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1 Introduction
Membrane separation processes include a large number 
of techniques for performing separation in different phas-
es (liquid, gas, and mixed-phase) under the action of dif-
ferent driving forces, such as potential difference, electri-
cal force, pressure, or chemical potential.1,2 Microfiltration 
(MF), ultrafiltration (UF), nanofiltration (NF), and reverse 
osmosis (RO) constitute the main separation membranes 
process using the gradient of pressure as the driving force.1–4 
Recently, many works have studied the forward osmosis 
(FO) process as the replacement of those techniques in 
order to reduce the amount of energy used to generate 
the pressure difference upstream and downstream of the 
membrane.5–7 However, several technical barriers impede 
FO industrial applications, the high performance mem-
brane is one of the most important challenges of the FO 
process.8 For this purpose, the literature highlights several 
points. Firstly, it is essential to explain correctly the pro-
cess of FO with the existence of many models of transfer, 
namely, irreversible thermodynamics, solubilisation, diffu-
sion, and pores.9,10 Indeed, FO presents many interactions 
between solutes, water, and membranes.11–16 In addition, 
the desired characteristics of the FO membrane would 
be higher water permeability and low solute permeabili-
ty.8,17 Artificial intelligence has been proposed to describe 
nonlinear systems due to its numerous be nefits (mini-
misation of the number of experiments, cost reduction, 
time saving, and studying the systems without profound 
knowledge).18 Support Vector Machines (SVM) have been 
commonly used to model nonlinear systems with different 

components.19 Moreover, for the FO process, there are 
few numbers of studies on the modelling of the FO system 
compared with other separation membrane processes, 
such as nanofiltration and reverse osmosis. Nevertheless, 
few studies have used artificial neural networks (ANNs) 
to predict the rejection of organic molecules (neutral) by 
the FO membranes. Pardeshi et al.20 successfully applied 
ANN for determination of the optimal conditions for FO 
desalination of groundwater. In 2020, the modelling of FO 
process was studied by Jawad et al. using an ANN to pre-
dict the permeate flux based on nine inputs effect: mem-
brane (type and orientation), feed solution (concentration, 
velocity, and temperature), and draw solution (concentra-
tion, molecular weight, velocity, and temperature), with 
different parameters of the ANN based on the number of 
neurons and hidden layers.21 The results obtained proved 
the capability of ANN to predict the relationships between 
inputs and outputs in a way better than Multiple Linear 
Regression (MLR). The machine learning was applied to 
predict the internal concentration polarisation in FO.22 In 
another study, the machine learning was used to optimise 
the performance of FO for the treatment of textile industry 
wastewater.23 Furthermore, literature offers no study on 
using SVM to predict the FO process compared with the 
other membranes processes.

To the best of our knowledge, our work is the first to use 
SVM to study the FO process by studying the impact of 
membrane characteristics on the rejection of organic 
molecules. In summary, several models will be generated 
to predict the rejection of organic molecules by FO mem-
branes. Firstly, many SVM models will be developed us-
ing different inputs, training algorithms, kernel functions, 
SVM parameters, and different database subdivision. 
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Secondly, the SVM models developed will be compared 
to obtain the best model. Thirdly, other models, namely 
ANN and MLR models, will be generated using the data-
base and the subdivision that gives the best SVM model 
accuracy. The last one is the comparison between all the 
optimal models obtained with different methods (SVM, 
ANN, and MLR). In the end, a conclusion recaps the re-
sults obtained.

2 Materials and methods
2.1 Support Vector Machines

Support Vector Machines (SVM) is an algorithm developed 
by the machine learning community (Vapnick 1982; Burg-
es 1998). It is a superior form of machine learning that uses 
a classification algorithm. Its approach controls automati-
cally the flexibility of the resulting classifier on the training 
data.19,24,25

Since its development, the SVM has attracted attention 
and extensive applications because of its remarkable per-
formance. The SVM method is based on statistical learning 
theory, with the structural risk minimisation theory.19

The regression function makes the relationship between 
the inputs and outputs in the SVM method; its result can 
be depicted with Eq. (1).19,26

(1)

f(xi) represents the predicted value of the SVM model, φ(xi) 
is the nonlinear function that draws input finite-dimen-
sional into a higher-dimensional space, while wT and b are 
the weight vector and the bias, respectively.19

The database has a D-dimensional input vector xi ∈ RD and 
a scalar output yi ∈ R.

The SVM optimisation model is given by Eq.  (2) (for the 
training database):

(2)

C is the parameter used to balance the empirical risk and 
model complexity term w2, ξi is the error between the real 
and estimated value, ξi

* represents the slack variable to 
denote the distance of the sample outside of the ε-tube, 
ε is equal to 0.1000, and v is the vector of independent 
variables. 

