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The statistical bootstrap model is critically revised in order to include a medium-
dependent resonance width in it. We show that a thermodynamic model with a
vanishing width below the Hagedorn temperature Ty and a Hagedorn spectrum-
like width above Ty may not only eliminate the divergence of the thermodynamic
functions above Ty, but also gives a satisfactory description the lattice quantum
chromodynamics data on the energy density above the chiral/deconfinement tran-
sition as the main result of this contribution. This model allows us to explain the
absence of heavy resonance contributions in the fit of the experimentally measured
particle ratios at SPS and RHIC energies.
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1. Introduction

Ultrarelativistic heavy-ion collision experiments at SPS and RHIC are per-
formed with the aim to create conditions of temperature and density under which
hadronic matter undergoes a phase transition to the hypothetical quark—gluon
plasma (QGP) and to investigate the properties of this state of matter once it
was created. The strongest theoretical support for the existence of the QGP comes
from lattice quantum chromodynamics (QCD) simulations at finite temperature
T which show a step-like enhancement of the effective number of degrees of free-
dom (energy density in units of T#) at a critical temperature 7., see Fig. 1. This be-
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Fig. 1. Energy density of lattice QCD (circles) and Hagedorn gas (long dashed
line) as functions of the reduced temperature T'/T,. The contributions of pion gas
(dotted line) and gas of pions and p mesons (dash-dotted line) are shown for a
comparison. Note that the pion mass on the lattice is not the physical one.

havior is conventionally interpreted as the transition from a few mesonic degrees
of freedom (mainly 7 and p mesons) to those of quasifree quarks and gluons. A
microscopic description of this transition is, however, still missing. On the one hand,
it has been shown [1] that a resonance gas model can perfectly explain the steep rise
in the number of degrees of freedom at TaT,.. On the other hand, lattice QCD has
also revealed that hadronic correlations persist for 7' > T, [2]. The question arises
whether it is more appropriate to describe hot QCD matter in terms of hadronic
correlations rather than in terms of quarks and gluons. In the present contribution,
we introduce a generalization of the Hagedorn resonance gas (statistical bootstrap)
model as such a description.

The statistical bootstrap model (SBM) [3—6] is based on the hypothesis that
hadrons are made of hadrons, with constituent and compound hadrons being
treated on the same footing. This implies an exponentially growing form of the
hadronic mass spectrum pg(m) ~ Cgm~%exp {m/TH} for m — oo. The parame-
ter Ty, Hagedorn temperature, was interpreted as a limiting temperature reached
at infinite energy density.

The extensive investigation of the SBM has led to a formulation of both the
important physical ideas and the mathematical methods for modern statistical
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mechanics of strongly interacting matter. Thus it has been clarified that the original
SBM requires two crucial modifications:

e hadrons should be considered as composite objects (the simplest way are
hadrons as MIT bags [7] of quarks and gluons), and their proper volume v
has to be taken into account [8,9] in the partition function;

e only SU,(3) color singlet clusters of quarks and gluons contribute [10—-13] to
the partition function of the system with their masses m; and volumina v;.

The SBM with proper volume was solved analytically by the Laplace transform
to the isobaric ensemble [14] and, indeed, its solution showed various possibilities
for the phase transition between the QGP and the hadron gas. Since then, this
technique has been successfully applied not only to solve far more sophisticated
versions [10—13,15] of the SBM, but also to find an analytical solution of a simplified
version of the statistical multifragmentation model [16,17] for the nuclear liquid-gas
phase transition. However, up to now the formulation of the SBM has encountered
severe problems. The first one is the absence of a width for the heavy resonances.
From the Particle Data Group [18], we know that heavy resonances with masses
m > 3.5 GeV may have width comparable to their masses. Taking the widths
into account will effectively reduce the statistical weight of the resonance. As we
shall show below, this change may eventually remove the divergence of the SBM
thermodynamics. The second problem arises while discussing the results of the
hadron gas (HG) model [19,20]. The HG model describes remarkably well the light-
hadron multiplicities measured in nucleus-nucleus collisions at CERN SPS [19] and
BNL RHIC [20] energies. This model is nothing else than the SBM of light hadrons
which accounts for the proper volume of hadrons with masses below 2.5 GeV, but
neglects the contribution of the exponentially growing mass spectrum.

In other words, in order to calculate the particle ratios within the HG model it
is, on the one hand, necessary to consider all strong decays of resonances according
to their partial width collected in Ref. [18], and, on the other hand, it is necessary
to truncate the hadron spectrum for masses above 2.5 GeV. Thus, one immediately
faces the following problem: Why the heavy resonances with masses above 2.5 GeV
predicted by the SBM do not appear in the particle spectra measured in heavy-ion
collisions at SPS and RHIC energies? Note that the absence of heavy-resonance
contributions in the particle ratios cannot be due to the statistical suppression
of the Hagedorn mass spectrum because the latter should not be strong in the
quark—hadron phase transition region, where those ratios are believed to be formed
[19,20].

