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The role of chiral symmetry in hadronic processes is discussed. Emphasis is given
to the cancellation of diagrams in π−π scattering induced by chiral symmetry and
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1. A prototype for the spontaneous breakdown of chiral

symmetry

Let us start with a simple example which illustrates the mechanism of sponta-
neous breaking of chiral symmetry (SBχS): the Hamiltonian of a relativistic fermion
in an external field Aµ. The physics of fermions in strong magnetic fields consti-
tutes on its own an active field of research [1]. Here we present a general formalism
(in fact a generalization of the methods of Ref. [2] in order to go beyond 2+1
dimensions) simply as an introduction to the issue of SBχS. We have,

H =

∫
d2x ψ̄(x)

[
−iγjDj +m

]
ψ(x) . (1)

The theory is invariant under a U(2) symmetry, which breaks down to U(1) ×
U(1) for m/=0.

Choose the Landau gauge Aµ = −By δµ1, where B > 0 is the magnetic field
strength. The problem is exactly soluble and the solution in the chiral version has
the structure,

ψB(x, t) =

(
ψB

1

ψB
2

)
, (2)
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where ψB
1,2(x) are the spinors associated to the two inequivalent representations of

the Dirac algebra.

1.1. An example of Bogolioubov-Valatin transformations

Three steps are needed, starting from the free-particle wave function, to con-
struct the wave function of a particle in the presence of a magnetic field. We start
from

ψ(x) =
∑
p

1√
LxLy

{
u(p) ap + v(p) b†−p

}
eip·x , (3)

u(p) =

√
Ep +m

2Ep




1

py − ipx

Ep +m


 , v(p) =

√
Ep +m

2Ep




−py + ipx

Ep +m

1


 ,

with
{
a†
p
, ap′

}
=

{
b†
p
, bp′

}
= δpxp′

x
δpyp′

y
, Ep =

√
m2 + |p|2.

Step 1: preform a canonical Bogolioubov-Valatin (BV) transformation given
by

[
ãp
b̃†−p

]
= Rφ(p)

[
ap
b†−p

]
,

[
ũ
ṽ

]
= R∗

φ(p)

[
u(p)
v(p)

]
, (4)

where Rφ(p) =

[
cosφ − sinφ (p̂y + ip̂x)

sinφ (p̂y − ip̂x) cosφ

]
,

cosφ =

√
Ep +m

2Ep

, sinφ =

√
Ep −m

2Ep

and p̂ =
p

|p| .

The vacuum associated to the new operators ã and b̃ is given by |0̃〉 =

S|0〉 =
∏

p
(cosφ + sinφ a†pb

†
−p)|0〉, with ãp|0̃〉 = 0, b̃p|0̃〉 = 0. Think of

ψ(x) =
∑
p

1√
LxLy

{
u(p) ap + v(p) b†−p

}
eip·x as an inner product between the

Hilbert space spanned by the spinors {u, v} and the Fock space generated by {a, b}.
This inner product is made invariant under the BV transformations as any rotation
in the Fock space must engender a counter-rotation in the Hilbert space.

Step 2: consider the Landau level representation:

eipyy = e−iℓ2pxpy

√
2π

∞∑

n=0

inωn(ξ)ωn(ℓpy), l =
√
|eB|,

ωn(x) = (2nn!
√
π)−1/2e−x2/2Hn(x), ξ =

y

l
+ lpx . (5)
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The wave function can be written in the new basis as

ψ(x) =
∑

n px

1√
ℓLx

{
ûnpx

(y) ânpx
+ v̂npx

(y) b̂†n−px

}
eipxx ,

with [
ânpx

b̂†n−px

]
=

∑

py

in
√

2πℓ√
Ly

[
ωn(ℓpy) 0

0 −ωn−1(ℓpy)

] [
ãp

b̃†−p

]
(6)

and

[
ûnpx

(y)
v̂npx

(y)

]
=

[
ωn(ξ) 0

0 iωn−1(ξ)

] [
ũ
ṽ

]
.

The new operators satisfy the usual anticommutation relations and the new

vacuum obeys ânpx
|0̃〉 = 0, b̂npx

|0̃〉 = 0.

