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We discuss a generally applicable and systematic method to represent an arbitrary
tensor one-loop Feynman integral, with N external lines and massless propagators,
in terms of a basic set of eight scalar Feynman integrals with 2, 3 and 4 exter-
nal lines. To demonstrate the practicality of the method, we calculate one of the
one-loop Feynman diagrams with 6 external lines, which contribute to the hard-
scattering amplitude of the process γ γ → π+ π− at high momentum transfer in the
context of pQCD.
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1. Motivation

The framework for analyzing exclusive processes (EP) involving large momen-
tum transfer within the context of perturbative QCD (pQCD) is well established.
Owing to the fact that the leading order (LO) predictions in pQCD do not have
much predictive power, the inclusion of higher-order corrections is essential because
they have a stabilizing effect, reducing the dependence of the LO predictions on
the renormalization and factorization scales and on the renormalization scheme.
However, only a few EP have been analyzed at the next-to-leading order (NLO).

The NLO analysis of EP in pQCD requires the evaluation of one-loop Feynman
integrals with massless propagators. These integrals contain IR divergences (both
soft and collinear) and need to be regularized. The most suitable regularization
method for pQCD calculations is dimensional regularization.

Considerable progress has recently been made in developing efficient approaches
for calculating one-loop Feynman integrals with a large number of external lines. As
far as the calculation of one-loop N -point massless integrals is concerned, the most
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complete and systematic method has been developed by Binoth et al. [1]. However,
it does not apply to all cases of practical interest. Namely, the method [1] usually
breaks down during reduction of integrals in which the set of external momenta
contains subsets comprised of two or three collinear on-shell momenta. Integrals of
this type arise when performing the leading-twist NLO analysis of hadronic EP at
large momentum transfer in pQCD.

With no restrictions regarding the external kinematics, in this paper we describe
an efficient, systematic and completely general method for reducing an arbitrary
one-loop N -point massless integral to a set of basic integrals. A more detailed
description is given in Ref. [2].

2. Method

In order to obtain one-loop radiative corrections to physical processes in massless
gauge theory, integrals of the following type are required

IN
µ1···µP

(D; {νi}) = (µ2)2−D/2

∫

dDl

(2π)D

lµ1
· · · lµP

Aν1

1 Aν2

2 · · ·AνN

N

, Ai = (l + ri)
2 + i ε .

(1)
This is a rank P tensor one-loop N -point Feynman integral with massless internal
lines in D dimensions, where l is the loop momentum, µ is the usual dimensional
regularization scale and νi ∈ N are arbitrary powers of the propagators. We denote
the corresponding scalar integral by IN

0 . These integrals represent generalizations
of the usual integrals in practical calculations, where νi = 1. However, the most
natural presentation of the reduction method discussed here is in terms of these
generalized integrals.

Calculation of Feynman integrals usually proceeds in two steps: decomposition
of tensor integrals to scalar integrals and reduction of scalar integrals to a set of
basic scalar integrals for which analytic solutions are known.

We perform the tensor decomposition using the method originally proposed in
Ref. [3]. On the basis of Feynman parameter representations of the tensor and
scalar integrals, the following equation can be derived

IN
µ1···µP

(D; {νi}) =
∑

k,j1,···,jN ≥0

2k+Σji=P

(4πµ2)P−k

(−2)k

[

N
∏

i=1

Γ(νi + ji)

Γ(νi)

]

×
{

[g]k[r1]
j1 · · · [rN ]jN

}

µ1···µP
IN
0 (D + 2(P − k); {νi + ji}), (2)

where {[g]k[r1]
j1 · · · [rN ]jN }µ1···µP

represents a symmetric (with respect to µ1 · · ·µP )
combination of tensors, each term of which is composed of k metric tensors and ji

external momenta ri (for example, {gr1}µ1µ2µ3
= gµ1µ2

r1µ3
+gµ1µ3

r1µ2
+gµ2µ3

r1µ1
).

With the decomposition (2), the problem of calculating the tensor integrals has been
reduced to the calculation of the general scalar integrals. In this form of decomposi-
tion, it is not assumed that any four, out of N , 4-vectors ri are linearly independent
(non-exceptional kinematics) in the case when N ≥ 5. Consequently, the number
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of terms in the decomposition (2) is larger in comparison with other methods (e.g.
Ref. [1]), but its advantage is the applicability of Eq .(2) for arbitrary kinemat-
ics. Usually, the non-exceptional kinematics is not realized in EP owing to the
appearance of collinear external lines in Feynman diagrams for the hard scattering
amplitude.

As it is well known, the direct evaluation of the general scalar integral is a non-
trivial problem. However, using recursion relations, the problem can be significantly
simplified since the calculation of the original scalar integral can be reduced to the
calculation of a certain number of simpler basic integrals.

