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Using QCD perturbation theory in NLO and light-cone QCD sum rules, we ex-
tract from the CLEO experimental results the data on the F γ∗γπ

(

Q2
)

transition
form factor constraints, on the Gegenbauer coefficients a2 and a4, as well as on
the inverse moment 〈x−1〉π of the pion distribution amplitude. We show that both
the asymptotic and the Chernyak–Zhitnitsky pion distribution amplitudes are ex-
cluded at the 3σ- and 4σ-level, respectively, while the data confirm the end-point
suppressed shape of the pion DA that we previously obtained with QCD sum rules
and nonlocal condensates. These findings are also supported by the data of the
Fermilab E791 experiment on diffractive di-jet production.
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1. Introduction

Perturbative QCD describes the short-distance interactions of quarks and glu-
ons and can be applied to the description of hadronic reactions on account of
factorization theorems. More precisely, one can calculate systematically pertur-
bative kernels and associated anomalous dimensions that govern the evolution of
hadron distribution amplitudes (DAs). These DAs parameterize hadronic matrix
elements of quark-gluon currents and have to be determined by nonperturbative
methods or extracted from experimental data. Recently, Schmedding and Yakovlev
[1] presented an analysis, based on the light-cone QCD sum rules (LCSR) pro-
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posed earlier by Khodjamirian [2] and taking into account O(αs)-corrections, of
the high-precision CLEO experimental data [3] that allow to extract quite restric-
tive constraints on the first two Gegenbauer coefficients a2 and a4 which control
the x-dependence of the pion distribution amplitude (πDA). This sort of analysis
was further extended and refined by us in Refs. [4] and [5] with the aim to take
more properly into account NLO evolution effects of the πDA, to treat threshold
effects of the effective strong coupling, and to estimate more carefully contributions
resulting from (unknown) higher-twist effects. In addition, we derived directly from
the CLEO data estimates for the inverse moment of the πDA, which is compatible
with that obtained from an independent QCD sum rule, referring in both cases to
the same low-momentum scale of the order of 1 GeV2.

The results of our analysis, presented here, lead to the conclusion that the
Chernyak–Zhitnitsky model [6] for the πDA in the plane (a2, a4) is outside the
4σ-level, while the asymptotic DA is excluded at the 3σ level. In fact, the data
seem to prefer end-point-suppressed DAs as those we have previously determined
using QCD sum rules with nonlocal condensates [4]. These conclusions are further
supported by contrasting the above mentioned πDAs with the E791 di-jet data
[7] following the convolution approach of Braun et al. [8]. Moreover, it was found
[5] that the CLEO data are sensitive to the value of the average vacuum quark
virtuality, limiting its value close to λ2

q = 0.4 GeV2.

2. What is the pion distribution amplitude ϕπ(x, µ
2)?

The πDA is a central object in the deeper understanding of the pion micro-
scopic structure in terms of quark and gluon degrees of freedom within QCD. This
amplitude is defined by the matrix element of a nonlocal axial current on the light
cone:

〈0|d̄(z)γµγ5E(z, 0)u(0)|π(P )〉
∣

∣

∣

z2=0
= ifπPµ

1
∫

0

dx eix(zP ) ϕTw−2
π (x, µ2) , (1)

where gauge-invariance is ensured due to the Fock–Schwinger string E(z, 0) =

P exp
(

i g
z
∫

0

Aµ(τ)dτµ
)

and ϕTw−2
π (x, µ2) is symmetric with respect to x ↔ x̄

(x̄ ≡ 1−x) and is normalized to unity, whereas µ2 denotes the normalization scale.
Figure 1 visualizes the light-cone structure of the πDA. There are also 6 pion DAs
at twist-4 level, four of them contributing to the γ∗γ → π-transition as a twist-4
correction, whose value is parameterized by the scale δ2

Tw−4 ≈ 0.19 GeV2. In what
follows, we will speak mainly of the twist-2 πDA, and for the sake of brevity, we
will omit its superscript Tw−2 referring to it simply as ϕπ(x;µ2).

Due to the vector-current conservation, the solution of the ERBL evolution
equation [9, 10] (in LO approximation) in the asymptotic limit is ϕπ(x;µ2 → ∞) =
ϕas(x) = 6x(1 − x). A particularly convenient way to represent the πDA is to use
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Fig. 1. ϕπ(x;µ2) – light-cone amplitude for the transition π → u + d.

its 1-loop eigenfunctions, viz., the Gegenbauer polynomials [9]

ϕπ(x;µ2) = ϕas(x)
[

1 + a2(µ
2)C

3/2
2 (ξ) + a4(µ

2)C
3/2
4 (ξ) + ...