1.2. An example of the mass gap equation

There are several approaches one can adopt to obtain the mass gap equation
(see Ref. [3]): 1 – It can be derived as the condition for the vacuum energy to be
at minimum, 2 – to get rid of anomalous Bogolioubov terms, 3 – in the form of a
Dyson equation for the fermion propagator, or, finally, 4 – as a Ward identity. Here
we use 2. We finally go through step 3 and perform one last BV transformation,

Rθn
=

[
cos θn − sin θn

sin θn cos θn

]
. (7)

The θn angles are to be found by imposing the vanishing of the anomalous terms
in the Hamiltonian (see Chapter 3). A simple algebraic computation yields the
following mass gap equations,

{
(ℓm cos θ0 + sin θ2/

√
2) sin θ0 = 0, n = 0 ,

ℓm sin 2θn −
√

2n cos 2θn = 0, n > 0 ,
tan 2θn =

√
2n|eB|
m

cos θn =

√
En +m

2En
, sin θn =

√
En −m

2En
, En =

√
m2 + 2n|eB| (8)

We obtain B〈0|ψ†(x)ψ(x)|0〉B = −|eB|/2π. The spontaneous breaking of the U(2)
flavour symmetry occurs even in the absence of any additional interaction between
fermions. This is an inherent property of the 2+1 dimensional Dirac theory in
an external magnetic field. In 3+1 dimensions, these very same 3-steps can be
performed and the spontaneous breakdown in a magnetic field can take place only
when an “effective” mass term (m/=0) is generated [4].

2. A class of Hamiltonians

We now consider the simplest Hamiltonian containing the ladder-Dyson-
Schwinger machinery for chiral symmetry. See Ref. [3], and references therein,
for more complicated treatments. In any case, as most of the results presented here
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do not depend on the choice of kernel, this simple example will do. For the zero
current quark masses we have

H =

∫
d3x q+(x)

(
−i−→α.−→∇

)
q(x) +

∫
d3x, y

2
Ja

µ(x)Kab
µν(x− y)Jb

ν(y)

Ja
µ(x) = q(x)γµ

λa

2
q(x), Kab

µν(x− y) = δabKµν(|−→x −−→y |). (9)

This class of Hamiltonians has a rich structure enabling the study of a variety of
hadronic phenomena controlled by global symmetries. 1 – it is chiral compliant: The
fermions know about the kernel; 2 – it reproduces in a non-trivial manner the low
energy properties of pion physics like, for instance, ππ scattering; 3 – it possesses
the mechanism of pole-doubling in what concerns scalar decays.

2.1. More on BV transformations

As in the case of the Hamiltonian of Eq.(1), we look again for a BV transfor-

mation in order to obtain the new Fock space operators
˜̂
b and

˜̂
d from the old b̂

and d̂ operators,




˜̂
b

˜̂
d
+




s

=

[
cosφ − sinφMss′

sinφM⋆
ss′ cosφ

] [
b̂

d̂+

]

s′

, (10)

where Mss′ = −
√

8π
∑

mlms

[
1 1 |0
ml ms |0

] [
1/2 1/2 |1
s s

′ |ms

]
y1ml

(θ, φ)

The functions Φ(p) classify the infinite set of possible Fock spaces. Mss′ (θ, φ) repre-
sent the 3P0 quark-antiquark pair. Then, requiring the invariance of Ψfc(−→x ) under
the Fock space rotations is equivalent to the requirement of a counter-rotation of
the spinors u and v,

[
u
v

]
=

[
cosφ − sinφM∗

ss′

sinφMss′ cosφ

] [
u
v

]
. (11)

The {u,v} contain now the information on the angle φ(p).

3. Chiral symmetry

Consider the transformation Ψ → exp
{
−iαa 1

2
T aγ5

}
. Then the Hamiltonian in

Eq. (9) transforms, for non-zero current quark masses, like

H [mq] → H[mq cos

(
α2

2

)
−mq sin

(
α2

2

)
iγ5]. (12)
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H is chirally symmetric if mq = 0. Now assume that φ exists and construct Qa
5 =∫

d3xΨγ0γ5Ψ. We obtain

Qa
5 =

∫
d3p cos (2φ)

[
−→p .−→σ b̂+(p)̂b(p) + (d̂+d̂)

]

+sin (2φ)

[
µss′ b̂+(p)d̂+(−p) + (d̂b̂)︸ ︷︷ ︸

]
. (13)

Anomalous terms

For mq = 0, [Qa
5 ,H] = 0. Thence, for an arbitrary φ, Qa

5 |0 > /=0, so that Qa
5 , acting

in the vacuum, creates a state, which will turn out to be the pion (µss′ is the spin
wave function for a spin zero bound state, made out of two spin 1/2’s). In general,
the Hamiltonian of Eq. (9) can be written as

Ĥ = Ĥnormal[φ] + Ĥanomalous[φ], Ĥ|0 >= Ĥanomalous[φ]|0 > /=0, (14)

so that we must find φ0 such as to have Ĥanomalous[φ0]|0 >= 0. This is the mass

gap equation. It happens that in general we cannot simultaneously get rid of both

the anomalous terms for Ĥ and Q̂a
5 . Q̂a

5 will remain anomalous: Q̂a
5 |0 >= |π >.