The basis for the scalar reduction is the following identity [4]

0 ≡
∫

dDl

(2π)D

∂

∂lµ

(

z0l
µ +

∑N
i=1 zir

µ
i

Aν1

1 · · ·AνN

N

)

, (3)

where zi (i = 1 · · ·N) are arbitrary constants and z0 =
∑N

i=1 zi. The identity (3)
is satisfied owing to the translational invariance of the dimensionally regulated in-
tegrals. After the differentiation and some algebraic manipulations [2], the identity
(3) takes the form

N
∑

i,j=1

(rj − ri)
2ziνjI

N
0 (D; {νk + δkj}) =

N
∑

i,j=1

ziνjI
N
0 (D; {νk + δkj − δki})

− (D −
N
∑

j=1

νj)z0I
N
0 (D; {νk}) , (4)

where it is understood that IN
0 (D; ..., νl, 0, νl+1, ...) ≡ IN−1

0 (D; ..., νl, νl+1, ...).

The relation (4) represents the starting point for the derivation of the recursion
relations for scalar integrals. We have obtained the fundamental set of recursion
relations by choosing the arbitrary constants zi (i = 1 · · ·N) so as to satisfy the
following system of linear equations:

∑N

i=1
rijzi = C, j = 1, . . . , N, rij = (ri − rj)

2, (5)

where C is an arbitrary constant. It should be mentioned that, in the literature, the
constant C is usually taken to be different from zero. It is precisely this fact that
leads to the breakdown of the various scalar reduction methods. Namely, for some
kinematics (e.g. collinear on-shell external lines) the system (5) has no solution
for C /=0. However, if the possibility C = 0 is allowed, the system (5) will have a
solution regardless of kinematics.

If (5) is taken into account, the relation (4), after a few manipulations [2],
reduces to the recursion relation

C IN
0 (D−2; {νk}) =

N
∑

i=1

ziI
N
0 (D−2; {νk−δki})+(4πµ2)(D−1−

N
∑

j=1

νj)z0I
N
0 (D; {νk}),

(6)
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where zi are given by the solution of the system (5). This is a generalized form
of the recursion relation which connects the scalar integrals in different number of
dimensions [1, 4, 5].

By directly choosing the constants zi in (4), so that zi = δik, for k = 1, · · · , N ,
we arrive at a system of N equations which is always valid

N
∑

j=1

(rk−rj)
2νjI

N
0 (D; {νi+δij}) =

N
∑

j=1

νjI
N
0 (D; {νi+δij−δik})−(D−

N
∑

j=1

νj)I
N
0 (D; {νi}).

(7)
The solution of the system (7) with respect to IN

0 (D; {νi + δij}), j = 1, · · · , N , if it
exists, represents a set of recursion relations.

By appropriate use of Eqs. (6) and (7), any one-loop Feynman integral can
be reduced to a basic set of eight scalar integrals. The use of these equations in
practical calculations depends on whether the kinematic determinants

det(RN ) = det (rij)N×N , det(SN ) = det

(

0 1
1 rij

)

(N+1)×(N+1)

(8)

are equal zero or not. We distinguish the following four different types of recursions:

• Case I: det(SN ) /=0, det(RN ) /=0; (C /=0 and z0 /=0) ,

• Case II: det(SN ) /=0, det(RN ) = 0; (C = 0 and z0 /=0) ,

• Case III: det(SN ) = 0, det(RN ) /=0; (C /=0 and z0 = 0) ,

• Case IV: det(SN ) = 0, det(RN ) = 0; (C /=0 and z0 = 0) or (C = 0 and
z0 = 0) ,

where we have indicated the necessary choice for the constants C and z0 in a way
that the system (5) has a solution, and the most useful recursion relations emerge
from (6). In practical calculations, the relation (7) is used only in Case I.

Making use of Eqs. (6) and (7), any scalar integral IN
0 (D; {νi}) can be repre-

sented as a linear combination:

IN
0 (D; {νk}) =

∑

i
ci(D, rij) IN−1

0 (D(i); {ν(i)
k }) + λ IN

0 (D′; {1}) , (9)

where the dimension D′ is usually chosen to be 4 + 2ε or 6 + 2ε. The infinitesimal
parameter ε regulates the divergences. The parameter λ equals 0 for Cases II, III
and IV [2]. It follows that in all cases, with the exception of Case I, the integrals with
N external lines can be represented in terms of the integrals with smaller number
of external lines. Consequently, then, there exists a fundamental set of integrals of
the form IN

0 (4 + 2ε; {1}), in terms of which all integrals can be represented as a
linear combination.

