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A linked cluster expansion for the calculation of ground-state observables of com-
plex nuclei with realistic interactions has been used to calculate the ground-state
energy, density and momentum distribution of 16O and 40Ca. Using the same clus-
ter expansion and the wave function and correlation parameters obtained from the
energy calculation, we have evaluated the semi-inclusive reaction A(e,e′p)X taking
final-state interaction (FSI) into account by a Glauber-type approach; the compar-
ison between the distorted and undistorted momentum distributions provides an
estimate of the transparency of the nuclear medium to the propagation of the hit
proton. The effect of color transparency is also included by considering the finite
formation time (FFT) that the hit hadron needs to reach its asymptotic physical
state.
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1. Introduction

The exclusive, A(e,e′p)B, and semi-inclusive, A(e,e′p)X, electro-disintegrations
of nuclei represent a powerful tool to investigate various aspects of nuclear struc-
ture (e.g., single-particle motion and mean field effects, nuclear correlations), as
well as QCD motivated effects (e.g., color transparency). The accuracy of recent
and forthcoming experimental data requires realistic theoretical calculations to be
performed, based as much as possible on a description of the nucleus stemming from
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first principle calculations, which means that the nuclear wave functions which ap-
pear in the calculation of various matrix elements, used either to predict or interpret
the experimental data, should in principle result from many-body calculations and
realistic interactions. The problem has been solved in the case of few-body system,
for which realistic wave functions are currently being used in the interpretation of
electro-disintegration processes, but this problem still needs a solution in case of
complex nuclei. As a matter of fact, calculations of the ground state observables
for complex nuclei represent still a hard task, and even in those cases when ap-
proximate many-body calculations for the ground state energy can be performed,
the structure of the wave function is so complicated that its use for calculations
of matrix elements of operators, different from the potential and kinetic energies
ones, is very involved. For such a reason, a simpler, but still realistic, method which
would allow one to calculate various kinds of matrix elements with nuclear wave
functions which correctly incorporate the most relevant features of a realistic wave
function, in particular its correlation structure resulting from the main features
of modern two-nucleon interactions, would be extremely useful. Cluster expansion
techniques, when the expectation value of different operators can be calculated to a
certain order, may represent a valid and practicable alternative to the full complex
“exact” solution of the many body problem. It is the aim of the present paper
to illustrate a cluster expansion approach to the calculation of ground state en-
ergy properties (energy, density and momentum distribution) and various types of
electro-disintegration processes.

2. Cluster expansion and the nuclear wave function

In our linked-cluster expansion approach, the expectation value of a certain
operator Ô

〈Ô〉 =
〈ΨA| Ô |ΨA〉

〈ΨA|ΨA〉
(1)

is evaluated with correlated wave functions of the following “classical” form

ΨA = F̂ (r1, ..., rA)ΦA(r1, ..., rA) , (2)

where ΦA is a mean field (Slater determinant) wave function, and F̂ a sym-

metrized (by the symmetrization operator Ŝ) correlation operator which generates
correlations into the mean field wave function; it has the following general form

F̂ = Ŝ

A∏

i<j

f̂(rij), (3)

with

f̂(rij) =
∑

p

f̂ (p)(rij) and f̂ (p)(rij) = f (p)(rij) Ô
(p)
ij , (4)
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where the operators Ô(p) are the same which appear in the two-nucleon interaction,
having the form (e.g. in case of a V 8-type interaction)

Ôp=1,8
ij = [1, σi · σj , Sij , (L · S)ij ] ⊗ [1, τi · τj ] . (5)

The central parts f (p)(rij)’s of the correlation function f̂ (p), reflect the radial be-
haviour of the various components, and their actual form is determined either by
the minimization of the ground state energy, or by other criteria.