Because of [H,Q5] = 0, π is massless . It turns out that we have several ways of

arriving at the mass gap equation: 1 - Ĥ2[anomalous] = 0, 2 - by minimization of
H0 : δH0/δϕ = 0, or 3 - by the use of the Ward identities. As a by product, we can
obtain the renormalized fermion propagators.

4. Pion Salpeter amplitude

From the renormalized propagator, we can construct the Bethe-Salpeter equa-
tion for mesonic states. We can proceed via two identical formalisms: 1 - either
work in the Dirac space or 2 - work in the spin representation. To go from the
Dirac representation to the spin representation, it is sufficient to construct the spin
wave functions like for instance, χ++

αβ (k) = us1;α(k)Φs1s2(k)vs2;β(−k). We get

H|Φ〉 =

[
H++ H+−

H−+ H−−

] [
Φ+

Φ−

]
= mπ σ3

[
Φ+

Φ−

]
. (15)

Therefore, in the space of pions we can write the Hamiltonian of Eq. (9) as,

H = σ3

[
Φ+

Φ−

]
mπ

[
Φ+, Φ−

]
σ3 + σ3

[
Φ−

Φ+

]
mπ

[
Φ−, Φ+

]
σ3 (16)

5. The Weinberg formula for ππ scattering

Below we depict two diagrams (among many others) contributing to π − π
scattering. Eqs. (15) and (16) are then used to map all these diagrams into a single
pion Salpeter amplitude (see Refs. [5] for details).
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Ribeiro,

Dphil78,

Z.Phys.C5 1980

Usually

attractive

In the ππ case and only in the chiral limit, the above two types of diagrams
cancel exactly when the relative momenta → 0. Outside the chiral limit they cease
to cancel, yielding a net result proportional to mπ. Using {Φ± = sinϕ/a±a∆, a =√

2/3fπmπ} and the normalization
∫

(Φ+2 − Φ−2

) = 1, we obtain the Weinberg

results in the point-like limit (sinϕ→ 1):
{
−7/2m2

π/f
2
π , 1m2

π/f
2
π

}
.

6. Low-energy scalar resonances

The ππ cancellation of diagrams in the chiral limit illustrates the fact that
the mechanism for qq̄ pair creation, ultimately responsible for the existence of
hadronic coupled channels, has to be calculated in a chiral-consistent way once a
quark kernel is given. This has been done in Ref. [6] for the case of vector mesons
with the intermediate mesons in a relative P-wave. Here we outline the general
consequences of qq̄ pair creation in the scalar sector. We have

H =




L=1

3
0

n=1σ π

π
L=0,

P

L=1

3
0

n=1σ π

π
L=0,

P




(17)

In Eq. 17, the off-diagonal overlaps are evaluated using the graphical rules of
Ref. [7]. They yield a potential well just in the region of existence of the intermedi-

ate mesons relative s-wave (sometimes) strong enough to support another pole not

542 FIZIKA B 13 (2004) 2, 537–544



ribeiro: the role of chiral symmetry in hadronic processes

present in the bare case. In Z. Phys C 30 (1986) 615, we have obtained the results
shown in the following diagrams

0.6 0.8 1.0 1.2 1.4100200300
GeV

deg

K� invariant mass� pole: 727�i263 MeV

K� S-wave
������������������������������

� �
������������������������������������ 0.4 0.6 0.850100150200250
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������
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�������������������
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/ /
. . . . . . . .�������������������

���
0.8 1.01020

30
GeV�� invariant massa0 pole: 962�i28 MeV

X ��S-wave

Since then, this effect has been found in several approaches [8].

7. Summary

The role of chiral symmetry in hadronic physics is: 1 - To ensure the existence
of a Goldstone pion. 2 - To ensure that any microscopic calculation of ππ scatter-
ing must get the Weinberg results, and more generally, to control pion mediated
reactions. 3 - To ensure that hadronic wave functions cannot have a fixed number
of valence quarks because it sets constraints between quark annihilation (and cre-
ation) and exchange diagrams. 4 - To fix the strength and form of mesonic coupled
channels, responsible, among other effects, for the existence of light scalars.
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ULOGA KIRALNE SIMETRIJE U HADRONSKIM PROCESIMA

Raspravljamo ulogu kiralne simetrije u hadronskim procesima. Naglašavamo
ponǐstenje dijagrama u ππ raspršenju uzrokovano kiralnom simetrijom i njene
posljedice u skalarnom sektoru.
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