As a standard nonlinear constrained optimisation problem, 
the previous problem can be resolved using the Lagrange 
multipliers techniques:19
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K(xi,xj) is the kernel function satisfying Mercer’s condition, 
and ai and ai

* are the non-negative Lagrange multipliers, 
respectively. Eq. (1) becomes Eq. (4).19
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2.2 Modelling procedure

The modelling procedure contains six chapters. The first 
consists of the collection of the database as complete as 
possible from the literature. This database makes three da-
tabases used to model the rejection of organic molecules 
by the FO membranes using the SVM method. The second 
is about the pretreatment and statistical analysis of the data 
set; it contains the minimum, maximum, standard devia-
tion, and mean of each input. The third chapter contains 
the modelling of all databases using the SVM method with 
different splitting of the database, different kernel func-
tions, and algorithm parameters. The next chapter is the 
comparison of all SVM models generated for obtaining the 
optimal SVM model. The database and subdivision given, 
this optimal model was used to generate other models with 
different methods (ANN and MLR); it is the chapter on the 
development of ANN and MLR models. The last one is 
a comparison between the results obtained (the best per-
formance SVM model obtained, the optimal ANN mod-
el, and the best efficient MLR model developed). Fig.  1 
demonstrates the cited chapters.

2.2.1 Database; collection, pretreatment, and analysis

We collected a database from the accessible literature,27–43 
intending to group all the characteristics of the studied sys-
tem. The software “Get data Graph” was used to take the 
values of the rejection from the representative diagrams. 
The inputs are represented in the properties of organic 
molecules, membrane characteristics, and purification op-
erating conditions for the rejection of the organic molecules 
by FO membranes. The inputs considered in this work are 
the molecule properties (effective diameter of an organic 
molecule in water dc, molecular length “length”, molecular 
width “width”, molecular depth “depth”, dipole moment, 
logarithm of the octanol-water partition coefficient “log-
Kow”), and functional conditions (pH, crossflow velocity, 
and water flux). For each group of inputs, we used one of 
the membrane characteristics (surface membrane charge 
as “zeta potential”, hydrophobicity as “contact angle”, and 
porosity as “pore diameter”). The values of dc, width, and 
depth were calculated with Eqs. (5)–(7), respectively.44–46
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Mw is molecular weight. Smin and Smax represent the mini-
mum and maximum surface area, respectively. Table 1 pre-
sents the inputs and outputs of each database.

The properties (descriptors) of the organic molecules (avail-
able in supplementary data Table  S1) used in this work 
were applied with the software Hyperchem, 2008, for the 
minimum and maximum surface area calculation, as well 
as with the software Chembio, 2014, for determination of 
the organic molecules length.

The statistical analysis is preliminary (standard deviations 
(STD), minimum, maximum, and mean), and is shown in 
supplementary data (Table S2).

For each database, a matrix correlation was used to edit 
the interactions between the variables (organic molecule 

properties, membrane characteristics, and operating con-
ditions).

2.2.2 Development of the SVM models

For each database, several SVM models were developed 
using different kernel functions (linear, polynomial, radial 
basis function (RBF), and sigmoid). For each kernel func-
tion, several parameters (Coefficient, Gamma, Nu, and 
Degree) values were tested to obtain the best results. Many 
models were established by separating each database into 
two parts (training and testing phase), and using different 
kernel functions to obtain the optimal SVM model. The 
correlation coefficient R and the mean absolute error 
(MAE; Eq. (8)) were used to compare the performance of 
SVM models obtained for the organic molecules rejection 
by the FO membranes developed.47
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where yi,exp and yi,cal represent the experimental and the 
predicted values, respectively, and N is the number of data.
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Creation of (03) three databases

Pretreatment and statistical analysis

Saving the parameters of the optimal SVM model
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Performance
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Fig. 1 – Modelling procedure
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STATISTICA was used for the modelling of the rejection of 
organic molecules by the FO membranes using the SVM 
method to study the influence of the membrane charac-
teristics on the rejection of the OM.

3 Results and discussion 
3.1 Developing the SVM models 

Each database cited previously was divided into two sub-
sets: training and testing. Many models were developed 
using the different subdivisions, different kernel functions, 
and different parameters (training constants). Table 2 re-
caps the results of the first database with the zeta potential 
as the only membrane characteristic.

According to Table 2, the subdivision of 70 % for training 
set and 30 % for testing gave the best results for this da-
tabase compared to the other results obtained by other 
subdivisions.

The linear kernel function gave a correlation coefficient 
of 0.5453 and a value of the MAE above 8.3000 %. The 
second function (polynomial) offered a model with a co-
efficient of correlation above 0.6900 for the testing phase, 
and MAE less than 8.8000  %. RBF developed the best 
performance model for this first database with R equal to 
0.7525 and MAE less than 5.8750 %. The last model with 
the sigmoid function was less efficient than the previous 
model, and with values of R and MAE for the testing phase 
equal to 0.5917 and 7.9172 %, respectively.

