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aDepartment of Mathematical and Computational Physics, Sankt-Petersburg State
University, Ul’yanovskaya 1, Petrodvorets, Sankt-Petersburg, 198504, Russia

bPhysics Department, North Carolina Central University, 1801 Fayetteville Street,
Durham, NC 27707, USA

Received 27 October 2003; Accepted 18 October 2004

Online 22 November 2004

A new computational method for solving the configuration-space Faddeev equa-
tions for a three-nucleon system has been developed. This method is based on the
spline-decomposition in the angular variable and on a generalization of the Nu-
merov method for the hyperradius. The s-wave calculations of the inelasticity and
phase-shift, as well as of the breakup amplitudes for nd and pd breakup scattering
for lab energies 14.1 and 42.0 MeV have been performed using the Malfliet-Tjon
MT I-III potential. In the case of nd breakup scattering, the results are in good
agreement with those of the benchmark solution (J. L. Friar et al., Phys. Rev. C
42 (1990) 1838 and J. L. Friar et al., Phys. Rev. C 51 (1995) 2356). In the case of
pd quartet breakup scattering, disagreement for the inelasticities reaches up to 6%
when compared with the results of the Pisa group (A. Kievsky et al., Phys. Rev. C
64 (2001) 024002). The calculated pd amplitudes fulfill the optical theorem with
a good precision.
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1. Faddeev equations in configuration space

This paper deals with the s-wave breakup scattering in three-nucleon systems.
Our approach is based on the method of the Faddeev equations [1], which was mod-
ified by Merkuriev to incorporate the Coulomb force [2]. The Faddeev components
Ψα for three-body Coulomb systems satisfy the following set of differential Faddeev
equations

{−∆xα
− ∆yα

+ Vc + Vα(|xα|) − E}Ψα(xα, yα) = −Vα(|xα|)
∑

β /=α

Ψβ(xβ , yβ), (1)
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where Vc and Vα are the Coulomb and nuclear potentials, respectively. The
Coulomb potential has the following form

Vc =
∑

α

n

|xα|

∏

i⊂α

1

2
(1 + τ i

z), n =
me2

h̄2 , (2)

where e2 = 1.44 MeV fm and h̄2/m = 41.47 MeV fm2. The sum runs over α =1,2,3
for the three possible pairs, and the product of the isospin projection operators
runs over the indices i of the particles belonging to the pair α. As independent
coordinates, we take the Jacobi vectors xα, yα. For the pair α = 1, they are related
to particle coordinates by the formulae

x1 = r2 − r3, y1 =
r2 + r3

2
− r1; (3)

for α=2,3 one has to make cyclic permutations of the indices in Eq. (3). The Jacobi
vectors with different α’s are linearly related by the orthogonal transformation

(

xα

yα

)

=

(

Cαβ Sαβ

−Sαβ Cαβ

)(

xβ

yβ

)

, C2
αβ + S2

αβ = 1 (4)

where

Cαβ = −
√

mαmβ

(M−mα)(M−mβ)
, Sαβ = (−)β−αsgn(β−α)

√

1−C2
αβ , M =

3
∑

α=1

mα.

(5)

To derive the equations to be used in numerical computations, we perform the
partial wave decomposition of Eq. (1) and separate the spin-isospin and angular
variables (see, for instance, Refs. [3] and [4]). As a result, in the s-wave doublet case,
we obtain a system of integro-differential equations which, in the polar coordinates
ρ2 = x2 + 4

3y2 and tan θ = 2√
3
y/x (here we omit the index 1) have the form

{

− ∂2

∂ρ2
− 1

ρ2

∂2

∂θ2
+ V t

c (ρ, θ) + V t(ρ, θ) − 1

4ρ2
− E

}

U t(ρ, θ) = −1

4
V t(ρ, θ)

×
+1
∫

−1

du
sin θ cos θ

sin θ′ cos θ′
(U t(ρ, θ

′

) − 3Us(ρ, θ
′

))

{

− ∂2

∂ρ2
− 1

ρ2

∂2

∂θ2
+ V s

c (ρ, θ) + V s(ρ, θ) − 1

4ρ2
− E

}

Us(ρ, θ) = −1

4
V s(ρ, θ)

×
+1
∫

−1

du
sin θ cos θ

sin θ′ cos θ′
(−3U t(ρ, θ

′

) + Us(ρ, θ
′

)),

(6)
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where

cos2 θ
′

(u, θ) =
1

4
cos2 θ −

√
3

2
u cos θ sin θ +

3

4
sin2 θ, (7)

and the first derivative in the radius is eliminated by means of the substitution