In the present contribution, we suggest that the introduction of a finite width
of the resonances can solve the above problems of the SBM. In the next section we
formulate a simple statistical model that incorporates besides the Hagedorn mass
spectrum also medium dependent resonance widths due to the hadronic Mott effect,
and analyze its mathematical structure. In Sect. 3 we discuss a model fit to recent
lattice data of QCD thermodynamics [1] and some possible consequences for the
heavy-ion physics.
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2. Resonance width model: Mott transition

According to QCD, hadrons are not elementary, pointlike objects but rather
color singlet bound states of quarks and gluons with a finite spatial extension of
their wave function. While at low densities a hadron gas description can be suffi-
cient, at high densities and temperatures, when hadronic wave functions overlap,
nonvanishing quark exchange matrix elements between hadrons occur in order to
fulfill the Pauli principle. This leads to a Mott—Anderson type delocalization tran-
sition with frequent rearrangement processes of color strings (string-flip [21]) so
that hadronic resonances become off-shell with a finite, medium-dependent width.
Such a Mott transition has been thoroughly discussed for light hadron systems in
Ref. [22] and has been named soft deconfinement. The Mott transition for heavy
mesons may serve as the physical mechanism behind the anomalous J/v suppres-
sion phenomenon [23].

We introduce the width I' of a resonance in the statistical model with the
Hagedorn mass spectrum through the spectral function

I'm

A(S7m) = NS (3_m2)2 +F2 m2 })

(1)

a Breit—-Wigner distribution of virtual masses with a maximum at /s = m and the
normalization factor

-1

r 1
= . 2
/ s—m2 +F2m2 _ mz—mg (2)
m2 5 tarctan | ————
I'm

The energy density of this model with zero resonance proper volume for given
temperature T and baryonic chemical potential ;1 can be cast in the form

eTp) = Y. gien(T,pismi)

I=T,p,...

+ Z /dm/ds pr(m) A(s,m) ea(T, pa;/s), (3)

A=M,B,,

where the energy density per degree of freedom with a mass m is

[ % N
Tpaim) = [ 535 exp{m—uA}
T

, (4)
+0a

with the degeneracy g4 and the baryonic chemical potential p4 of hadron A. For
mesons, 6y = —1 , ppr = 0 and for baryons dp = 1 and pup = u. According to
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Eq. (3), the energy density of hadrons consists of the contribution of light hadrons
for m; < m, and the contribution of the Hagedorn mass spectrum pg(m) for
m > mg.

A new element of Eq. (3) in comparison to the SBM is the presence of the /s-
dependent spectral function. The analysis shows that, depending on the behavior
of the resonance width I in the limit m — oo, there are the following possibilities:

e For vanishing resonance width, I' = 0, Eq. (3) evidently reproduces the usual
SBM.

e For finite values of the resonance width, I' = const, Eq. (3) diverges for all
temperatures T because, in contrast to the SBM, the statistical factor in

Eq. (3) behaves as [exp {(my — 1a)/T} + 4] ~! 50 that it cannot suppress
the exponential divergence of the Hagedorn mass spectrum pg(m).

e For a resonance width growing with mass like the Hagedorn spectrum I' ~
Cr exp {m/TH} or faster, Eq. (3) converges again.

Indeed, in the latter case the Breit—Wigner spectral function behaves as

I'm 2 o m (5)
- — ~ S
*(5 —m2)2 +I2m?2 P Tu

m— 00

and cancels the exponential divergence of the Hagedorn mass spectrum. Hence, the
energy density remains finite. Note that both the analytical properties of model
(3) and the right hand side of Eq. (5) remain the same if a Gaussian shape of the
spectral function is chosen instead of the Breit—Wigner one.

It can be shown that the behavior of the width at finite resonance masses is not
essential for the convergence of the energy density (3). In other words, for a con-
vergent energy density (3) above Ty it is sufficient to have a very small probability
density (5) (or smaller) for a resonance of mass m to be found in the state with the
virtual mass /s. Since there is no principal difference between the high and low
mass resonances, we can use the same functional dependence of the width I" for all
masses. Thus, for the following model ansatz

O, for TSTH,

m\" T\ m
— — — f T >1T;
Cr (TH> (TH> exp(T> , for > Ty,

the energy density (3) is finite for all temperatures and the divergence of the SBM
is removed. At T' = Ty, depending on choice of parameters, it may have either a
discontinuity or its partial 7' derivative may be discontinuous. As discussed above,
for T' < Ty such a model corresponds to the usual SBM, but for high temperatures
T > Ty it remains finite for a wide choice of powers N,,.

