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Enzymatic Pretreatment of Plant Cells for Oil Extraction
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SUMMARY
Oil from oilseeds can be extracted by mechanical extraction (pressing), aqueous ex-

traction, or by extraction with organic solvents. Although solvent extraction is the most 
efficient method, organic solvents are a potential hazard to the life and health for workers 
as well as to the environment, when solvent vapours are released and act as air pollutant 
with a high ozone-forming potential. Pressing is safer, environmentally friendly, and it pre-
serves valuable natural components in the resulting oils. The problems associated with 
pressing are the high energy consumption and the lower yield of oil extraction, because 
the applied mechanical force does not completely destroy the structural cell components 
storing the oil. In seed cells, the oil is contained in the form of lipid bodies (oleosomes) 
that are surrounded by a phospholipid monolayer with a protein layer on the surface. 
These lipid bodies are further protected by the seed cell walls consisting mainly of poly-
saccharides such as pectins, hemicelluloses and cellulose, but also of glycoproteins. The 
use of hydrolases to degrade these barriers is a promising pretreatment strategy to sup-
port mechanical extraction and improve the oil yield. It is advisable to use a combination 
of enzymes with different activities when considering the multicompartment and multi-
component structure of oilseed cells. This article gives an overview of the microstructure 
and composition of oilseed cells, reviews enzymes capable of destroying oil containing 
cell compartments, and summarizes the main parameters of enzymatic treatment proce-
dures, such as the composition of the enzyme cocktail, the amount of enzyme and water 
used, temperature, pH, and the duration of the treatment. Finally, it analyzes the efficien-
cy of proteolytic, cellulolytic and pectolytic enzyme pretreatment to increase the yield of 
mechanically extracted oil from various types of vegetable raw materials with the main 
focus on oilseeds. 
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INTRODUCTION
With the development of technology, the food market now mostly supplies processed 

foods to serve the consumer’s convenience. Processing, however, cannot only be used to 
prepare food for the consumer benefit, but also to save costs on raw materials and to re-
place expensive natural components by cheaper synthetic ones. Sometimes valuable com-
ponents are also degraded or lost by harsh processing methods or conditions. Vitamins, 
minerals, amino acids and polyunsaturated fatty acids are key components of a balanced 
diet that prevent the deterioration of health and decrease the incidence of obesity, dia-
betes, cardiovascular disease and cancer. Vegetable oils are an especially valuable source 
of biologically active substances with useful properties in the treatment and prevention 
of many diseases (1–4). These substances include natural antioxidants, ω-6 and ω-3 fatty 
acids, which are represented by linoleic and linolenic fatty acids, respectively, as well as 
phytosterols and squalene – a precursor to the formation of sterols, steroid hormones and 
vitamin D (1–6). 

The content of these substances in oil depends on the raw materials and the oil ex-
traction process. The two most common techniques to extract oil from oilseeds are 
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mechanical extraction by using a press (pressing) and oil ex-
traction by using an organic solvent. Although solvent extrac-
tion is more efficient and allows to extract more oil from the 
raw material than pressing, this technology involves the use 
of organic solvents (mostly hexane), which is dangerous in 
the production process (flammable and explosive) and a risk 
for human health if not properly removed from the product 
(3,7,8). In addition, the release of solvent vapours into the en-
vironment is also hazardous from an ecological point of view, 
as they react with air pollutants and form ozone and photo-
chemicals (7). Finally, the oil obtained by the extraction meth-
od must be refined, which causes the loss of many biologi-
cally active substances.

The pressing method is more environmentally friendly 
(despite its high energy consumption) and safe and it also 
helps to preserve valuable natural components in the result-
ing oils (especially cold pressing). However, pressing does not 
allow to extract oil from the oilseeds completely and a sig-
nificant percentage remains in the cake. This is the reason of 
the ongoing research to intensify mechanical oil extraction 
technologies (3). Some intensification approaches include 
solvent extraction methods that use terpenes and ionic liq-
uids as green solvents, but the most promising among these 
methods is the enzymatic pretreatment of plant materials 
and especially oilseeds with hydrolases before pressing (3,4, 
7,9–11). 

The oil within oilseeds is very well protected by compar-
timentalization and various structural components within the 
oilseed cells. In order to release the oil from its subcellular and 
cellular compartments, it is necessary to degrade these struc-
tural components. To support mechanical force that by itself 
does not result in a complete extraction, the use of hydrolyt-
ic enzymes, which are fast and specific catalysts, is promising 
to achieve a high oil yield by partial hydrolysis of various oil 
material cell constituents. 

MICROSTRUCTURE AND COMPOSITION OF 
OILSEED CELLS

The lipid bodies, which contain the oil in the seed cells, 
are called oleosomes (8,12–16). Oleosomes are droplets formed 
by triacylglycerides and surrounded by a membrane consist-
ing of a monolayer of phospholipids and a surface protein 
layer that penetrates the phospholipid layer and reaches into 
the oleosome (15,16). The phospholipid layer is formed main-
ly by phosphatidylcholine and phosphatidylserine, while ole-
osin predominates in the protein layer together within lower 
amounts of kaleosin and steroleosin (14,15). 

