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1. Introduction

In this presentation we shall investigate the astrophysical properties of the com-
pact stars (protoneutron, neutron and quark stars [1]) within the relativistic mean
field (RMF) [2] theory originated from the linear SU(3) sigma model [1 – 3].

The main aim of this work is to show how an effective mean field approximation
emerges from the linear SU(3) chiral model and to show comparision to the current
RMF approach (Furnstahl – Serot – Tang (FST) model [6]), as well as to present
astrophysical applications in the form of the neutron star model. The effective
model which includes scalar, vector and scalar-vector interaction terms is applied
to describe properties of the quark, protoneutron and neutron star matter.

2. The SU(3) sigma model

The chiral SU(3) model was proposed by Papazoglou et al. [3, 4]. In the original
form, it describes interaction of the baryons and mesons SU(3) multiplets. Recently,
a chiral SU(3) quark model has been proposed by Wang et al. [7]. The basic fields
that compose the theory represent the realization of the group SU(3)L × SU(3)R.
The meson content of the model is scalar, pseudoscalar and vector. Naive quark
models interpret them as excited qq states. Scalar and pseudoscalar mesons can be
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grouped into

Φ = Σ + iΠ =
1√
2
Taφa =

1√
2
Ta(σa + iπa) , (1)

where σa and πa are members of the scalar and pseudoscalar octet, respectively,
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1√
2
σaλa =




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2
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0), a+
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2
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2
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The vector meson octet is given by

V =
1√
2
vaλa =







1√
2
(ω + ρ0

0), ρ+
0 , K∗+

ρ−0 ,
1√
2
(ω − ρ0

0), K∗0

K∗−, K∗0, φ






. (4)

The most general form of the Lagrangian function can be written as a sum of the
following parts

L = LM + LF + Lsb , (5)

where

LM =
1

2
Tr(∂µΦ∂µΦ) − 1

2
µ2Tr(Φ2) − λ

4
Tr((Φ+Φ)2) − κ

4
Tr(Φ+Φ)2 (6)

is the Lagrangian function which describes scalar and pseudoscalar mesons Φ (Φ =
Σ + iΠ). The symmetry breaking term Lsb has the form of

Lsb =
1

2
c(Det(Φ) + Det(Φ)∗) + Tr(H+Φ + Φ+H). (7)

In the mean-field approximation, the chiral symmetry is broken and the meson
fields gain non-vanishing vacuum expectation values (σ, χ)

< Φ >=< Σ >=







1√
2
σ, 0, 0

a−0 ,
1√
2
σ, 0

0, 0, χ







.

The effective potential Ueff(σ, χ) = − < L > (Fig. 1) determines the scale of the
chiral symmetry breaking. Shifting the meson field Φ = Φ̄+ < Φ > (f0 = f̄0 + σ,
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Fig. 1. The effective potential Ueff(σ, χ) in the SU(3) sigma model.

f ′0 = f̄ ′0 + χ) and diagonalizing the square mass matrix m2
a,b = ∂2Ueff/(∂σ̄a∂σ̄b)

produce the physical meson fields
{

ϕ
ϕ∗

}

=

(

cosϑ sinϑ
− sinϑ cosϑ

) {

f0
f ′0

}

. (8)

Fitting the model to the observed masses of mesons allows to determine its pa-
rameters (similar to the case in Ref. [8] of the explicit chiral symmetry breaking
with U(1)A anomaly). It gives µ = 552.274 MeV, λ = 45.11, κ = −8.917 and
c = 3412.25. This fitting gives meson masses (e.g., π, K, ϕ, ϕ∗, δ = a0, etc.) in-
cluding sigma meson mass mσ = 502.27 MeV. The only uncertain thing is the sigma
meson mass. The light scalar meson σ (denoted here as ϕ) is an elusive subject of
classification.

The fermion content of the model consists of either quarks or baryons (QMF or
RMF model).