Table 1 – Components of each database

Database 1 Database 2 Database 3

Inputs 

dc ⁄ g mol−1 dc ⁄ g mol−1 dc ⁄ g mol−1

logKow logKow logKow

dipole moment (Debye) dipole moment (Debye) dipole moment (Debye)
length ⁄ nm length ⁄ nm length ⁄ nm
width ⁄ nm width ⁄ nm width ⁄ nm
depth ⁄ nm depth ⁄ nm depth ⁄ nm

zeta potential ⁄ mV zeta potential ⁄ mV zeta potential ⁄ mV
– contact angle ⁄ ° contact angle ⁄ °
– – pore diameter ⁄ nm

pH pH pH
crossflow velocity ⁄ m h−1 crossflow velocity ⁄ m h−1 crossflow velocity ⁄ m h−1

water flux ⁄ l m−2 h−1 water flux ⁄ l m−2 h−1 water flux ⁄ l m−2 h−1

Outputs rejection ⁄ % rejection ⁄ % rejection ⁄ %
Data size 333 193 115

Table 2 – Results of the first database DB1

Kernel function Parameters Phases R MAE ⁄ %

Linear
SVM N° = 93
C = 18.000
Nu = 0.3

training phase (70 %)
testing phase (30 %)

total phase 

0.4433
0.5453
0.4707

10.1288
8.3192
9.5854

Polynomial

SVM N° = 73
C = 10.000
Nu = 0.2

Degree = 4 
Gamma = 0.2
Coefficient = 2 

training phase (70 %)
testing phase (30 %)

total phase

0.6961
0.6907
0.6939

9.1503
8.7934
9.0431

RBF
SVM N° = 122

C = 8.000
Nu = 0.2

Gamma = 0.3

training phase (70 %)
testing phase (30 %)

total phase

0.7454
0.7525
0.7451

6.5714
5.8747
6.3622

Sigmoid

SVM N° = 96
C = 15.000
Nu = 0.4

Gamma = 0.1
Coefficient = 2

training phase (70 %)
testing phase (30 %)

total phase

0.4145
0.5917
0.4636

9.3139
7.9172
8.8983
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For this first database, the SVM model developed for stud-
ying the effect of the FO membrane characteristics on the 
OM rejection using the RBF kernel function had the best 
performance among the other models developed with the 
other kernel functions.

Table 3 summarises the results obtained for the second da-
tabase that contains the zeta potential and contact angle 
as the membrane characteristics. The table demonstrates 
that the subdivision of 80 % for training data and 20 % for 
testing gave the best results in comparison with the other 
database subdivisions for the modelling of the rejection of 
organic molecules by the FO membranes.

The linear kernel function gave R value equal to 0.7341 
and a value of MAE greater than 9.92 %. The polynomial 
function generated a model with values 0.7825 for R and 

8.9716 % for MAE. RBF developed the best performance 
model for this database with R value equal to 0.8526 and 
MAE less than 8.07 %. The last model using the sigmoid 
function as kernel function is the lowest performance mod-
el compared to the previous models. The values of R and 
MAE for the testing phase were 0.7138 and 9.3985 %, re-
spectively.

For the second database, the SVM model developed with 
the RBF kernel function is the best performing model 
among all the other models generated.

The third database using the following membrane charac-
teristics (zeta potential, contact angle, and pore diameter) 
was modelled with different parameters. Table 4 summa-
rises its results.

Table 3 – Results obtained by the second database DB2

Kernel function Parameters Phases R MAE ⁄ %

Linear
SVM N° = 39

C = 3.000
Nu = 0.2

training phase (80 %)
testing phase (20 %)

total phase 

0.5527
0.7341
0.6947

6.1685
9.9283
6.9191

Polynomial

SVM N° = 64
C = 8.000
Nu = 0.2

Degree =3
Gamma = 0.3
Coefficient = 2

training phase (80 %)
testing phase (20 %)

total phase

0.7478
0.7825
0.7591

5.4302
8.9716
6.1458

RBF
SVM N° = 87

C = 3.000
Nu = 0.4

Gamma = 0.5

training phase (80 %)
testing phase (20 %)

total phase

0.7231
0.8526
0.7682

4.4298
8.0672
5.1649

Sigmoid

SVM N° = 34
C = 9.000
Nu = 0.2

Gamma = 0.1
Coefficient = 1

training phase (80 %)
testing phase (20 %)

total phase

0.5432
0.7138
0.5898

6.2312
9.3985
6.8712

Table 4 – Results obtained by the third database DB3

Kernel function Parameters Phases R MAE ⁄ %

Linear
SVM N° = 13
C = 10.000
Nu = 0.1

training phase (80 %)
testing phase (20 %)