Therefore, any dimensionally regulated one-loop N -point Feynman integral can
be represented in terms of six box integrals (N = 4), one triangle integral (N = 3)
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and a general (arbitrary D, ν1 and ν2) two-point integral (N = 2) [2]. Five of the
six basic box integrals are IR divergent in D = 4, while the basic triangle integral
is finite. However, all basic box integrals are finite in D = 6. Thus, an alternative
fundamental set of integrals is comprised of five box integrals in D = 6, one box
and triangle integral in D = 4 and a general two-point integral. This set of integrals
is particularly interesting because the integral I2

0 is the only divergent one. In the
final result, all divergences, IR as well as UV, are contained in the general two-point
integrals and associated coefficients. The expressions for all relevant basic integrals
can be found in the literature [2, 5 – 7].

3. Example

As an ilustration of the tensor decomposition and scalar reduction methods,
we now evaluate an one-loop 6-point Feynman diagram shown in Fig. 1. This is
one (out of 456) diagram contributing to the NLO hard-scattering amplitude for
the exclusive process γ(k1, ε1) γ(k2, ε2) → π+(P+)π−(P−), (with both photons on-
shell) at large momentum transfer. p2p1

p4p5
l + p7
l

l + p3
l + p5

l + p6l � p4k1; "1k2; "2
Fig. 1. One of the diagrams contributing to the hard scattering amplitude of the

process γ γ → π+ π− at NLO.

In the γ γ centre-of-mass frame, the 4-momenta of the incoming and outgoing
particles are

k1, 2 =
√

s/2 (1,∓ sin θc.m., 0,± cos θc.m.), P± =
√

s/2 (1, 0, 0,±1), (10)

while the polarization states of the photons are

ε±1 = ε∓2 = ∓1/
√

2 (0, cos θc.m.,±i sin θc.m.), (11)

where
√

s is the total centre-of-mass energy of the γ γ system (or the invariant mass
of the π+ π− pair).

For example, taking θc.m. = π/2 and assuming that the photons have oppo-
site helicities, the amplitude corresponding to the Feynman diagram of Fig. 1. is
proportional to the integral

I =
(µ2)−ε

2

∫

d4+2εl

(4π)4+2ε

Tr [γµγ5P/+γµ(l/+p/3)ε/1(l/−p/4)γνγ5P/−γν(l/+p/5)ε/2(l/+p/6)]

l2(l + p3)2(l − p4)2(l + p5)2(l + p6)2(l + p7)2
,

(12)
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with the momenta pi (i = 1, . . . , 7)

p1 = x P+, p2 = x P+, p3 = k1 − y P−, p4 = y P−,

p5 = y P−, p6 = y P− − k2, p7 = x P+ + y P− − k2. (13)

The quantities x and x ≡ 1−x (y and y ≡ 1−y) are the fractions of the momentum
P+ (P−) shared between the quark and the antiquark in the π+ (π−).

With the aim of regularizing the IR divergences, the dimension of the integral
is taken to be D = 4 + 2ε.

The integral I is very complicated and is rather difficult to be evaluated with
the help of previously known methods. It is composed of one-loop 6-point tensor
integrals of rank 0, 1, 2, 3 and 4. Performing the tensor decomposition using (2)
and evaluating the trace, we obtain the integral I in the form

I = −2(1 + ε)
2
[

24 s3 xx y y
(

4π µ2
)4

I6
0 (12 + 2 ε, {1, 1, 1, 1, 1, 5})

+ 6 s3 y y
(

4π µ2
)4

I6
0 (12 + 2 ε, {1, 4, 1, 1, 2, 1})

+ 2 s3 y (y − y)
(

4π µ2
)4

I6
0 (12 + 2 ε, {1, 3, 2, 1, 2, 1})

+ 8 s3 y y
(

4π µ2
)4

I6
0 (12 + 2 ε, {1, 3, 1, 1, 3, 1})

+ 2 s3 x y y
(

4π µ2
)4

I6
0 (12 + 2 ε, {1, 2, 2, 2, 1, 2})

+ s3 y (y − y)
(

4π µ2
)3

I6
0 (10 + 2 ε, {1, 2, 2, 1, 2, 1})

+ s2 y y (1 + ε)
(

4π µ2
)

I6
0 (6 + 2 ε, {1, 1, 1, 1, 1, 1})

+ s (1 + ε) (2 + ε)
(

4π µ2
)2

I6
0 (8 + 2 ε, {1, 1, 1, 1, 1, 1})

+ . . . 75 similar terms
]

. (14)

Next, performing the scalar reduction using the method described above, we arrive
at the following expression for the integral written in terms of the basic integrals

I = 8 (1 + ε)2
{

(4π µ2)
[ ε

x
I1m
4 (6 + 2 ε;−s/2,−s y/2;−s y/2)

+
1 + ε

x
I1m
4 (6 + 2 ε;−s y/2,−s/2;−s y/2)