Ψ(t,s) = ρ−1/2U (t,s). In Eq. (6), the s-wave Coulomb potential V
(t,s)
c (ρ, θ) is given

by [4]

V t
c (ρ, θ) =

nµt(θ)

ρ
, µt(θ) =























2√
3 sin θ

θ > 30◦ ,

2

cos θ
θ ≤ 30◦ ,

V s
c (ρ, θ) =

nµs(θ)

ρ
, µs(θ) =

1

3

(

2

cos θ
+ µt(θ)

)

.

(8)

The Malfliet-Tjon MT I-III potential (see Refs. [5] and [6]) was chosen as the
nuclear potential V t,s(ρ, θ). The set of partial differential equations (6) must be
solved for the functions satisfying the regularity conditions

U t,s(0, θ) = U t,s(ρ, 0) = U t,s(ρ, π/2) = 0 (9)

and the following asymptotic conditions [2]:

U t |ρ→∞∼ √
ρϕd(ρ, cos(θ)){Fo(γ, p

√
3

2
ρ sin(θ)) + a(p)[Go(γ, p

√
3

2
ρ sin(θ))

+iFo(γ, p

√
3

2
ρ sin(θ))]} + At(θ) exp[i

√
Eρ − i

nµt(θ)

2
√

E
ln(2

√
Eρ)] ,

Us |ρ→∞∼ As(θ) exp[i
√

Eρ − i
nµs(θ)

2
√

E
ln(2

√
Eρ)] .

(10)

Here, ϕd is the deuteron wave function, Fo and Go are the regular and irregular
Coulomb functions, γ = 2n/(3p) is the Coulomb parameter with p the momentum in
the center-of-mass system and µt,s(θ) is defined in Eqs. (8). The unknown functions
a(p) and At,s are the elastic and breakup scattering amplitudes,

a(p) =
η exp(i2δ) − 1

2i
, (11)

and η and δ are the inelasticity and phase shift, respectively. In the case of nd

breakup scattering the asymptotic conditions retain the functional form of Eq.
(10) but the Coulomb functions Fo and Go should be replaced by sine and cosine,
respectively.
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2. Numerov’s method and spline approximation

Our previous calculations of the elastic amplitudes for nd and pd breakup
scattering, in which the reduction of the Faddeev equations to an algebraic problem
was performed by means of finite-difference approximation for the hyperradius,
have demonstrated a weak dependence of the results on the choice of the matching
radius [7]. Nevertheless, to get accurate results for breakup amplitudes, one has
to considerably increase the cutoff radius. So, to obtain accurate results at the
same time, we have applied the Numerov method for solving partial differential
equations. The idea of the Numerov method consists in using the initial differential
equation to calculate higher derivatives in the expansion of the unknown function
in Taylor’s series (for instance, see Ref. [8]). According to Numerov, one has to
keep all terms up to the sixth derivative in this expansion. Summing the equations
for points ρ − ∆ρ and ρ + ∆ρ, we get the following finite-difference approximation
of the second radial derivative

∂2U(ρ, θ)

∂ρ2

∣

∣

∣

∣

∣

∣ ρi

=
U(ρi+1, θ) − 2U(ρi, θ) + U(ρi−1, θ)

∆ρ2
− ∆ρ2

12
U IV

ρ (ρi, θ) + O(∆ρ4).

(12)

The fourth radial derivative of the Faddeev component has to be found by
differentiating the second derivative in the corresponding Faddeev equation. From
here on we carry out the analysis for the spin-quartet Faddeev equation. In the
s-wave approach, this equation in polar coordinates has the form [4]

{

− ∂2

∂ρ2
− 1

ρ2

∂2

∂θ2
+ Vc(ρ, θ) + V t(ρ, θ) − 1

4ρ2
− E

}

U(ρ, θ)

=
2√
3
V t(ρ, θ)

θ+
∫

θ−

dθ′U(ρ, θ′),

(13)

where θ− = |θ−π/3|, θ+ = π/2− |θ−π/6|. Thus we obtain the following formula
for the fourth derivative of the Faddeev component

∂4U(ρ, θ)

∂ρ4
= − ∂2

∂ρ2

[

{

1

ρ2

∂2

∂θ2
− Vc(ρ, θ) − V t(ρ, θ) +

1

4ρ2
+ E

}

U(ρ, θ)

+
2√
3
V t(ρ, θ)

θ+
∫

θ−

dθ′U(ρ, θ′)

]

.