total phase 

0.4734
0.6649
0.5234

17.4101
15.5788
17.0373

Polynomial

SVM N° = 44
C = 10.000
Nu = 0.5

Gamma = 0.3
Coefficient = 3

Degree = 3

training phase (80 %)
testing phase (20 %)

total phase

0.7693
0.7880
0.7688

8.5211
10.3110
8.8854

RBF
SVM N° = 58
C = 10.000
Nu = 0.5

Gamma = 0.3

training phase (80 %)
testing phase (20 %)

total phase

0.7398
0.8124
0.7535

6.7877
7.4933
6.9313

Sigmoid

SVM N° = 34
C = 6.000
Nu = 0.3

Gamma = 0.3
Coefficient = 3

training phase (80 %)
testing phase (20 %)

total phase

0.3492
0.4328
0.3638

11.6417
12.3188
11.7795
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The subdivision that gave the best results among all subsets 
employed was the subset with 80 % for training and 20 % 
for testing.

Following the preceding Table, the values of R and MAE for 
this database were less than the previous results. For the 
linear kernel function, the values were sequential; 0.6649 
and 15.5788 % for the R and MAE. The polynomial func-
tion gave R value equal to 0.7880 and MAE greater than 
10.3100 %. The SVM model using the RBF function gener-
ated R value equal to 0.8124 and MAE equal to 7.4933 %. 
The sigmoid function provided R value equal to 0.4328 and 
MAE above 12.3100 %. Thus, the model developed with 
the RBF is the best performance model among the others.

According to the previous results, the best SVM model to 
study the effect of the FO membrane characteristics on 
the OM rejection by its prediction is the model with the 
second database, RBF is the kernel function. The second 
database, formed with the zeta potential and contact angle 
as the membrane characteristics, is the optimal database. 
This result suggests that the modelling of the rejection of 
organic molecules is more efficient with the coexistence of 
surface membrane charge (zeta potential) and the hydro-
phobicity (contact angle) as the membrane characteristics. 
This advantage was compared to the surface membrane 
charge as the only membrane characteristic; also that the 
porosity is an additional characteristic to the surface mem-
brane charge and hydrophobicity. Table  5 illustrates the 
structure of the best performing SVM model.

Table 5 – Structure of the best performance model obtained

Database Subdivision SVM 
parameters

Kernel 
function

Kernel 
function 

parameter
DB2

11 Inputs
1 Output 

80 % for training 

20 % for testing 

N° = 87
C = 3.000
Nu = 0.4

RBF Gamma = 0.5

The scheme and the parameters of the linear regression 
were directly generated with the MATLAB function “Pos-
treg”. Fig. 2 demonstrates a comparison between the ex-

perimental values of the rejection of the organic molecules 
and the predicted values using the best performance SVM 
model obtained. The parameters of the ideal agreement 
vectors are [α = 1 (slope), β = 0 (intercept), R = 1.0000]. 
For this model, the training sample was depicted with [α, β, 
and R] equal to [0.35, 61, and 0.7231]. The testing sample 
gave the agreement vectors with [0.34, 63, and 0.8526], 
and the total with [0.34, 62, and 0.7682].

3.2 Developing the ANN and MLR models

The structure of the best-performance SVM model (data-
base and subdivision) was used for the generation of two 
other models: ANN and MLR, to predict the rejection of 
the organic molecules by the FO membranes.

3.2.1 Artificial neural network

ANN is one of the most popular machine learning tools; re-
cently, it has been employed for the modelling of different 
complex systems because of its performance. ANN con-
tains three layers (units): input, hidden, and output layers. 
The input variables (obtained from the external systems) 
are converted to instantaneous values, which are trans-
formed towards the output. This operation can be carried 
out using neurons by exploiting the weights and biases of 
each neuron.47–49

The second database (DB2) with the optimal subdivision 
(80 % for training phase and 20 % for testing phase) was 
used to model the rejection of the organic molecules by FO.

The transfer functions (activation functions) used in the hid-
den layer (HL) were Logistic, Tangh, Exponential, and Sine. 
The activation function in the output layer (OL) was the 
Identity function (Purelin). The number of neurons in the 
hidden layer varied between three and twenty-five, the out-
put layer with one neuron, and eleven neurons in the input 
layer. Table 6 presents the results of the different models.