The structure of the plant cell wall is formed by linear cel-
lulose chains and branched hemicellulose chains immersed 
in a lignin matrix and features cross-linking lignin–carbohy-
drate bridges, ether, and C–C bonds (17). The cell walls of oil-
seeds consist mainly of polysaccharides such as cellulose, 
hemicelluloses, lignin, pectins and arabinogalactans, but also 
contain a low amount of hydroxyproline-rich glycoproteins 
(12,18). Cellulose is a linear chain of β-1,4-linked d-glucose units, 

which can be cleaved by various cellulases (Table 1 (17–41)). 
Hemicelluloses are linear or branched homo- or heteropoly-
saccharides bound to cellulose microfibrils by hydrogen 
bonds or connected to lignin by covalent bonds and thereby 
form the complex and solid structure of plant cell walls. 

Hemicelluloses consist of a large number of different 
mono- and oligosaccharides, including glucans, xylans, man-
nans, galactans, xyloglucans, arabinogalactans, etc. Based on 
their composition, arabinogalactans belong to the hemicel-
luloses. Despite not containing galacturonic acid residues, 
some authors also refer to arabinogalactans as pectins, due 
to their presence in the hair regions of pectin chains in the 
form of neutral sugars (19,20,42). Some arabinogalactans form 
compounds with proteins called arabinogalactan proteins 
(20). Due to the substrate specificity and regiospecificity of 
each hemicellulase, the destruction of a particular hemicel-
lulose (Table 1) is best performed by a mixture of enzymes 
(18). 

Lignin is a phenolic macromolecule consisting of p-hy-
droxyphenyl (H), guaiacyl (G) and syringyl (S)-type methoxyl-
ated phenylpropane units connected by different types of 
carbon–carbon and ether linkages, which is found in the cell 
walls of vascular plants (21,43). Several enzymes are known to 
attack and degrade lignin, such as laccase (EC 1.10.3.2), lignin 
peroxidase (LiP, EC 1.11.1.14), manganese peroxidase (MnP, EC 
1.11.1.13), and versatile peroxidase (VP, EC 1.11.1.16)). Laccase 
and peroxidases catalyze depolymerization of the lignin mac-
romolecules with formation of phenolic hydroxyl groups, ox-
idation of phenolic groups to phenoxy radicals and subse-
quent cross-linking of lignin (17,43). 

ENZYMATIC DEGRADATION OF CELL WALL 
COMPONENTS

In nature, phenol-oxidizing enzymes are produced by ba-
sidiomycetes such as white-rot fungi, but also brown-rot fun-
gi. White-rot fungal enzymes are capable of destroying not 
only lignin, but also all the main components of lignocellu-
lose, including cellulose and hemicellulose (17,21,43,44). The 
enzymes expressed by brown-rot fungi are able to cause lig-
nin oxidation, depolymerization, demethylation of lignin me-
thoxy groups, and the removal of cellulose and hemicellu-
loses from plant cell walls (17,43). 

The technology of enzyme-assisted delignification can 
be used to process lignocellulosic materials into medium-
density fibre board and particle board, aromatic value-added 
chemicals, biofuels, and in paper pulp manufacture (17,21,43). 
However, is it appropriate to use phenol-oxidizing enzymes 
to destroy the cell walls of oilseeds to increase oil yield? Lig-
nin is a main component of the seed coat. The content of 
lignin and cellulose carbohydrates in the seed kernels is much 
lower than in the husks. The compositional analysis of 20 
hemp seed varieties and lines revealed that the presence of 
these compounds in the hemp seed hulls ranged from mass 
fraction of 16.0 to 19.5 % for lignin and from 22.0 to 36.7 % for 
cellulose, while both of these components were absent from 
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Table 1. Microstructure, carbohydrate composition and enzymes proposed to be degrading oleaginous material cell walls

Oilseed or oil-containing 
material cell wall microstructure Image description

Cell wall constituting 
oligo- and 
polysaccharides

Corresponding 
enzymes for oligo-  
and polysaccharide 
degradation

Ref.

Soybean seed General seed microstructure of 
intact soybean tissue. SC=storage 
cotyledons, TE=testa (seed coat), 
EP=epidermis, EN=endosperm, 
AL=aleurone layer, PB=protein 
bodies, N=nucleus, arrow= 
pectin-rich region. l(bar)=500 µm 
(image a). A close up-of the cell 
wall is shown in the inset (image b). 
The copyright for this picture is 
granted by CC BY 4.0. 