(14)

Substituting this expression into Eq. (12), we obtain the finite difference
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approximation for the second derivative up to the 4th order in ∆ρ

∂2U(ρ, θj)

∂ρ2

∣

∣

∣

∣

ρi

=
U(ρi+1, θj) − 2U(ρi, θj) + U(ρi−1, θj)

∆ρ2
+

∆ρ2

12

∂2

∂ρ2

[{

1

ρ2

∂2

∂θ2

−Vc(ρ, θ)−V t(ρ, θ)+
1

4ρ2
+E

}

U(ρ, θ)+
2√
3
V t(ρ, θ)

θ+
∫

θ−

dθ′U(ρ, θ′)

]

ρiθj

+ O(∆ρ4).

(15)

Finally, replacing the second radial derivative in the Faddeev equations by the
expression obtained, we have the analog of Numerov’s method for the spin-quartet
Faddeev equation as follows

−
[

U(ρi+1, θ) − 2U(ρi, θ) + U(ρi−1, θ)

∆ρ2
−

(

1 +
∆ρ2

12

∂2

∂ρ2

){

− 1

ρ2

∂2

∂θ2
+ Vc(ρ, θ)

+V t(ρ, θ)− 1

4ρ2
−E

}

U(ρ, θ)

]

ρi,θj

=
2√
3

(

1+
∆ρ2

12

∂2

∂ρ2

)[

V t(ρ, θ)

θ+
∫

θ−

dθ′U(ρ, θ′)

]

ρi,θj

.

(16)
Generalization of the Numerov method for the set of differential equations (6) does
not present serious difficulties. Thus, due to the complexity of the corresponding
formulae, we do not show them here. To ensure an accuracy of order (∆θ)4 for
the approximation in the angular variable, we used Hermitian splines of the fifth
degree (see Ref. [9]). These splines are local, and each spline Sσi(x) is defined for
x belonging to two adjacent subintervals [xi−1, xi] and [xi, xi+1]. Their analytical
form is fixed by the following smoothness conditions

Sσi(xi−1) = 0, Sσi(xi+1) = 0, σ = 0, 1, 2, (17)

and
S0i(xi) = 1, S′

0i(xi) = 0, S′′
0i(xi) = 0,

S1i(xi) = 0, S′
1i(xi) = 1, S′′

1i(xi) = 0,

S2i(xi) = 0, S′
2i(xi) = 0, S′′

2i(xi) = 1.

(18)

To reduce the resulting equation (16) to an algebraic problem, one must explicitly
calculate the derivatives with respect to ρ in Eq. (16) using the following spline
expansion

U(ρ, θ) =
2

∑

σ=0

Nθ+1
∑

j=0

Cσ
j (ρ)Sσj(θ), (19)

where Nθ + 1 is the number of internal subintervals for the angular variable θ ∈
[0, π/2]. Upon substituting the spline expansion (19) into the Faddeev equation, we
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use a collocation procedure with three Gaussian quadrature points per subinterval.
As the number of internal breakpoints for angular variable θ is equal to Nθ, the basis
of quintic splines consists of 3Nθ +6 functions. Three of them can be excluded using
the last two regularity conditions from (9) and the continuity of the first derivative
in θ of the Faddeev component at either θ = 0 or θ = π/2, and the collocation
procedure yields 3Nθ + 3 equations.

3. Method of partial inversion

Using the spline approximation in the angular variable, and Numerov’s method
for the hyperradius, we obtain an algebraic problem for the unknown coefficients
Cσ

j (ρk). It is convenient to transform this problem back to the set of linear equations
for the Faddeev components U(ρi, θk) by means of Eq. (19). Thus we reduce Eq.
(16) to a matrix form

(D ∗ U)i = −δinD+Un+1, n = Nρ. (20)

The matrices D and D+ are of dimension NρNc ×NρNc and Nc ×Nc, respectively.
Here, Nρ is the number of breakpoints in the hyperradius ρ and Nc = 3Nθ + 3 is
the number of collocation points in the angular variable θ.