The preferred performance model among the models cre-
ated was based on the value of R for the testing phase. The 
table suggests, firstly, that all the models developed gave 
values of the coefficient correlation greater than 0.8000, 
except the 4th model using the Sine as the activation func-

Table 6 – Results of the ANN models developed

Training algorithm Transfer function (HL) Transfer function (OL) Number of neurons (HL) Phase R MAE ⁄ %

BFGS 42 Logistic Purelin 3
Training
Testing
Total

0.8710
0.8520
0.8684

5.2224
3.7986
4.9420

BFGS 35 Tangh Purelin 3
Training
Testing
Total

0.8704
0.8723
0.8684

4.8853
4.6708
4.8431

BFGS 10 Exponential Purelin 13
Training
Testing
Total

0.8178
0.8366
0.8156

5.8350
5.2648
5.2727

BFGS 25 Sine Purelin 4
Training
Testing
Total

0.6171
0.6682
0.6148

7.2929
7.1627
7.7732
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tion in the hidden layer, which generated a value of R less 
than 0.7000. These results explain the aptitude of the ANN 
models developed to predict the rejection of organic mole-
cules by FO membranes.

Secondly, the best ANN model was generated by the BFGS 
as the training algorithm; the Tangh and the Purelin are 
the activation functions in the hidden and output layer, 
respectively. The number of neurons was eleven, three, 
and one neuron in the input, hidden, and output layer, re-
spectively. This configuration represents the most efficient 
model among the four (4) ANN models created to predict 
the rejection of the organic molecules by FO membranes.

Fig.  3 depicts the scheme of the linear vectors obtained 
by the MATLAB “Postreg” function. This figure is no more 
than a comparison between the experimental values of re-

jection of organic molecules by the FO membranes and 
the predicted values established with the best ANN model 
developed. As cited previously, the ideal agreement vec-
tors are usually represented by the [α = 1 (slope), β = 0 
(intercept), R = 1.0000]. For this ANN model, the training 
sample was generated with [α, β, and R] equal to [0.77, 20, 
and 0.8704], the testing sample offered agreement vectors 
of [0.97, 42.5, and 0.8723], and the total was [0.79, 18, 
and 0.8683].

3.2.2 Multiple linear regression

Multiple linear regression (MLR) is a statistical tool used to 
model linear systems. It consists of modelling an objective 
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(output) according to several inputs using the quantitative 
relationships as cited in Eq. (9).47,49

, cal ,
1 1

N M

i j i j
i j

y B A X
= =

= +∑∑ (9)

where yi,cal is the predicted value of the rejection, B repre-
sents the intercept, Aj is the constant of each input, Xi,j are 
the inputs, and N and M are the sizes of data sets.

The optimal database with the optimal subdivision (80 % 
for training sample) of the best-performance SVM model 
was used to create the MLR model of the rejection of OM 
by the FO membranes. The testing data was used to exam-
ine the performance of the model obtained. The MLR pre-
dicted values developed in this work are given by Eq. (10). 

193 11

OM ,
1 1

rejection  j i j
i j

B A X
= =

= +∑∑ (10)

The organic molecules rejection by the FO membranes ob-
tained with the MLR model is given by Eq. (11).

OM/FO c owrejection   17.6436   0.1964   log
 1.3516  dipole moment 19.1273  length
 29.1402  width 15.7089  depth
 0.0024   zeta potential 0.0981  contact angle + 

+ 0.2791  pH  0.0116  CFV

d K= ⋅ − ⋅ −

− ⋅ + ⋅ +
+ ⋅ + ⋅ +
+ ⋅ + ⋅

⋅ − ⋅  + 0.4267  water flux⋅

(11)

The effective diameter, length, width, and depth are the 
inputs having the most influenced factors on the rejection 
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Fig. 3 – Agreement vectors with the ANN model obtained: (a) training phase, (b) testing phase, and (c) total phase
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of organic molecules. Zeta potential, contact angle, pH, 
and water flux with less importance, and crossflow velocity 
(CFV), logKow, and dipole moment with negative factors.

The impact of the membrane characteristics on the re-
jection of organic molecules by the FO membranes was 
remarkable, because the increase in zeta potential (rep-
resents the membrane surface charge) led to the increase 
in organic molecules rejection (following the existence of 
a positive factor). The contact angle (identifies the hydro-
phobicity of membranes) had the same effect on the rejec-
tion of the organic molecules by the FO membranes, which 
was reflected, also, by the presence of a positive factor as 
cited in the rejection equation. In summary, according to 
the MLR model of the rejection of the organic molecules 
by the FO membrane developed, the rejection of OM was 
proportional to the FO membrane characteristics. Table 7 

summarises the results relating to the performance of MLR 
model obtained.

Table 7 – Results of the MLR model

Phase R MAE ⁄ %
Training 0.5620 6.5094
Testing 0.7630 9.2871
Total 0.6155 7.0707

Fig. 4 shows the pattern of the linear vector achieved by 
the MATLAB “Postreg” function. This figure is an assess-
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ment of the experimental values of the organic molecules 
rejection and the predicted values, which were obtained 
by the MLR model developed. For this MLR model, the 
training sample was produced with [α, β, and R] equal to 
[0.34, 60, and 0.5620], the testing sample had an agree-
ment vector [0.35, 62, and 0.7630], and the total was 
[0.34, 61, and 0.6154].