+
(

1 + ε
(

1 − x

x

))

I1m
4 (6 + 2 ε;−s x/2,−s y/2;−s (x y + x y)/2)

+
(

−x

x
+ ε

(

1 − x

x

))

I2me
4 (6 + 2 ε;−s x/2,−s y/2;−s/2,−s (x y + x y)/2)

]

+
1

s

[

1

(x − x) y

(

2x

ε (x − x)
+ 2 − x

x

)

I2(4 + 2 ε;−s x/2)
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+
1

(x − x) y

(

2x

ε (x − x)
+ 2 − x

x

)

I2(4 + 2 ε;−s x/2)

+
1

(y − y)x

(

2 y

ε (y − y)
+ 2 − y

y

)

I2(4 + 2 ε;−s y/2)

+
1

(y − y)x

(

2 y

ε (y − y)
+ 2 − y

y

)

I2(4 + 2 ε;−s y/2)

+

(

(1 − x y − 3 y x)(1 − y x − 3x y)

xx y y (x − x)(y − y)
+

2(x y + x y)(8xx y y − xx − y y)

ε x x y y (x − x)2(y − y)2

)

× I2(4 + 2 ε;−s (x y + x y)/2) +
(x y + x y)

xx y y
I2(4 + 2 ε;−s/2)

]}

. (15)

Here, I2 is the two-point scalar integral in D = 4 + 2 ε with νi = 1, while I1m
4 and

I2me
4 are box scalar integrals in D = 6+2 ε. Analytic expressions for these integrals

are given in Ref. [2]. Expanding Eq. (15) up to order O(ε0), we finally get

I =
i

(4π)2
8

s

{

− 1

x y
Li2(x − x) − 1

y x
Li2(x − x) − 1

y x
Li2(y − y) − 1

x y
Li2(y − y)

+
x y + y x

xx y y
Li2 (−(x − x)(y − y)) +

π2

6

x y + y x

xx y y
− x y + x y

xx y y
ln

(

s

2µ2

)

+
(x − 2x)

x y (x − x)
ln

(

s x

2µ2

)

+
(x − 2x)

x y (x − x)
ln

(

s x

2µ2

)

+
(y − 2 y)

x y (y − y)
ln

(

s y

2µ2

)

+
(y − 2 y)

x y (y − y)
ln

(

s y

2µ2

)

− x

y (x − x)2
ln2

(

s x

2µ2

)

− x

y (x − x)2
ln2

(

s x

2µ2

)

− y

x (y − y)2
ln2

(

s y

2µ2

)

− y

x (y − y)2
ln2

(

s y

2µ2

)

− (1 − x y − 3 y x)(1 − y x − 3x y)

xx y y (x − x)(y − y)
ln

(

s (x y + x y)

2µ2

)

− (x y + x y)(8xx y y − xx − y y)

xx y y (x − x)2(y − y)2
ln2

(

s (x y + x y)

2µ2

)

−2

ε̂

[

x

y (x − x)2
ln

(

s x

2µ2

)

+
x

y (x − x)2
ln

(

s x

2µ2

)

+
y

x (y − y)2
ln

(

s y

2µ2

)

+
y

x (y − y)2
ln

(

s y

2µ2

)
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+
(x y + x y)(8xx y y − xx − y y)

xx y y (x − x)2(y − y)2
ln

(

s (x y + x y)

2µ2

)]}

, (16)

where 1/ε̂ = 1/ε + γ − ln(4π).

4. Conclusion

Through the tensor decomposition and the scalar reduction procedure pre-
sented, any massless one-loop Feynman integral with generic 4-dimensional mo-
menta can be expressed as a linear combination of a fundamental set of scalar
integrals: six box integrals in D = 6, a triangle integral in D = 4 and a general
two-point integral. All the divergences present in the original integral are contained
in the general two-point integral and associated coefficients.

As an illustration, an one-loop 6-point Feynman diagram is evaluated in detail.
This diagram gives NLO contributions to the hard-scattering amplitude for the
process γ γ → π+ π− at large momentum transfer in pQCD.
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OPĆA METODA SVOD– ENJA ZA NLO RAČUNE U PQCD-U

Raspravljamo sistematičnu metodu koja se može općenito primijeniti za svod–enje
proizvoljnih tenzorskih Feynmanovih integrala s jednom petljom, na osnovni skup
od osam skalarnih Feynmanovih integrala s 2, 3 i 4 vanjske linije. Da bismo ob-
jasnili pogodnost ove metode, računamo jedan od Feynmanovih dijagrama s jed-
nom petljom i 6 vanjskih linija koji doprinose amplitudi tvrdog raspršenja procesa
γ γ → π+ π− za velike prijenose impulsa i u okviru pQCD-a.
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