]

ξ≡2x−1
, (2)

where C
3/2
n (ξ) are the Gegenbauer polynomials and the ellipsis denotes still higher-

order eigenfunctions than those displayed. In this representation, all dependence
of ϕπ(x;µ2) on µ2 is concentrated in the coefficients an(µ2) due to the fact
that the 1-loop evolution kernel has a factorized structure V1−loop(x, x′;αs) =
[αs/(4π)]V0(x, x′). In the NLO approximation, the eigenfunctions of the evolu-
tion kernel inevitably depend on αs and therefore on µ2. Note that because of the
symmetry in x ↔ x̄, only even Gegenbauer polynomials contribute.

The high precision of the CLEO data provides the possibility to extract these
important theoretical parameters (a2 and a4) directly from experiment. But before
we turn to this subject, let us first give some brief exposition of the theoretical
method used to determine the πDA within the QCD sum-rule approach.

3. QCD sum rules with nonlocal condensates

To model the nonlocality of the QCD vacuum, we assume 〈q̄(0)q(z)〉 =

〈q̄(0)q(0)〉e−|z2|λ2
q/8, and similar expressions for other nonlocal condensates (NLCs),

where a single scale parameter λ2
q = 〈k2〉 was introduced in order to characterize

the average momentum of quarks in the QCD vacuum [11]

λ2
q =







0.4 ± 0.1 GeV2 from QCD SRs [12];
0.5 ± 0.05 GeV2 from QCD SRs [13];
≈ 0.4 − 0.5 GeV2 from lattice QCD [14, 15].

The correlation length λ−1
q ≃ 0.3 fm ∼ ρ-meson size represents the width of the

NLC at small distances. Let us mention that for very large distances (z ≫ 1 fm
[15]) one may assume another form of the condensate, given by [16] 〈q̄(0)q(z)〉 ∼

〈q̄(0)q(0)〉e−|z|Λ at |z| ≫ 1fm (with Λ ≃ 450 MeV). This behavior is of no impor-
tance in the problem under investigation.
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In Ref. [4], we have determined all coefficients up to order n = 10 using QCD
sum rules with nonlocal condensates. It turned out that all coefficients beyond
n = 4 are very small so that for practical purposes it suffices to model the πDA
using only a2 and a4. So, the NLC QCD sum rules produce a whole bunch of
self-consistent 2-parameter model DAs (see Fig. 2a.) at µ2 ≃ 1 GeV2,

ϕπ(x) = ϕas(x)
[

1 + a2C
3/2
2 (2x − 1) + a4C

3/2
4 (2x − 1)

]

, (3)

with the best-fit model (bold-faced on Fig. 2a) defined by the parameters

ab.f.
2 = +0.188 and ab.f.

4 = −0.130 . (4)

The admissible regions for the parameters a2, a4 of the πDA are presented in
Fig. 2-right as shaded slanted rectangles and are shown for different values of λ2

q.
Figure 2-left demonstrates the most striking feature of our type of πDAs: their
end-points (i. e., x → 0 and x → 1) are strongly suppressed, the suppression
being controlled by the quark vacuum virtuality λ2

q. Both the asymptotic and the
CZ πDAs are not end-point suppressed, as we have quantitatively shown in [4].
Our models demonstrate by a precedent that the common statement “two-humped
πDAs are end-point concentrated” is wrong.
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Fig. 2. Left: Self-consistent 2-parameter bunch of admissible πDAs. Right: Admis-
sible regions for the parameters a2 and a4 of the πDA.

4. γ
∗
γ → π: Why light-cone sum rules?

For Q2 ≫ m2
ρ, q2 ≪ m2

ρ, pQCD factorization does not help because it is
valid only for leading twist, and therefore higher twists become important [17].
The reason for this failure can be understood by recalling that if q2 → 0, one
needs to take into account the interaction of a real photon at long distances of the

order of O(1/
√

q2), as Fig. 3 illustrates. To account for long-distance effects in a
perturbative QCD treatment, one needs to introduce the light-cone DA of a real
photon.
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Q2� m2� �(P )q2 �m2�
Q2� m2� �(P )q2 ' 0

Fig. 3. The left part demonstrates the regime when pQCD description is valid; the
right part makes explicit why LCSR should be applied.