3.3 Comparison between SVM, ANN, and MLR models

The comparison of the SVM, ANN, and MLR models served 
to extract the best-performance model among them. For 
this purpose, in addition to the correlation coefficient and 
the MAE, other statistical errors, root mean square error 
(RMSE), model predictive error (MPE), and standard error 
of prediction (SEP), were used to compare the testing phas-
es of each model. The errors values were obtained with the 
following equations:47,48–50

( )2,exp , cal1RMSE 
N

i ii
y y

N
=

−
=
∑ (12)

( ) ,exp ,cal
1

,exp

100MPE % i iN
i

i

y y
N y=

−
= ∑ (13)

( )
e

RMSESEP % 100
Y

= ⋅ (14)

where yi,exp, yi,cal represent the experimental and the calcu-
lated value, respectively, N is the number of data, and Ye is 
the mean value of experimental data. 

Table 8 – Statistical comparison of models obtained

Model R MAE ⁄ % RMSE ⁄ % MPE ⁄ % SPE ⁄ %
SVM 0.8526 8.0672 15.9551 39.5809 18.6216
ANN 0.8723 4.6708 6.2630 5.7765 6.8415
MLR 0.7630 9.2871 16.3703 41.5978 19.1061

Table 8 shows the comparison of the performance between 
the three models obtained. The R value of the SVM model 
was above the R of the MLR model and near the value of 
the ANN model. This result demonstrates the superiority of 
our model (SVM) in predicting the rejection of the organic 
molecules using the FO membrane in comparison with the 
MLR model, and the closeness of the SVM model to the 
ANN model.

The histogram of the MAE (presented by Fig. 5) shows that 
the SVM model had a value (8.0672 %) below the value 
of the MLR model (9.2871 %) and above that of the ANN 
model (4.6708  %). The SVM model had a RMSE value 
above the ANN model and lower than the value of the 
MLR model. Its value was equal to 15.9500 %; the MLR 
model with a value greater than 16.3700 %, and the ANN 
model with a value less than 6.2600 %.

For the MPE, the SVM and the MLR models had values 
above the value of the ANN model. The SVM model of-
fered a value of 39.5809 %, while MLR model generated 
a value of 41.5978 %. The best model (ANN) gave a value 
equal to 5.7765 %.

The ANN model gave SEP value less than the two oth-
er models values. Their values were equal to 18.6216, 
6.8415, and 19.1061 % for the SVM, ANN, and MLR mod-
els, respectively.

Fig. 5 – Comparison of the models obtained

4 Conclusion
This work investigates the use of the SVM in the FO mem-
brane process with the aim of reviewing the weight of 
membrane characteristics on the rejection of organic mol-
ecules. Many models were created with diverse inputs, in-
cluding the properties of OM, membrane characteristics, 
and operating conditions.

The generated SVM models demonstrated the existence of 
a direct relationship between the rejection of organic mol-
ecules and the FO membrane characteristics. It is translat-
ed by the variation of the rejection models obtained ac-
cording to the membranes characteristics.

The comparison between the SVM models developed 
with different parameters and different kernel functions 
described that the model created with the RBF as the 
kernel function was the most efficient. Moreover, the da-
tabase contained the zeta potential and contact angle as 
the membrane characteristics, and the subdivision 80 % 
for the training phase and 20 % for the testing phase was 
the best structure that gave the best performance model. 
Many ANN and MLR models were developed using this 
structure with different training algorithms, different ac-
tivation functions in the HL, “Identity” as the activation 
function in the OL, and a varied number of neurons in the 
HL. The ANN model created with BFGS as the training 
algorithm, “Tangh” and Identity as the activation functions 
in the HL and OL, respectively, was the best performing 
model among the ANN models generated. Among all 
these models, the SVM was more efficient than the MLR 
model, and was close to the ANN model. The comparison 
between the SVM model, the ANN model and MLR mod-
el based on the correlation coefficient (R) and the MAE 
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showed R = 0.8526 and MAE = 8.0672 % for the SVM 
model, R = 0.8723 and MAE = 4.6708 % for the ANN 
model, and R  =  0.7630 and MAE  =  9.2781  % for the 
MLR model.

This work studied the precision of each model generated 
using RMSE, MPE, and SEP values with the outstanding su-
periority of the ANN model in comparison with SVM and 
MLR models. 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the Minis-
try of Higher Education of Algeria (PRFU Projects N° 
A16N01UN260120220004), and the group of Laboratory 
of Biomaterials and Transport Phenomena of University of 
Médéa.