The matrix D has the three-block-diagonal structure that optimizes consider-
ably the inversion problem. Index n+1 stands for hyperradius ρn+1 = Rmax, where
Rmax is the cutoff radius at which the asymptotic conditions Eq. (10) are imple-
mented. By formal inversion of the matrix D in Eq. (19), we can write the solution
of the problem

Uj = −D−1
jn D+Un+1, j = 1, 2....Nρ. (21)

The form of this equation results from keeping the incoming wave in the asymptotic
conditions (10). As a consequence, the right hand part of Eq. (21) has a single
nonzero term marked with index n + 1. In Eq. (21), we consider the last two
components of the vector U

Un−1 = −D−1
n−1nD+Un+1

Un = −D−1
nnD+Un+1.

(22)

Provided Rmax is large enough, one may substitute for Un−1, Un on the left hand
sides of Eqs. (22) the corresponding vectors obtained by evaluating Eqs. (10) at
the radii ρ = ρn−1 and ρ = ρn. Thus we obtain a set of linear equations for the
unknown amplitudes a and A

a · vn−1 + mn−1 · A = Fn−1

a · vn + mn · A = Fn .
(23)

Here we do not show the explicit forms of vectors v ,F and matrices m. As Rmax →
∞, this set of equations has a constant a as a solution. At finite Rmax, the solution is
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a vector a with generally different components corresponding to different angles. We
follow the method of Merkuriev et al. [3], which consists in selecting the components
of a in the region of the maximum of the deuteron wave function, where a turns
out to be independent of the angle.

Furthermore, we propose a new method for a more adequate calculation of the
amplitudes. The set of linear equations (23) is overdetermined, since the number of
equations is 2 ·Nc and the number of unknowns is Nc+1. Therefore, it is natural to
use the least-squares method (LSM). One can apply it in either of two ways. In the
first one, we express the breakup amplitude A from the lower equation (23) and
substitute it into the upper one. As a result we have the following expression

a · v = F , (24)

where the vectors are definded as follows: v = vn−1−mn−1m−1
n vn and F = Fn−1−

mn−1m−1
n Fn . According to LSM, one has to minimize the following functional

‖a · v − F‖2 = min . (25)

Differentiating this expression in Re a and Im a, we obtain

a =
(v∗,F)

(v∗,v)
, (26)

where (ξ∗, f) is an ordinary scalar product.

In the second way, one has to express the elastic amplitude a from the lower
equation (23) using the scalar product

a =
(v∗

n ,Fn − mnA)

(v∗
n , vn)

. (27)

Substituting a from Eq. (27) into the upper equation (23), we obtain the set of
linear equations

mn−1A− vn−1

(v∗
n ,mnA)

(v∗
n , vn)

=Fn−1 − vn−1

(v∗
n ,Fn)

(v∗
n , vn)

. (28)

The explicit form of Eq. (28) is as follows

Nc
∑

j=1

{

mn−1 ,ij −
vn−1 ,i

(v∗
n , vn)

Nc
∑

k=1

v∗
n,kmn,kj

}

Aj = Fn−1 ,i −vn−1 ,i
(v∗

n ,Fn)

(v∗
n , vn)

, i =1 , ..,Nc .

(29)
Solving the set Eq. (29), we get the breakup amplitude A. Substituting the cal-
culated breakup amplitude into Eq. (27), we may compute the elastic amplitude
a. Note that to calculate it, one can apply Eq. (27) either in component form or
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via a scalar product. In the first case, the components of a are practically equal to
a constant for all angles θ ∈ (0, π/2), and this constant coincides with the value
of a calculated by using the scalar product to the fourth decimal. It should also
be noted that the elastic amplitudes calculated by the method from Ref. [3] and
LSM coincide with this constant to the same accuracy. For control, we used both
methods of computing the amplitudes.