To this end, Khodjamirian [2] has shown that light-cone QCD sum rules (LCSR)
effectively account for the long-distance effects of a real photon by using quark-
hadron duality in the vector channel and an appropriate dispersion relation in q2;
namely,

Fγγ∗π(Q2, q2) =
1

π

s0
∫

0

ρ(Q2, s)

m2
ρ + q2

exp

[

m2
ρ − s

M2

]

ds +
1

π

∞
∫

s0

ρ(Q2, s)

s + q2
ds , (5)

where s0 ≃ 1.5 GeV2 is an effective threshold in the vector channel, and the Borel
parameter M2 takes values in the range 0.5−0.9 GeV2. Then, the real photon limit
(q2 → 0) becomes safely accessible. Here ρ(Q2, s) = ImFPT

γ∗γ∗π(Q2,−s) includes
contributions from both the leading twist πDA as well as the twist-4 one. The latter
is characterized by the twist-4 scale parameter δ2

Tw−4. This theoretical ground was
extended by Schmedding and Yakovlev (SY) to the NLO accuracy [1].

5. Results from nonlocal QCD sum rules vs. CLEO

constraints

In Ref. [5], we improved the SY analysis based on LCSR (5) by taking into
account ERBL NLO evolution for the πDA and the exact NLO running of αs(Q

2).
The established relation δ2

Tw−4 ≈ λ2
q/2 has been also involved in the analysis. As

Fig. 4a shows, we obtained reasonable agreement with constraints established in
this approach just for the value of λ2

q = 0.4 GeV2.

More recently [18], we have refined this extensive analysis in several respects,
notably, by obtaining from the CLEO data direct estimate for the inverse moment
of the πDA that plays a crucial role in pion electromagnetic/transition form fac-
tors, and by verifying the reliability of the main results of the CLEO data analysis
quantitatively. We also refined our error analysis by taking into account the total
uncertainty of the twist-4 contribution, and treated the threshold effects in the
strong running coupling more accurately. The main upshot of this investigation is
presented graphically in Fig. 4b, where the values λ2

q = 0.4 GeV2 and δ2
Tw−4 =

0.19(4) GeV2 have been employed. One can see that even with a 20% uncertainty
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Fig. 4. Comparison of theoretical predictions of nonlocal QCD sum rules for λ2
q =

0.4 GeV2 and the CLEO data constraints obtained in the LCSR approach. (a):
Previous results [5]. (b): New BMS constraints [18]. Here: ◆ = asymptotic DA, ✖ =
BMS model, ■ = CZ DA, ✚ = best-fit point, ✩ [19] and ✦ [20] = instanton models,
▼ = transverse lattice result [21]. All values are evaluated at µ2

SY = (2.4 GeV)2.

in the twist-4 contribution, the CZ distribution amplitude (■) is excluded – at least
– at the 4σ-level, while other well-known (✩, ✦ and ▼) with shapes more or less
close to the asymptotic one (◆) are excluded at the 2σ-level.

0.8 1 1.2 1.4 1.6 1.8

2.6

2.8

3

3.2

3.4

3.6

3.8

0.8 1 1.2 1.4 1.6 1.8

2.6

2.8

3

3.2

3.4

3.6

3.8

M 2 [GeV2℄

hx�1iSR� (a)

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

a2 � a4

CZ
BMSas

hx�1iexp� =3� 1 (b)

Fig. 5. (a): The inverse moment 〈x−1〉SR
π shown as a function of the Borel parameter

M2 from the special NLC QCD sum rule at the scale µ2
0 [4]; the light solid line is

the estimate for 〈x−1〉SR
π ; the dashed lines correspond to its error-bars. (b): The

result of the CLEO data processing for the quantity 〈x−1〉exp
π /3 − 1 at the scale

µ2
0 ≈ 1 GeV2 in comparison with three theoretical models from QCD sum rules, as,

CZ, BMS, and with (a). The thick solid-line contour corresponds to the union of
2σ-contours, while the thin dashed-line contour denotes the union of 1σ-contours.
The light solid line with the hatched band indicates the mean value of 〈x−1〉SR

π /3−1
and its error bars in part (a).

These findings are further supported by extracting the inverse moment of the
πDA from the CLEO data in a two-Gegenbauer model, a2+a4 = 〈x−1〉exp

π (µ2
0)/3−1,

at the low scale µ2
0 = 1 GeV2. The obtained constraints are presented in Fig. 5b.