The cluster expansion of Eq. (1) is carried out in terms of the quantity η̂ij =

f̂2
ij − 1, whose integral plays the role of a small expansion parameter; we expand

the numerator and the denominator in the terms of the same order n in ηij , Ôn,

obtaining 〈Ô〉 = O0 + O1 + O2 + ..., with

O0 = 〈Ô〉,

O1 = 〈
∑

ij

η̂ijÔ〉 − O0〈
∑

ij

η̂ij〉,

O2 = 〈
∑

ij<kl

η̂ij η̂kl Ô〉 − 〈
∑

ij

η̂ij Ô〉 〈
∑

ij

η̂ij〉 +

+O0



〈
∑

ij<kl

η̂ij η̂kl 〉 − 〈
∑

ij

η̂ij〉
2



 , (6)

where 〈[...]〉 ≡ 〈ΦA |[...]|ΦA〉. From now on, our approach will consist in obtaining
the parameters characterizing the correlation functions and the mean-field single-
particle wave function which correspond to an acceptable value of the ground state
energy, we will then use the obtained wave function ΨA to calculate the transi-
tion matrix elements entering in the theoretical description of electro-disintegration
processes using the same cluster expansion employed to calculate the energy. We
have calculated the ground state energy of 16O and 40Ca using the Argonne V 8′ [1]
potential and adopting, as in Ref. [2], the so called f6 approximation consisting in
considering only the first six components of Eq. (5). The expectation value of the
many-body non-relativistic Hamiltonian of the nucleus was obtained by calculating
the average values of the kinetic and potential energies, i.e.

〈T̂ 〉 = −
h̄2

2m

∫
dk k2 n(k), (7)

where n(k) is the nucleon momentum distribution (k ≡ |k|),

n(k) =
1

(2π)3

∫
dr1 dr′

1 e−ik·(r1−r′

1
) ρ(1)(r1, r

′
1) (8)

and
〈V̂ 〉 =

1

2

∑

i<j

〈v̂ij〉 =
A(A − 1)

2

∑

p

∫
dr1 dr2 v(p)(r12)ρ

(2)
(p)(r1, r2). (9)
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The calculations have been performed by cluster-expanding the expectation value
of the non-diagonal one-body, ρ̂(1), and diagonal two-body, ρ̂(2)(r1, r2) density ma-
trix operators. The six correlation functions f (p)(rij) have been taken from Ref.
[2], whereas harmonic oscillator (HO) and Saxon-Woods (SW) spwf’s have been
used to describe the mean field. As in Ref. [2], we found that the charge densities
corresponding to the minimum of the energy, appreciably disagree with the corre-
sponding experimental quantities, therefore, in view of the mild dependence of the
energy around the minimum upon the mean-field parameters, following Ref. [2], we
have changed the latter to obtain agreement between theoretical and experimental
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Fig. 1. The charge densities of 16O calculated using the cluster expansion (6) with
harmonic oscillator (HO) (left panel) and Saxon-Woods (SW) (right panel) single-
particle wave functions (spwf). Dashed line: mean-field wave functions used in the
cluster expansion calculations; full line: results of the cluster expansion; thick full
line: experimental data [4]. The HO and the SW spwf’s parameters corresponding
to the full line have been chosen such as to provide a good description of the density
without appreciably changing the minimum value of the ground state energy. The
normalization of the density is 4π

∫
ρ(r) r2 dr = Z, Z being the number of protons.

charge densities. The results for the charge densities and momentum distributions,
which are shown in Figs. 1 and 2, deserve the following comments:

1) the agreement between our cluster expansion and FHC/SOC result of Ref.
[2] is very good;

2) both approaches predict momentum distributions which do not appreciably
differ from the ones obtained in Ref. [3], where the variational Monte Carlo
method and the AV18 interaction have been used;

3) the high momentum part of n(k) is almost entirely exhausted by non-central,
long-range correlations, with the central, short-range, Jastrow correlations
under-predicting the high momentum part of n(k) by about one order of
magnitude;