4. Results of the calculations

The elastic amplitude a and breakup amplitude A for nd and pd scattering
were computed at Elab=14.1 and 42.0 MeV. The following values were used for the
parameters of the calculation: Nρ ∼ 10000, Nθ ∼ 600 and values of the hyperradius
Rmax as large as 800 fm. In Table 1, the elastic phase shifts δ and inelasticities η are
presented for various energies and spin cases. As one can see from Table 1, our re-
sults for nd breakup are in very good agreement with calculations of other groups.
However, for pd breakup, they differ from those of the Pisa group [10]. To see the
influence of the Coulomb interaction on pd as compared to nd breakup scattering,
we calculated the nd and pd breakup amplitudes A(θ) for the total spin S = 3/2
(spin-quartet case) and At,s(θ) for the total spin S = 1/2 (spin-doublet case). Our
results are shown in Figs. 1 – 3. It is important to note that in our s-wave approach
we have not included higher partial waves of the Coulomb potential. Nevertheless
the accuracy of this approach is about 1% for energies exceeding 1 MeV, as was
already pointed out by Merkuriev et al. in Ref. [11]. From Fig. 1, it follows that
the Coulomb interaction has a noticeable effect on the real and imaginary parts
of the pd quartet breakup amplitude at Elab = 14.1 MeV, especially for angles in

TABLE 1. n-d and p-d elastic phase shifts and inelasticities.

LA/Iowa Bochum Pisa present Pisa present

ref. [1] ref. [1] ref. [3] work ref. [3] work

14.1 Doublet nd Doublet pd

MeV Re(δ) 105.48 105.50 105.48 105.47 108.44 108.06

η 0.4648 0.4649 0.4649 0.4649 0.4984 0.4929

Quartet nd Quartet pd

Re(δ) 68.95 68.96 68.952 68.93 72.604 73.64

η 0.9782 0.9782 0.9782 0.9782 0.9795 0.9202

42 Doublet nd Doublet pd

MeV Re(δ) 41.34 41.37 41.341 41.34 43.667 43.47

η 0.5024 0.5022 0.5022 0.5022 0.5056 0.5071

Quartet nd Quartet pd

Re(δ) 37.71 37.71 37.722 37.70 39.947 39.19

η 0.9035 0.9033 0.9033 0.9034 0.9046 0.866
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Fig. 1. Spin-quartet nd and pd breakup amplitudes.
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Fig. 2. Spin-doublet nd and pd breakup amplitudes for Elab = 14.1 MeV. As is the
singlet (pair spin s = 0) breakup amplitude and At is the triplet (pair spin s = 1)
one.
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Fig. 3. Spin-doublet nd and pd breakup amplitudes for Elab = 42.0 MeV. Notation
is the same as in Fig. 2.
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the vicinity of π/6. At Elab = 42.0 MeV, the effect of the Coulomb interaction is
noticeable only in the real part of amplitude. In the spin doublet case, a substantial
effect of the Coulomb interaction persists at the energy Elab = 14.1 MeV. As one
can see in Fig. 2, a large enough influence of the Coulomb force is noticeable for
the real part of both the singlet and triplet breakup amplitudes. At Elab = 42.0
MeV, a small influence of the Coulomb interaction is felt in the behavior of the
singlet breakup amplitude for angles exceeding π/3 (see Fig. 3). The oscillations
of the singlet breakup amplitudes for angles in a small vicinity of π/2 reflect the
behavior of the breakup part in the singlet asymptotic condition in Eq. (10), as the
essential singularity occurs at the angle θ=π/2.

In Tables 2 – 3, our results are presented for reduced quartet breakup amplitudes

TABLE 2. nd and pd spin-quartet reduced breakup amplitude presented in the
format x.xx ≡ x.xx 10−1, Elab = 14.1 MeV.

θ (deg) 0 10 20 30 40 50 60 70 80

Present work, nd results, Rmax → ∞
Re(3S1) -1.91 -1.93 -1.94 -1.89 -1.75 -1.58 -1.47 -1.51 -1.78

Im(3S1) 3.65 3.67 3.70 3.72 3.73 3.81 4.00 4.32 4.62

LA/Iowa, nd results, Rmax → ∞, Ref. [6]

Re(3S1) -1.92 -1.93 -1.94 -1.89 -1.75 -1.58 -1.47 -1.51 -1.78

Im(3S1) 3.65 3.67 3.70 3.72 3.73 3.81 4.00 4.31 4.62

Present work, pd results, Rmax → ∞
Re(3S1) -2.21 -2.24 -2.31 -2.44 -2.07 -1.82 -1.68 -1.71 -1.96

Im(3S1) 3.21 3.19 3.14 2.99 3.34 3.57 3.83 4.14 4.39

TABLE 3. nd and pd spin-quartet reduced breakup amplitude presented in the
format x.xx ≡ x.xx 10−n, Elab = 42.0 MeV.