The chiral SU(3) quark mean-field model has been applied to describe the quark
matter or nucleon matter. In the chiral limit, the quark field q = {u, d, s} with three
flavors can be decomposed into left and right-handed parts q = qL +qR. The quarks
are described by the Lagrange function

LF = i q̄γµDµq − q̄m0q + gsq̄Φq − χc(r)q̄q ,

where χc(r) is the quark confining potential. Solving the Dirac equation for quark
in the confining potential, one can calculate the baryon masses

Meff,N(ϕ,ϕ∗) = MN − gσ(ϕ)ϕ− gσ∗ϕ∗ = MN − gσ ϕ+
1

2
gσC

′(0)ϕ2 + ...

with gσ(ϕ) = gσ − 1
2gσC

′(0)ϕ = gσ − 1
2aϕ. The last nonlinear term indicates the

inner nucleon structure.
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3. The effective RMF approach

The nuclear relativistic mean field approach describes the nuclear interactions
due to the mesons exchange between baryons (p, n, Λ, Σ, Ξ). Baryons are grouped
into the isospin and hipercharge representations (1

2 , 1), (1
2 ,−1), (1, 0)

Λ, N =

(

p
n

)

, Ξ =

(

Ξ0

Ξ−

)

, Σ =





Σ+

Σ0

Σ−



 . (9)

The RMF Lagrange functions

LRMF = LB + LM (10)

describe baryons (B = {b, n, Λ, Σ, Ξ})

LB =
∑

B

iψBγ
µDµψB −

∑

B

MB(ϕ,ϕ∗)ψBψB (11)

and mesons

LM = LMs + LMv. (12)

Mesons can be divided into scalar mesons (ϕ, ϕ∗, δ) described by LMs and vector
mesons (ω, ρ, φ) described by LMv.

LMs = 1
2∂µϕ∂

µϕ+ 1
2∂µδ

a∂µδa

+ 1
2∂µϕ∗∂

µϕ∗ − US,eff(ϕ,ϕ∗, δ), (13)

LMw = − 1
4ΩµνΩµν + 1

2m
2
ωωµω

µ − 1
4R

a
µνR

aµν + 1
2m

2
ρρ

a
µρ

aµ

− 1
4ΦµνΦµν + 1

2m
2
φφµφ

µ + UV,eff(ω, ρ) , (14)

where

Ωµν = ∂µων − ∂νωµ , Φµν = ∂µφν − ∂νφµ (15)

and Rµν = Ra
µνT

a = ∂µRν − ∂νRµ − i gρ[Rµ, Rν ]. (16)

The scalar meson interaction is enourmously nonlinear. It comes from the shifting
in the potential Ueff(σ, χ) according to the prescription (Eq. (8)). In the simplest
approximation, this procedure generates the polynomial scalar interaction (Fig. 2)
of the RMF approach

U0(ϕ) = Ueff(σ0 + ϕ, χ0) = Ueff(ϕ, 0) =
1

2
m2

σϕ
2 +

1

3
g2ϕ

3 +
1

4
g3ϕ

4 (17)
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Fig. 2. The potential U0 for the scalar meson ϕ of the effective RMF theory.

The form of the potential function was first introduced by Boguta and Bodmer
[9] in order to get the correct value of the compressibility K of nuclear matter at
saturation density (see Table 1). The simplest Walecka model (L2) (linear Walecka
model, g2 = g3 = 0) brings a very large, unrealistic value of the parameter K [2].
Figure 3 depicts the effective nucleon masses obtained for different parameter set
functions of baryon number density nB. The parameters describing the nucleon-
nucleon interactions in the RMF approach are chosen in order to reproduce the
properties of the symmetric nuclear matter at saturation such as the binding en-
ergy, symmetry energy and incompressibility. In the chiral SU(3) model, they are
generally calculable from the starting ones (µ2, λ, κ) which are fitted to the meson
spectroscopy. The appropriate parameter set is constrained not only by the value
of physical scalar meson masses, but also by the properties of nuclear matter at
saturation. For symmetric nuclear matter, the nucleon density equals n0 = 2.5 1014

g cm−3 = 0.15 nucleons/fm3 = 140 MeV fm−3. The obtained results are collected
in Table 1.

TABLE 1. Properties of the nuclear matter at saturation for the symmetric nuclear
matter.

