming
pressure p = 0 and p4 as a cosmological constant.

2. Field equations and solutions

We assume that the cosmological principle could be extended to the 5D space-
time-mass and choose co-moving coordinates with u0 = 1 and uµ = 0 (µ = 1, 2, 3, 4)
for

ui =
dxi

dτ
.

We consider the line element

ds2 = dt2 − a2(t)

(

dr2

1 − kr2
+ r2dθ2 + r2 sin θdφ2

)

+ µ2(t)dψ2, (1)

where a(t) is a spatial scale factor, µ(t) is the mass scale factor, k = −1, 0,+1 and
units are chosen such that c = 1. The energy-momentum tensor for a perfect fluid
is taken in the form suggested by Gron [6]

T i
j = diag

(

ρ,−p,−p,−p,−p4

)

. (2)

We restrict ourselves to the case p = 0. The 5D gravitational field equations

Gij = −8πGTij

can be written as

3

(

ȧ2

a2
+

k

a2
+
ȧµ̇

aµ

)

= 8πGρ, (3)

2
ä

a
+
µ̈

µ
+
ȧ2

a2
+

k

a2
+ 2

ȧµ̇

aµ
= 0, (4)

ä

a
+
ȧ2

a2
+

k

a2
= −

p4

3
, (5)

712 FIZIKA B 13 (2004) 4, 711–718



khadekar et al.: cosmological solutions in variable rest mass . . .

where overhead dot represents the differentiation with respect to t. Similarly, the
expansion factor θ and the scalar shear σ are given by

θ = 3
ȧ

a
+
µ̇

µ
, (6)

σ2 =
3

8

(

ȧ

a
−
µ̇

µ

)2

. (7)

The covariant energy conservation law T ij
;j = 0 gives the equation

ρ̇+ ρ

(

3
ȧ

a
+
µ̇

µ

)

=
3Λ

8πG

µ̇

µ
, (8)

where Λ = −p4/3, which can also be derived from Eqs. (3)–(5). The solution of
Eqs. (4) and (5) are given by

a2(t) =















c1e
√

2Λ t + c2e
−
√

2Λ t +
k

Λ
, Λ > 0 ,

c1 cos
(
√
−2Λ t

)

+ c2 sin
(
√
−2Λ t

)

+
k

Λ
, Λ < 0 ,

(9)

µ(t) =























(

c3 cos
(
√

Λt
)

+ c4 sin
(
√

Λt
)

)

a−1(t), Λ > 0 ,

(

c3e
√
−Λt + c4e

−
√
−Λt

)

a−1(t), Λ < 0 ,

(10)

where c1, c2, c3 and c4 are arbitrary constants of integration.

Using Eqs. (9) and (10) in Eqs. (3) and (8), we get

ρ =
k

a2
(11)

+
Λ

√
2µa3























(

c1e
√

2Λ t−c2e
−
√

2Λ t

)

(

c4 cos
(
√

Λ t
)

−c3 sin
(
√

Λ t
))

, Λ > 0 ,

(

c3e
√
−Λ t−c4e

−
√
−Λ t

)

(

c2 cos
(
√
−2Λ t

)

−c1 sin
(
√
−2Λ t

))

, Λ < 0 ,
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where ρ = 8πGρ/3 and

σ2 = (12)


























3Λ

8

[
√

2

a2

(

c1e
√

2Λt − c2e
−
√

2Λt

)

−
c4 cos

(√
Λt

)

− c3 sin
(√

Λt
)

c4 sin
(√

Λt
)

+ c3 cos
(√

Λt
)

]2

, Λ > 0 ,

−3Λ

8

[
√

2

a2

(

c2 cos
(
√
−2Λt

)

− c1 sin
(
√
−2Λt

))

−
c3e

√
−Λt − c4e

−
√
−Λt

c3e
√
−Λt + c4e

−
√
−Λt

]2

, Λ < 0 ,

θ=























√
2Λ

a2

(

c1e
√

2Λt − c2e
−
√

2Λt

)

+

√
Λ

aµ

(

c4 cos
(
√

Λt
)

− c3 sin
(
√

Λt
))

, Λ > 0 ,

√
−2Λ

a2

(

c2 cos
(
√
−2Λt

)

−c1 sin
(
√
−2Λt

)

+

√
−Λ

aµ

(

c3e
√
−Λt−c4e

−
√
−Λt

)

,Λ < 0 ,

(13)

The constants c1, c2, c3, c4 can be determined using the initial conditions at t = t0
such that a(t0) = α, ȧ(t0) = β, µ(t0) = γ and µ̇(t0) = δ. Without loss of generality,
we can choose t0 = 0, i.e, a(0) = α, ȧ(0) = β, µ(0) = γ and µ̇(0) = δ. Hence, in
view of the dimensionless variables as