θ (deg) 0 10 20 30 40 50 60 70 80

Present work, nd results, Rmax → ∞
Re(3S1) 1.48-2 1.65-3 -3.11-2 -3.12-2 7.76-2 2.52-1 4.51-1 6.53-1 6.98-1

Im(3S1) 1.69-0 1.74-0 1.87-0 1.92-0 1.80-0 1.67-0 1.70-0 1.94-0 2.52-0

LA/Iowa, nd results, Rmax → ∞, Ref. [6]

Re(3S1) 1.48-2 9.22-4 -3.21-2 -3.09-2 7.70-2 2.52-1 4.51-1 6.53-1 6.93-1

Im(3S1) 1.69-0 1.74-0 1.87-0 1.92-0 1.80-0 1.68-0 1.70-0 1.95-0 2.52-0

Present work, pd results, Rmax → ∞
Re(3S1) -8.22-2 -1.09-1 -1.83-1 -2.56-1 -3.83-2 1.81-1 3.90-1 5.78-1 5.85-1

Im(3S1) 1.67-0 1.72-0 1.83-0 1.86-0 1.79-0 1.70-0 1.74-0 1.99-0 2.54-0
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defined in Ref. [6] as follows

Ared(θ) =
A(θ)K2

sin(θ) cos(θ)
, K2 = mE/h̄2. (30)

TABLE 4. nd and pd spin-doublet reduced breakup amplitude presented in the
format x.xx-n ≡ x.xx 10−n.

θ (deg) 0 10 20 30 40 50 60 70 80

Elab = 14.1 MeV
Present work, nd results, Rmax → ∞

Re(1S0) 8.81-2 8.61-2 8.04-2 7.29-2 6.65-2 6.42-2 6.84-2 8.42-2 1.11-1

Im(1S0) 1.84-1 1.81-1 1.72-1 1.50-1 1.14-1 7.18-2 2.59-2 -3.49-2 -1.76-1

Re(3S1) -2.44-2 -2.21-2 -1.59-2 -7.77-3 -3.46-4 4.75-3 5.21-3 -2.31-3 -1.82-2

Im(3S1) 8.00-2 8.44-2 9.79-2 1.20-1 1.48-1 1.76-1 2.00-1 2.14-1 2.09-1

LA/Iowa, nd results, Rmax → ∞, Ref. [6]

Re(1S0) 8.79-2 8.59-2 8.03-2 7.28-2 6.65-2 6.41-2 6.84-2 8.43-2 1.11-1

Im(1S0) 1.84-1 1.82-1 1.72-1 1.50-1 1.14-1 7.19-2 2.60-2 -3.49-2 -1.78-1

Re(3S1) -2.43-2 -2.21-2 -1.60-2 -7.89-3 -4.11-4 4.68-3 5.10-3 -2.40-3 -1.82-2

Im(3S1) 8.01-2 8.45-2 9.80-2 1.20-1 1.48-1 1.76-1 1.99-1 2.14-1 2.09-1

Present work, pd results, Rmax → ∞
Re(1S0) 7.97-2 7.65-2 6.96-2 6.06-2 6.18-2 6.24-2 6.62-2 7.42-2 7.45-2

Im(1S0) 1.87-1 1.86-1 1.75-1 1.52-1 1.12-1 6.65-2 1.59-2 -5.10-2 -1.49-1

Re(3S1) -2.57-2 -2.48-2 -2.34-2 -2.73-2 -1.53-2 -8.79-3 -7.87-3 -1.55-2 -3.11-2

Im(3S1) 6.95-2 7.37-2 8.66-2 1.07-1 1.40-1 1.70-1 1.95-1 2.10-1 2.02-1

Elab = 42 MeV
Present work, nd results, Rmax → ∞

Re(1S0) 5.01-1 4.94-1 4.59-1 3.63-1 2.19-1 8.78-2 -3.49-2 -2.10-1 -7.04-1

Im(1S0) 5.56-1 5.90-1 6.70-1 6.67-1 4.63-1 2.08-1 -2.58-2 -2.99-1 -8.13-1

Re(3S1) -1.30-2 1.41-2 1.01-1 2.41-1 3.85-1 5.08-1 6.20-1 7.00-1 5.69-1

Im(3S1) 2.64-1 2.66-1 2.85-1 3.69-1 5.39-1 7.23-1 9.34-1 1.25-0 1.70-0

LA/Iowa, nd results, Rmax → ∞, Ref. [6]