I(T) = (6)
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3. Applications for lattice QCD and heavy-ion collisions

As one can see from Fig. 1, the Hagedorn gas model correctly reproduces the
lattice QCD results below the critical temperature T, and just in a vicinity above
T., but not for large temperatures. Figure 2 shows a comparison of the same lattice
QCD data [1] with the Mott—Hagedorn gas (6) where the parameters of the spectral
function are Ny = 2.325, N,, = 2.5 and Ty = 165 MeV and m, = m; = 1
GeV. The successful description of the lattice energy density [1] indicates that
above T, the strongly interacting matter may be well described in terms of strongly
correlated hadronic degrees of freedom. This result is based on the concept of soft
deconfinement and provides an alternative to the conventional explanation of the
deconfinement transition as the emergence of quasifree quarks and gluons.
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Fig. 2. Fit of the lattice QCD data [1] with the Mott—Hagedorn resonance gas
model (6). For details see text.

Another interesting feature of the model (6) is that it allows a natural expla-
nation for the absence of heavy resonance contributions to the particle yields mea-
sured at highest SPS and at all RHIC energies, where QGP conditions are expected
[19,20]. In order to find out whether a given resonance has a chance to survive untill
the freeze-out, it is necessary to compare its lifetime with the typical timescale in
the system. There are two typical timescales usually discussed in nucleus-nucleus
collisions, the equilibration time 7,4 and the formation time 7¢. The equilibration
time tells when the matter created in collision process reaches a thermal equilib-
rium which allows the use of the hydrodynamic and thermodynamic descriptions.
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For Au + Au collisions at RHIC energies, it was estimated to be about 7, ~ 0.5 fm
[24]. On the other hand, in transport calculations, the formation time is used: the
time for constituent quarks to form a hadron. The formation time depends on the
momentum and energy of the created hadron, but is of the same order 77 ~ 1 — 2
fm [25] as the equilibration time.

Since within our model the QGP is equivalent to a resonance gas with medium
dependent widths, all hadronic resonances with life time I'"*(m) shorter than
max{7s, Teq} Will have no chance to be formed in the system. Therefore, the upper
limit of the the integrals over the resonance mass m and over the virtual mass /s
in Eq. (3) should be reduced to a resonance mass defined by

I'(m)~! = max{r, Teq) - (7)

This reduction may essentially weaken the energy density gap at the transition
temperature or even make it vanish. Thus, the explicit time dependence should be
introduced into the resonance width model (3) while applying it to nuclear colli-
sions, and this finite time (size) effect, as we discussed, may change essentially the
thermodynamics of the hadron resonances formed in the nucleus-nucleus collisions.

4. Conclusions and remarks

The statistical bootstrap model allows the interpretation of the QGP as the
hadron resonance gas dominated by the state of infinite mass (and infinite vol-
ume). We argue that it is necessary to include the resonance width into the SBM
in order to avoid the contradiction with the experimental data on hadron spec-
troscopy. We found that the simple model (3)—(6), with a vanishing width below
the Hagedorn temperature Ty and a Hagedorn spectrum-like width above Ty, can
eliminate the divergence of the thermodynamic functions above Ty, but also it is
able to successfully describe the lattice QCD data [1] for energy density with three
fitting parameters only. The model also allows a natural explanation of the absence
of heavy resonance contributions in the fit of the experimentally measured particle
ratios at SPS and RHIC energies.

However, such a modification of the SBM requires an essential change in our
view of QGP: it is conceivable that hadrons of very large masses, which should be
associated with QGP, cannot be formed in nucleus—nucleus collisions because of
their very short lifetime.

In the analysis of experimental data, the presented model should be applied with
care: it can be successfully applied to describe either the quantities associated with
the chemical freeze-out, i.e. particle ratios, or the spectra of Q hyperons, ¢, J/v
and 1’ mesons that are freezing out at hadronization [26—29]. But, as discussed
in Refs. [30—32], the model presented here should not be used for the post freeze-
out momentum spectra of other hadrons produced in the nucleus-nucleus collisions.
Perhaps only such weakly interacting hadrons like 2, ¢, J/¢ and ¢’ will allow us
to test the presented model.
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The question how to derive the non-zero width below Ty has to be investigated.
To solve this problem, it will be necessary to include into the present model a non-
zero proper volume of hadrons. This, however, will require to consider a mixture
of hadrons of different sizes, as studied recently in Refs. [33] and [34] or even a
relativistic modification of the excluded volume of hadrons [34,35].
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HADRONSKE KORELACIJE IZNAD PRIJELAZA KIRALNOST -
ODSUZNJIVANJE

Kriticki preradujemo statisticki model samopodizanja kako bi u njega ukljucili $i-
rine rezonancija ovisne o sredini. Pokazujemo da termodinamicki model s i§¢eza-
vajuéom Sirinom ispod Hagedornove temperature Ty, i sa spektralnom Sirinom
poput Hagedornovove iznad 7Ty, moze ukloniti divergenciju termodinamickih
funkcija iznad Ty, ali on takoder daje dobar opis podataka kvantne kromodinamike
na resetci za gustoéu energije iznad prijelaza kiralnost — odsuznjivanje, $to je glavni
doprinos ovog rada. Taj model objasnjava nepojavljivanje teskih rezonancija u
mjerenjima eksperimentalnih ¢esti¢nih omjera na energijama SPS i RHIC.
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