Compliance with ethical standards

Conflict of interest 
Authors declare that there is no conflict of interest.

SUPPLEMENTARY DATA
Table S1 – Names and properties of the organic molecules

N° Name Molecular formula dc ⁄ g mol−1 Dipole (Debye) logKOW Length ⁄ nm Width ⁄ nm Depth ⁄ nm
1 17a-Estradiol C18H24O2 0.757752 1.674 2.19 1.572 0.9332 1.0793

2 17a-Ethynylestradiol C20H24O2 0.7863256 1.031 1.43 1.57 1.0265 1.1286

3 17b-Estradiol C18H24O2 0.757752 2.536 2.19 1.523 0.9377 1.0822

4 Amitriptyline C20H23N 0.7638373 0.4773 2.36 1.497 1.0492 1.1473

5 Androstenedione C19H26O2 0.7745941 0.5433 4.36 1.727 0.9632 1.0891

6 Androsterone C19H30O2 0.7793609 3.879 4.25 1.584 0.9846 1.1060

7 Atenolol C14H22N2O3 0.7503338 1.464 −0.94 1.543 1.1312 1.1693

8 Atrazine C8H14ClN5 0.6841178 2.553 3.29 1.537 1.0181 1.0517

9 Bisphenol A C15H16O2  0.7013432 1.657 1.31 1.548 0.9731 1.0414

10 Caffeine C8H10N4O2 0.6533663 3.822 −1.06 1.471 0.9253 0.9584

11 Carbamazepine C15H12N2O 0.7119776 3.286 −0.28 1.53 0.8428 1.0379

12 Clozapine C18H19ClN4 0.8207036 2.2283 −0.73 1.5661 1.0266 1.1524

13 DEET C12H17NO 0.6490448 3.089 1.45 1.538 1.0160 1.0150

14 Diclofenac C14H11Cl2NO2 0.7860234 3.026 −0.21 1.826 0.9572 1.0687

15 Dilantin C15H12N2O2 0.7327073 1.684 0.73 1.55 0.8955 1.0405

16 Estriol C18H24O3 0.776935 1.183 1.42 1.554 0.9443 1.0909

17 Estrone C18H22O2 0.7552856 1.79 2.72 1.564 0.9445 1.0839

18 Etiocholanolone C19H30O2 0.7793609 3.879 4.25 1.565 0.9795 1.1060

19 Fluoxetine C17H18F3NO 0.8011581 1.709 1.93 1.548 1.1027 1.1534

20 Gemfibrozil C15H22O3 0.7302467 0.9124 2.51 1.55 1.1488 1.1263

21 Hydroxyzine C21H27ClN2O2 0.8715522 2.248 1.23 1.535 1.2027 1.2751

22 Ibuprofen C13H18O2 0.6708811 1.764 2.75 1.523 1.0388 1.0459

23 Ketoprofen C16H14O3 0.7352712 2.721 2.56 1.535 0.9674 1.0687

24 Linuron C9H10Cl2N2O2 0.7286602 2.502 −0.35 1.803 1.0443 1.0348

25 Meprobamate C9H18N2O4 0.0914904 1.472 3.03 1.546 1.0186 1.0529

26 Naproxen C14H14O3 0.7039877 1.556 0.56 1.525 0.9921 1.0453

27 Nonylphenol C15H24O 0.6905528 1.518 3.9 1.539 1.1316 1.1370

28 Omeprazole C17H19N3O3S 0.8408326 2.521 −1.44 1.873 1.1234 0.3795

29 Paracetamol C8H9NO2  0.5854728 4.309 −1.32 1.509 0.8741 0.9045

30 PFBS C4HF9O3S 0.7905983 1.539 3.3500 1.869 0.9548 0.9263

31 PFDA C10HF19O2 1.0008028 2.515 7.62 1.53 1.0938 1.1295
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N° Name Molecular formula dc ⁄ g mol−1 Dipole (Debye) logKOW Length ⁄ nm Width ⁄ nm Depth ⁄ nm
32 PFDoA C12HF23O2  1.0818376 2.624 9.29 1.521 1.2157 1.1926

33 PFHpA C7HF13O2  0.8604133 2.378 5.12 1.528 1.0239 1.0007

34 PFHxA C6HF11O2 0.807108 2.337 4.28 1.527 0.9250 0.9326

35 PFHxS C6HF13O3S 0.8967429 1.523 5.02 1.521 0.9974 0.9900

36 PFNA C9HF17O2 0.9569319 2.685 6.78 1.537 1.0328 1.0441

37 PFOA C8HF15O2 0.9103149 2.372 5.95 1.526 0.9965 1.0104

38 PFOS C8HF17O3S 0.9888073 1.394 6.68 1.528 1.1240 1.0973

39 PFPeA C5HF9O2 0.7475012 2.674 3.45 1.533 0.8846 0.8813
40 Polyparaben (propylparaben) C10H12O3 0.6323157 3.81 0.8 1.543 0.5000 0.9701
41 Primidone C12H14N2O2 0.6876625 3.175 0.72 1.554 0.8960 0.9973