4) the dominant non-central correlations are the isospin, f4 = f (4)(rij)τi · τj ,

and isospin-tensor, f6 = f (6)(rij)τi · τjSij , correlations.
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Fig. 2. The momentum distributions of 16O calculated with the cluster expansion
(6) and harmonic oscillator (HO) (upper panel) and Saxon-Woods (SW) (lower
panel) spwf’s as in Fig. 1. Dashed line: mean field approximation; thick full line: f1

approximation (only central correlations: (f̂ = f̂ (1)); dotted line: f3 approximation

(f̂ = f̂ (1) + f̂ (4) + f̂ (6)); full line: f6 approximation (f̂ =
∑6

p=1 f̂ (p)). The asterisks

and the full squares are the results from Ref. [2] and [3], respectively. The values of
the kinetic energy calculated by Eq. (7) are as follows: 〈T 〉 = 230.28 MeV (dashes),
287.23 MeV (thick full), 435.94 MeV (dots), 458.29 MeV (full) for HO spwf’s, and
〈T 〉 = 244.94 MeV (dashes), 306.98 MeV (thick full), 469.83 MeV (full), 494.47
MeV (dots) for SW spwf’s. The normalization of n(k) is 4π

∫
n(k) k2 dk = 1.

3. The final-state interaction in A(e,e′p)X reactions off

complex nuclei: Glauber approach

Using the results obtained in the previous section, we have calculated the semi-
inclusive A(e,e′p)X process in which an electron with 4-momentum k1 ≡ {k1, iǫ1},
is scattered off a nucleus with 4-momentum PA ≡ {0, iMA} to a state k2 ≡ {k2, iǫ2}
and is detected in coincidence with a proton p with 4-momentum p ≡ {p, iEp}; the
final (A−1) nuclear system with 4-momentum PX ≡ {P X, iEX} is undetected. The
cross section for the exclusive process A(e,e′p)B can be written as follows

dσ

dQ2 dν dp
= KσepPD(Em,pm) , (10)

where K is a kinematical factor, σep the off-shell electron-nucleon cross section
and Q2 = |q|2 − ν2 the four momentum transfer. The quantity PD(Em,pm) is
the distorted nucleon spectral function which depends upon the observable missing
momentum pm = q − p (pm = k when the FSI is absent) and missing energy
Em = ν−Tp−TA−1. In the semi-inclusive A(e,e′p)X process, the cross section (10)
is integrated over the missing energy Em, at fixed value of pm and becomes directly
proportional to the distorted momentum distribution

nD(pm) = (2π)−3

∫
eip

m
·(r1−r′

1
)ρD(r1, r

′
1)dr1 dr′

1 , (11)
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where

ρD(r1, r
′
1) =

〈ΨA S† Ô(r1, r
′
1)S′ Ψ′

A〉

〈ΨAΨA〉
(12)

is the distorted one-body mixed density matrix, S the S-matrix describing FSI, and
the primed quantities have to be evaluated at r′

i with i = 1, ..., A. The integral of
nD(pm) gives the nuclear transparency T

T =

∫
nD(pm)dpm∫

n(k)dk
=

∫
ρD(r)dr = 1 + ∆T , (13)

where ρD(r) = ρD(r1 = r′
1 ≡ r), and ∆T originates from the FSI. In Ref. [5], Eq.