Parameter GM3[10] TM1[11] FST[6] SU(3)

E0 (MeV) – 16.35 – 16.26 – 16.38 – 16.31

δ0 0.793 0.659 0.661 0.761

n0 (fm−3) 0.153 0.145 0.155 0.145

K (MeV) 241.12 281.53 219.5 194.9

J (MeV) 32.44 36.82 38.17 34.70
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Fig. 3. The effective nucleon masses for different parameter sets as a function of
the nucleon Fermi momentum kF .

4. The neutron star in the SU(3) sigma model

The compact star is a result of the equilibrium between gravitational collapse
and the pressure generated by the nuclear or quark matter. The matter is in β
equilibrium. In the neutron star, weak interactions are responsible for β decay

n + νe ↔ p + e, (18)

µ+ νe ↔ e + νµ. (19)

These reactions produce appropriate relation among the chemical potentials of
neutrinos in a protoneutron star where they are trapped

µp = µn + µνe
− µe (20)

µνe
= µe + µp − µn (21)

µνµ
= µνe

− µe + µµ . (22)

In a protoneutron star, when the neutrino is trapped, its chemical potential strongly
depends on nuclear asymmetry

µνe
= µe + εp − εn + gρr0, (23)

where ǫp,n =
√

k2
F,B +M2

B|B=n,p (24)
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and r0 =< ρ3
0 > is the expected value for the ρ meson in medium.

The equilibrium conditions with respect to the β decay between baryonic (in-
cluding hyperons) and leptonic species lead to the following relations among their
chemical potentials and constrain the species fraction in the star interior

µp = µΣ+ = µn − µe , µΛ = µΣ0 = µΞ0 = µn , (25)

µΣ− = µΞ− = µn + µe , µµ = µe . (26)

At higher density, a greater number of hyperon species are expected to appear.
They can be formed both in leptonic and baryonic processes. In the latter one, the
strong interaction process such as

n + n → n + Λ (27)

proceeds. There are other relevant strong reactions that establish the hadron pop-
ulation in neutron star matter, e.g.

Λ + n → Σ− + p Λ + Λ → Ξ− + p (28)

The final result is the equation of the state (Fig. 4). All these lead to the neu-
tron star model with the value of maximum mass close to 1.5 M⊙ with the reduced
value of proton fraction and very compact hyperon core. The obtained form of
the equation of state serves as an input to the Oppenheimer-Volkoff equations and
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Fig. 4. The nuclear matter equation of state for different parameter sets.
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determines the structure of spherically symmetric stars

dP (r)

dr
= −Gm(r)ρ(r)

r2

(

1 + P (r)/ρ(r)
)(

1 + 4πr3P (r)/m(r)
)

1 − 2Gm(r)/r
, (29)

dm(r)

dr
= 4πr2ρ(r) . (30)

The gravitational binding energy of a relativistic star is defined as a difference
between its gravitational and baryon masses

Eb,g =
(

Mp −m(R)
)

c2 , (31)

where

Mp = 4π

R
∫

0

dr r2
(

1 − 2Gm(r)

c2r

)−1/2

ρ(r) . (32)

The numerical solution of the above equation is of considerable relevance to the
selected EOS. Numerical solutions of these equations allow to construct the mass-
radius relations of the neutron star (Fig. 5) and the gravitational final energy
(Fig. 6).
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Fig. 5. The mass radius relation for various quark and neutron stars.
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Fig. 6. The gravitational binding energy for quark and neutron stars.

5. Conclusions

The astrophysical properties of the compact stars are strongly related to the
properties of quark and nuclear matter. Their mass, radius and binding energy
depend on inner physics of elementary particles and nuclei. The linear sigma model
predicts properties of the compact stars quite convicingly. Only the quark star
seems to look as an unphysical object, i.e. with the positive binding energy (see
Fig. 6).
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ZVIJEZDE VELIKE GUSTOĆE I SU(3) SIGMA MODEL

Primjenjuje se linearan kiralni model SU(3)L × SU(3)R za opis svojstava guste
zvjezdane tvari u kvarkovskoj, protoneutronskoj i neutronskoj zvijezdi.
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