42 Risperidone C23H27FN4O2 0.9049504 1.578 1.03 1.527 1.0442 1.2339
43 Salicylic acid C7H6O3  0.5627892 2.186 −0.04 1.491 0.7637 0.8299
44 Simvastatin C25H38O5 0.9146349 3.998 4.43 1.54 1.1967 1.2718
45 Simvastatin Hydroxy Acid C25H40O6 0.9316776 2.664 4.14 1.54 1.2904 1.3179
46 Sulfamethoxazole C10H11N3O3S 0.7339907 6.033 −1.54 1.578 0.9786 1.0529

47 Testosterone C19H28O2 0.7769822 3.672 3.84 1.569 0.9691 1.1032

48 t-Octylphenol C14H22O 0.6709523 0.5321 3.44 1.572 1.0230 1.0250

49 Triamterene C12H11N7 0.733978 0.1612 1.19 1.468 0.8105 1.0296

50 Triclocarban C13H9Cl3N2O 0.8082195 1.495 −0.5 1.814 0.9984 1.0736

51 Triclosan C12H7Cl3O2 0.7783022 1.532 −0.6 1.811 1.0006 1.0446

52 Trimethoprim C14H18N4O3 0.7792081 0.8107 −2.22 1.516 1.0235 1.1398

53 Verapamil C27H38N2O4 0.9483294 4.344 0.57 1.6 1.3362 1.3626

Table S2 – Statistical analysis of inputs and outputs variables for all databases 

Min Max STD Mean 
dc ⁄ g mol−1 0.0914 1.1000 0.1291 0.7661
log P 0.1612 6.0330 1.3551 2.5554
dipole moment (Debye) −2.2200 9.3000 2.7008 1.3628
length ⁄ nm 1.4680 1.8730 0.1258 1.6036
width ⁄ nm 0.5000 1.3362 0.0953 0.9871
depth ⁄ nm 0.3795 1.4000 0.0926 1.0519
zeta potential ⁄ mV −39.9100 19.7000 11.9568 −7.6705
contact angle ⁄ ° 42.7000 90.3000 6.2294 64.6435
Port diameter ⁄ nm 0.5400 0.7400 0.0571 0.7223
pH 3.0000 9.0000 1.1940 6.2432
crossflow velocity ⁄ m h−1 288.0000 1094.4000 332.6317 504.0000
water flux ⁄ l m−2 h−1 5.2579 20.0000 4.6249 9.3460
rejection ⁄ % 6.3636 100.0000 15.0353 88. 0400
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List of abbreviations

MF – microfiltration
UF – ultrafiltration
NF – nanofiltration
RO – reverse osmosis 
FO – forward osmosis
SVM – support vector machines
OM – organic molecules
ANN – artificial neural networks
MLR – multiple linear regression
dc – effective diameter of an organic molecule in water
Mw – molecular weight
min – minimum
max – maximum
STD – standard deviation
RBF – radial basis function
MAE – mean absolute error 
DB – database
R – correlation coefficient 
Tangh – tangent hyperbolic function
RMSE – root mean square error
MPE – model predictive error
SEP – standard error of prediction 
BFGS – Broyden–Fletcher–Goldfarb–Shanno
Purelin – pure linear function
HL – hidden layer
OL – output layer
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SAŽETAK
Metoda potpornih vektora u procjeni utjecaja karakteristika unaprijednih 

osmotskih membrana na zadržavanje organskih molekula
Fouad Kratbi,* Yamina Ammi i Salah Hanini

Proces unaprijedne osmoze (FO) trenutačno se učestalo proučava, a glavne su tematike zadr-
žavanje različitih molekula, potrošnja energije i modeliranje samog procesa. Glavna svrha ovog 
istraživanja bila je, primjenom modeliranja, procijeniti utjecaj karakteristika FO membrana na za-
državanje neutralnih organskih molekula. Rad je fokusiran na primjenu metode potpornih vektora 
(engl. Support Vector Machines, SVM) za predviđanje zadržavanja organskih molekula (53) FO 
membranama. Razvijeni SVM model uspoređen je s dva druga modela: modelom umjetne neu-
ronske mreže i modelom višestruke linearne regresije. SVM model generiran uz radijalnu baznu 
funkciju pokazao je najbolju vrijednost koeficijenta korelacije u iznosu 0,8526. Vrijednosti koe-
ficijenta korelacije kod modela umjetne neuronske mreže i modela višestruke linearne regresije 
iznosile su 0,7630, odnosno 0,8723.
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