(11) has been evaluated using a Glauber representation for the scattering matrix
S, viz

S → SG(r1 . . . rA) =
A∏

j=2

G(r1, rj) ≡
A∏

j=2

[
1 − θ(zj − z1)Γ(b1 − bj)

]
, (14)

where bj and zj are the transverse and the longitudinal components of the nucleon
coordinate rj ≡ (bj , zj), Γ(b) the Glauber profile function for elastic proton nu-
cleon scattering, and the function θ(zj − z1) takes care of the fact that the struck
proton “1” propagates along a straight-path trajectory so that it interacts with nu-
cleon “j” only if zj > z1. The same cluster expansion described in Sect. 2 has been
used taking Glauber rescattering exactly into account at the given order n, and

using the approximation |ΨA−3|
2 =

∏A

3 ρ(i). Using the mean-field and correlation
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Fig. 3. The distorted momentum distribution, nD(pm) = nD(pm, θ) (θ = q̂pm),
of 16O and 40Ca, obtained by Eq. (11) with correlated wave functions, harmonic
oscillator spwf ′s and the Glauber S matrix (14). The value of the integrated nuclear
transparency (13) for 16O is 0.5.

parameters obtained from the energy calculation, we have obtained the distorted
nucleon momentum distributions nD(pm) = nD(pm, θ), where θ is the angle between
q and pm; the results for 16O and 40Ca are presented in Fig. 3.
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4. Finite formation time effects

Recently [6], the effects of color transparency in quasi-elastic lepton scattering
off nuclei have been introduced by explicitly considering the finite formation time
(FFT) that the hit hadron needs to evolve to its asymptotic physical state. It has
been shown that at the values of the Bjorken scaling variable x = Q2/2mν ≃ 1,
FFT effects can be treated in a simple way, i.e. by replacing the Glauber operator
(Eq. (14)) with

SFFT(r1, ..., rA) =

A∏

j=2

(
1 − J(z1 − zj)Γ(b1 − bj)

)
, (15)

where
J(z) = θ(z) e−zxmM2/Q2

, (16)

m being the nucleon mass and M2 = m∗ 2 − m2 is a parameter describing the
average excitation energy of the ejectile. It can be seen that at sufficiently high
values of Q2, J → 1 and the FSI vanishes. The effects of FFT on the distorted
momentum distribution are shown in Fig. 4.
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Fig. 4. Left panel: the Q2- and pm-dependence of FFT effects on the distorted
momentum distribution of 16O calculated by Eqs. (11) and (14) at θ = 90◦. Right
panel: the ratio of the distorted to the undistorted momentum distributions, i.e.
the non-integrated nuclear transparency for various values of pm and θ = 90◦. The
horizontal lines represent the Q2-independent Glauber results.

5. Summary and conclusions

We have obtained fully correlated wave functions by calculating the average
value of the nuclear Hamiltonian by means of a linked cluster expansion and using
realistic two-nucleon interactions. The wave functions have been used to obtain
the ground state density and momentum distribution. By introducing FSI effect
by a Glauber-type approach, the distorted momentum distributions appearing in
the semi-inclusive A(e,e′p)X processes have been calculated. By such a procedure,
a consistent treatment of initial-state correlations and final-state interactions has
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been achieved. Color transparency effects have also been investigated by the fi-
nite formation time approach. Comparison with available experimental data is in
progress and will be reported elsewhere.
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REALISTIČNI RAČUNI UČINAKA KORELACIJA I MED– UDJELOVANJA U
KONAČNOM STANJU U PROCESIMA A(e,e′p)X U KOMPLEKSNIM

JEZGRAMA

Primijenili smo razvoj po vezanim nakupinama u kompleksnim jezgrama s re-
alističnim med–udjelovanjem za računanje osnovnog stanja, gustoće i impulsne
raspodjele u 16O i 40Ca. S tim razvojem, te valnim funkcijama i korelacijskim
parametrima dobivenim u računu energije, izveli smo poluinkluzivnu reakciju
A(e,e′p)X, uzimajući u obzir med–udjelovanje u konačnom stanju Glauberovim pri-
stupom; usporedba distordiranih i nedistordiranih impulsnih raspodjela daje ocjenu
prozirnosti nuklearne tvari za gibanje udarenog protona. Takod–er smo uključili
učinak prozirnosti boje, razmatrajući konačno vrijeme tvorbe koje udareni hadron
treba da postigne svoje asimptotsko fizičko stanje.
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