One should compare them with the theoretical model-independent estimate of the
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inverse moment 〈x−1〉SR
π (µ2

0 ≈ 1 GeV2) = 3.28± 0.31, obtained in the special NLC
QCD sum rule using again λ2

q = 0.4 GeV2 [22, 4], see Fig. 5a. Noteworthily, these

constraints match each other and both of them comply with the value 1
3 〈x

−1〉π−1 =
0.24 ± 0.16 found in Ref. [23] from a LCSR analysis of electromagnetic pion form
factor. From Fig. 5b it is evident that again both the asymptotic πDA and the CZ
model are far outside the region of the CLEO experimental data.

6. E791: Diffractive di-jet production

The Fermilab group E791 proposed [7] to exploit experimentally the ideas on di-
jet diffractive dissociation suggested in Ref. [24] and further developed in Refs. [25],
[26] and [8]. Braun et al. [8] have used a convolution-type approach to account
for hard-gluon exchanges, represented diagrammatically in the left part of Fig. 6.
Following this convolution procedure (having also recourse to [27]), and ignoring
the distortion of our predictions caused by the detector acceptance, we found the
results displayed in the right part of Fig. 6, which make evident that, though the
data from E791 are not that sensitive as to exclude other shapes for the pion
DA (asymptotic and CZ model), also displayed for the sake of comparison, they
are relatively in good agreement with our predictions. Especially in the middle x
region, where our πDAs – the shaded strip – has the largest uncertainties (see Fig. 2
left), the predictions are not in conflict with the data. However, before this data
set can be used for a quantitative comparison, its inherent uncertainties have to be
removed.

It is again worth emphasizing that because our model distribution amplitudes
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Fig. 6. Left: Diffractive dijet πA-production in the E791 experiment with q2
⊥ ≃

4 GeV2 and s ≃ 1000 GeV2. Right: Asymptotic DA (solid line), CZ DA (dashed
line) and BMS bunch (shaded strip) in comparison with E791 data. Corresponding
χ2 are: 12.56, 14.15 and 10.96 (the last for BMS model with λ2

q = 0.4 GeV2).
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– exemplified by the BMS model – are end-point suppressed (see Fig. 7), they are
not affected by the poor accuracy of the E791 experimental data in these regions.
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2.5 '�(x)

x
Fig. 7. Comparison at µ2

0 = 1 GeV2 of different DA curves aiming to illustrate the
end-point suppression of the BMS model: CZ (dashed), asymptotic (dotted) and
BMS (solid).

7. Conclusions

Thanks to the recent high-precision CLEO experimental data [3], we can answer
more questions of nonperturbative QCD than a couple of years earlier. On the
theoretical side, the method of QCD sum rules with nonlocal condensates [11,
22, 15, 4] provided a tool to determine more precisely than before a bunch of
candidate DAs for the pion that are endpoint-suppressed due to a rather large
QCD vacuum quark virtuality λ2

q. On the other hand, the method of light-cone
sum rules [2, 1, 5] enables us to access the pion-photon transition form factor when
one photon becomes real. Taking these theoretical approaches in conjunction, we
were able to analyze the CLEO data at the NLO level in order to derive restrictive
constraints on the first two Gegenbauer coefficients a2 and a4, which control the x-
dependence of the πDA. These parameters allow the reconstruction of the πDA and
can be further tested against other experimental data, like those collected in the
di-jet production Fermilab experiment E791. The main conclusion is that both the
CZ model as well as the asymptotic πDA are excluded—at least at the 2σ level—
by the CLEO data, while the two-humped end-point suppressed BMS distribution
amplitude with a value of λ2

q ≈ 0.4 GeV2 is in a good agreement with the CLEO
data and not in contradiction with the E791 data.
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DOBIVANJE AMPLITUDE PIONSKE RASPODJELE IZ MJERENJA CLEO I
E791

Primjenom teorije smetnje QCD u blizu-vodećem redu i zbrojnih pravila QCD, iz
podataka mjerenja CLEO o prijelaznom faktoru oblika za F γ∗γπ

(

Q2
)

, izvodimo
ograničenja na Gegenbauerove koeficijente a2 i a4, kao i na inverzni moment am-
plitude pionske raspodjele 〈x−1〉π. Pokazujemo da su asimptotska i Chernyak–
Zhitnitskyjeva amplituda pionske raspodjele isključene na razini 3σ odn. 4σ, dok
podaci potvrd–uju potisnuti oblik kraja pionske distribucijske amplitude izvedene
zbrojnim pravilima QCD i nelokalnim kondenzatima. Naše zaključke podržavaju
takod–er mjerenja difraktivne tvorbe dvojnih mlazova E791 u Fermilabu.
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