Re(1S0) 5.01-1 4.94-1 4.59-1 3.62-1 2.19-1 8.78-2 -3.50-2 -2.10-1 -7.05-1

Im(1S0) 5.56-1 5.91-1 6.70-1 6.66-1 4.63-1 2.09-1 -2.57-2 -2.99-1 -8.14-1

Re(3S1) -1.30-2 1.33-2 1.00-1 2.42-1 3.85-1 5.07-1 6.20-1 7.00-1 5.69-1

Im(3S1) 2.63-1 2.66-1 2.85-1 3.70-1 5.39-1 7.23-1 9.34-1 1.25-0 1.70-0

Present work, pd results, Rmax → ∞
Re(1S0) -2.61-2 6.74-4 8.23-2 1.97-1 3.44-1 4.70-1 5.82-1 6.48-1 4.87-1

Im(1S0) 2.43-1 2.47-1 2.77-1 3.84-1 5.63-1 7.55-1 9.73-1 1.29-0 1.74-0

Re(3S1) 4.95-1 4.84-1 4.35-1 3.24-1 2.02-1 8.06-2 -4.02-2 -2.17-1 -6.76-1

Im(3S1) 5.94-1 6.27-1 7.05-1 6.93-1 4.71-1 2.03-1 -4.41-2 -3.39-1 -8.90-1
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As one can see from Tables 2 and 3, in the spin-quartet case agreement between
our results and those of the Los-Alamos and Bochum groups Ref. [6] is excellent. It
should be noted that one can not explicitly calculate the reduced breakup amplitude
for the angle θ = π/2 because one has to resolve an uncertainty in Eq. (30) for
this angle. That is impossible numerically, as the breakup amplitude for the angle
θ = π/2 cannot be calculated using the Faddeev equations with sufficient accuracy
in principle and one has to use another way to calculate it (for example, to exploit
an integral representation from Ref. [3]). Unfortunately, we have no possibility
to compare our results for the pd quartet amplitudes because of their absence in
literature. In Table 4, the reduced doublet breakup amplitudes are presented.

The agreement between our results and those of Los-Alamos and Bochum groups
[6] is again excellent. From this table, we again see a large enough influence of
the Coulomb interaction for the pd doublet reduced amplitudes. In view of the
large enough Coulomb effects in the case of spin-quartet breakup scattering, it is
undoubtedly of interest to see it in more detail. In Fig. 4, the spin-quartet reduced
breakup amplitudes are presented. Obviously, the Coulomb interaction effects are
noticeable in the behavior of these amplitudes at all angles, especially for the lab
energy Elab = 14.1 MeV. This effect should be important for the calculation of the
total breakup amplitude, which should be quite different for nd and pd breakup
scattering.
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Fig. 4. Reduced quartet breakup amplitudes.

To verify our results, we applied the optical theorem [3]. In the spin-quartet
case for the s-wave approach, it reads

Im 4a0(p) = |4a0(p)|2 +
K

p

π/2
∫

0

dθA∗
totA, Atot(θ) = A(θ) − 2√

3

θ+
∫

θ−

dθ′A(θ
′

).

(31)

620 FIZIKA B 13 (2004) 2, 609–624
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For the spin-doublet case in the s-wave approach (ref.[3]), the optical theorem reads

Im 2a0(p) = |2a0(p)|2 +
K

p

{

π/2
∫

0

dθ[A∗t
totAt + A∗s

totAs]

}

,

At
tot(θ) = At(θ) +

1√
3

{

θ+
∫

θ−

dθ′[At(θ
′

) − 3As(θ
′

)]

}

,

As
tot(θ) = As(θ) +

1√
3

{

θ+
∫

θ−

dθ′[As(θ
′

) − 3At(θ
′

)]

}

.

(32)

In Table 5, our optical theorem results are presented. Table 5 clearly confirms the
accuracy of our results, and the estimation of Merkuriev et al. [11] of the contri-
bution of higher Coulomb partial waves under an s-wave approach, which is less
than 1%. In Figs. 5 and 6, we show the physical nd and pd breakup amplitudes.
The physical pd quartet breakup amplitudes clearly demonstrate the influence of
the Coulomb interaction, though they themselves have a small magnitude. For
the doublet scattering, the Coulomb interaction has a smaller effect on the breakup
amplitudes. The magnitude of these amplitudes is large as compared with the quar-
tet ones. Therefore, the differential cross-sections of the nd and pd processes should

TABLE 5. The optical theorem results.