R(x) = a(t)/α, A(x) = µ(t)/γ, x = βt/α, (14)

we get ȧ(t) = βR′(x), ä(t) = β2R′′(x)/α, µ̇(t) = (βγ/α)A′(x), µ̈(t) =
β2γA′′(x)/α2, where prime represents the differentiation with respect to the vari-
able x. Thus we have the solution in the form of dimensionless variables as

R2(x) =



























c1e
√

2λ x + c2e
−
√

2λ x +
k

λβ2
λ > 0 ,

−
k

β2
x2 + c1x+ c2 λ = 0 ,

c1 cos
(
√
−2λx

)

+ c2 sin
(
√
−2λx

)

+
k

λβ2
λ < 0 ,

(15)

A(x) =































(

c3 cos
(
√
λx

)

+ c4 sin
(
√
λx

))

R−1(x) λ > 0 ,

(

c3x+ c4
)

R−1(x) λ = 0 ,

(

c3e
√
−λ x + c4e

−
√
−λ x

)

R−1(x) λ < 0 ,

(16)

where λ =
−p4α

2

3β2
=

Λα2

β2
.
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The constants c1, c2, c3, c4 in Eqs. (15) and (16) are to be determined using
the initial conditions as

R(0) = 1, R′(0) = 1, A(0) = 1, A′(0) =
αδ

βγ
, (17)

when λ > 0 :

c1 =
1

2
+

k

2λβ2
+

1
√

2λ
, c2 =

1

2
+

k

2λβ2
−

1
√

2λ
, c3 = 1, c4 =

1
√
λ

(

1 +
αδ

βγ

)

,

when λ = 0 :

c1 = 2, c2 = 1, c3 = 1 +
αδ

βγ
, c4 = 1,

when λ < 0 :

c1 = 1+
k

λβ2
, c2 =

√

−
2

λ
, c3 =

1

2
+

1

2
√
−λ

(

1+
αδ

βγ

)

, c4 =
1

2
−

1

2
√
−λ

(

1+
αδ

βγ

)

.

Now, R′ = 0 leads to the maximum of R, say Rm at x = xm, where

xm =
1

2
√

2λ
log

c2
c1
,

R2
m = 2

√
c1c2 +

k

λβ2
, (18)

for λ > 0, and

xm =
1

√
−2λ

tan−1 c2
c1

R2
m = c1 cos

(

tan−1 c2
c1

)

+ c1 sin

(

tan−1 c2
c1

)

+
k

λβ2
, (19)

for λ < 0.

3. Conclusion

In this section, we have given some physical properties of the model. When
the universe is spatially closed, i.e. k = 1, A(x) contracts and R(x) expands and
vice-a-versa. R(x) has maximum value Rm where R2

m = 2
√
c1c2 + k/Λβ2. When

c2 c4 < 0 and c3c1 < 0, then the energy condition ρ̄(t) must be positive.

The ratio σ/θ tends to a finite limit as t → ∞. Therefore the model is highly
anisotropic for large t.
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Equations (4)–(6) are integrated in view of Eqs. (14) and (17) for dimensionless
variables R, A, ρ as given in Eq. (14). The behaviour of the variables R, A, ρ versus
x are depicted in Figs. 1–8. Figs. 1–3 and Figs. 4–6 exhibit the behaviour of R(x)
and A(x) respectively for different values of λ and k, where as Figs. 7 and 8 show
the nature of density for k = 0 and k = +1.

Fig. 1 (left). Behaviour of R(x) for k = −1 and different values of λ.

Fig. 2. Behaviour of R(x) for k = 0 and different values of λ.

Fig. 3 (left). Behaviour of R(x) for k = 1 and different values of λ.

Fig. 4. Behaviour of A(x) for k = −1 and different values of λ.
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Fig. 5 (left). Behaviour of A(x) for k = 0 and different values of λ.

Fig. 6. Behaviour of A(x) for k = 1 and different values of λ.

Fig. 7 (left). Behaviour of ρ̄(x) for k = 0 and different values of λ.

Fig. 8. Behaviour of ρ̄(x) for k = 1 and different values of λ.

It can be observed from the figures that as the cosmological constant λ, i.e. −p4,
increases, the region of existence of R(x), A(x) and ρ decreases for k = −1, 0,+1.
For the same value of λ and k, one can notice that if R(x) increases then A(x)
decreases as x increases and vice-a-versa. Figures 7 and 8 exhibit a rapid decrease
of density as λ increases.
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KOZMOLOŠKA RJEŠENJA TEORIJE GRAVITACIJE S PROMJENLJIVOM
MASOM MIROVANJA

Izveli smo kozmološka rješenja u petdimenzijskoj prostor-vrijeme-masa teoriji gravi-
tacije pretpostavljajući komponente tenzora energije-impulsa, tlak p = 0, te uzevši
p4 u ulozi kozmološke konstante. Raspravljamo značajke rješenja za k = +1, 0,−1.
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