Elab nd–quartet pd–quartet nd–doublet pd–doublet

MeV l.h.s r.h.s l.h.s r.h. s l.h.s r.h.s l.h.s r.h.s

14.1 0.8626 0.8626 0.8871 0.8776 0.6994 0.6994 0.6991 0.7061

42.0 0.3860 0.3860 0.4127 0.4086 0.4679 0.4679 0.4864 0.4881
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Fig. 5. Squares of the moduli of the physical quartet breakup amplitudes.
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Fig. 6. Squares of the moduli of the physical doublet breakup amplitudes. The solid
lines correspond to the spin-triplet amplitudes (pair spin s = 1). The dashed lines
correspond to the spin-singlet amplitudes (pair spin s = 0).

have some difference. To directly study the dependence of the optical theorem
results on the inelasticity in the spin-quartet case, we rewrite Eq. (31) in another
form using the definition of the elastic amplitude Eq. (11)

1 = η2 + 4
K

p

π/2
∫

0

dθA∗
totA. (33)

The results presented in Table 6 show that our nd amplitudes fulfill the opti-
cal theorem with a very high accuracy. In the case of pd breakup scattering, the
accuracy is a little bit worse. It is a consequence of our truncation of the partial
wave decomposition of the Coulomb potential. Analyzing Eq. (33) and the nd and
pd quartet results for inelasticities of the Pisa group from Table 1, one inevitably
comes to the conclusion about the equality of the contributions from integral terms
of the optical theorem for the nd and pd breakup processes. On the other hand, our
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Fig. 7. The quartet breakup and total amplitudes for Elab = 14.1 MeV.

622 FIZIKA B 13 (2004) 2, 609–624
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TABLE 6. The quartet optical theorem results.

Elab (MeV) nd pd

14.1 0.9999 0.9621

42.0 0.9999 0.9835

quartet breakup amplitudes are quite different for these two reactions as one can
see in Fig. 7, which is hardly compatible with the equality of these contributions.

This casts some doubts on the Pisa results for the pd quartet breakup scattering.

5. Conclusion

We have shown that by using the Numerov method very accurate calculations
can be performed with minimal computation resources (PC).

By retaining the incident wave in the asymptotics for the Faddeev components,
unnecessary additional computations are eliminated casting the problem in a form
that allows partial inversion.

The stability of our solutions for relatively large values of Rmax illustrates its
advantages for the investigation of the asymptotic behavior of the solutions. In fact,
the Numerov method enables us to compute the breakup amplitudes as well as the
Faddeev components with a high accuracy for Rmax = 800 fm and more.

The disagreement of our results for the phase shifts and inelastisities with those
of the Pisa group in the pd spin-quartet case reaches up to 6%, as one can see from
Table 1. It can not be explained by truncation of the partial wave expansion of
the Coulomb interaction in our calculation since the error introduced by neglecting
higher partial Coulomb waves should not exceed 1% as it follows from the optical
theorem results in Table 5.
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NOVA METODA RJEŠAVANJA PROBLEMA LOMNOG RASPRŠENJA Nd U
KONFIGURACIJSKOM PROSTORU

Razvili smo novu računalnu metodu za rješavanje Faddeevih jednadžbi u konfi-
guracijskom prostoru za sustav tri nukleona. Ona se zasniva na razvoju “spline”
po kutnoj varijabli i na poopćenoj Numerovoj metodi za hiperradijus. Računi ne-
elastičnosti i faznih pomaka kao i amplituda loma za lomno raspršenje nd i pd

na laboratorijskim energijama 14.1 i 42.0 MeV izvedeni su uz primjenu potencijala
Malfliet -Tjon MT I-III. Za lomno raspršenje nd, ishodi računa su u dobrom skladu
s ranijim rješenjima (J. L. Friar et al., Phys. Rev. C 42 (1990) 1838 i J. L. Friar
et al., Phys. Rev. C 51 (1995) 2356). Za četvorno lomno raspršenje pd, razlike u
neelastičnosti dosižu 6% u usporedbi s ishodima grupe u Pisi (A. Kievsky et al.,
Phys. Rev. C 64 (2001) 024002). Izračunate amplitude pd zadovoljavaju optički
teorem s dobrom točnošću.
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