Cellulose, mannan, 
galactan, arabinan, 
xyloglucan, 
rhamnogalactu-
ronans, arabino-
galactan I, xylo-
galacturonan, 
galacturonan, 
homogalacturonan 

Enzymes for cellulose 
and hemicellulose 
destruction, 
xyloglucan-degrading 
enzymes, 
arabinogalactan-
degrading enzymes, 
pectolytic enzymes, 
rhamnogalacturonan-
degrading enzymes 

(17–20, 
24–35)

Rapeseed Seed coat, radicle and cotyledons 
of a mature rapeseed of ultrahigh 
oil content Brassica napus line 
YN171 (image c). Ultrastructure of 
the rapeseed cotyledon cell with 
the protein bodies (arrowhead) 
and oilbodies (arrow) (image d). 
l(bar)=200 µm (image c), l(bar)=5 
µm (image d). The copyright is 
granted by CC BY 4.0. 

Cellulose, 
hemicelluloses, 
arabinan, 
arabinogalactan, 
pectins

Enzymes for cellulose 
and hemicellulose 
destruction, 
arabinogalactan-
degrading enzymes, 
pectolytic enzymes, 
rhamnogalacturonan-
degrading enzymes 

(17–20, 
26–32, 
36,37)

Hemp seed Transverse section of hemp heart 
stained with toluidine blue (image 
is an in silico “stitch” of 15×15 
images without other 
modifications). Hemp heart tissue 
stained to reveal cell walls 
(cellulose/calcofluor white) (image 
e). Hemp cotyledon stained with 
calcofluor white and showing 
autofluorescence (image f). 
l(bar)=1 mm (image e) and 20 μm 
(image f). The reproduction 
copyright is granted by Elsevier. 

Unesterified and low 
esterified 
homogalacturonan, 
rhamnogalacturonan I, 
arabinogalactan 
proteins, callose, 
polysaccharides 
containing α-1,5-l-
arabinan

Enzymes for 
hemicellulose 
degradation, 
arabinogalactan-
degrading enzymes, 
pectolytic enzymes, 
rhamnogalacturonan-
degrading enzymes 

(17–20,22, 
26,28–32)

Rice bran Microstructure of rice grain outer 
layers (image g). Fresh, non-
defatted, and non-milled rice bran. 
Cell wall glucans stained with 
calcofluor appear blue and 
proteins stained with acid fuchsin 
appear red, pericarp structures 
appear yellowish due to 
autofluorescence, starch is 
unstained and appears black 
(image h). l(bar)=100 µm (images g 
and h). The copyright is granted by 
CC BY 4.0.

Cellulose, 
hemicelluloses, 
arabinoxylans, 
β-glucan, pectins

Enzymes for cellulose 
and hemicellulose 
destruction, 
arabinogalactan-
degrading enzymes, 
pectolytic enzymes, 
rhamnogalacturonan-
degrading enzymes 

(17–21,23, 
26–32, 
38,39) 

Moringa oleifera seed Moringa seed morphology. Seed 
with partially removed internal 
seed coat. Cotyledon (c), endotesta 
(end) (image i). Sections of a fresh 
Moringa oleifera seed (cotyledon). 
Epidermal cell of the cotyledon 
with lipid bodies (lb), fewer protein 
bodies (pb) and a thick external 
cell wall (image j). l(bar)=1 mm 
(image i) and 5 µm (image j). The 
copyright is granted by CC BY 4.0. 

Cellulose, 
arabinogalactan, 
xylan-type 
polysaccharides

Enzymes for cellulose 
and hemicellulose 
destruction, 
xyloglucan-degrading 
enzymes, 
arabinogalactan-
degrading enzymes 

(17,18,20, 
26–29, 
32–35, 
40,41)
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the hemp seed kernel (22). The lignin mass fraction in rice 
bran was in the range of 7.7–24.8 %, in the seed coats of rape-
seed, sunflower and cucurbit seeds was from 4.8 to 27.1 %, 
while the mass fraction of lignin in the oilseed kernels varied 
from 0.5–0.6 % for rapeseed and sunflower seeds and to 2.0–
2.9 % for cucurbit seeds (23,45–57). It is important to consider 
that enzymes catalyzing the oxidation of lignin can also mod-
ify the oil, which is highly undesirable. It was found that MnP 
and VP are able to cause the oxidation of unsaturated fatty 
acids by using Mn3+ as a mediator with the formation of per-
oxide radicals that will oxidize non-phenolic β-O-4-linked lig-
nin (17,21). The presence of peroxide radicals of fatty acids in 
the oil causes an increase in its peroxide value, which is a 
marker of low oil quality.

The polysaccharide analysis of the hemp seed kernel de-
tected unesterified and partially esterified homogalacturo-
nan, and also low amounts of arabinogalactan proteins, 
rhamnogalacturonan I, callose, polysaccharides containing 
α-1,5-l-arabinan (22). Among the non-starch polysaccharides 
of soybeans 8 % cellulose and 17 % pectins were detected, 
which are cell wall constituents. The most abundant pectins 
were rhamnogalacturonans, arabinogalactan I and xyloga-
lacturonan (24). Microscopic analysis of stained samples and 
fluorescence microscopy revealed the microstructure of oil-
seeds and oil-containing plant tissues (Table 1). Pectin-rich 
regions were detected by fluorescence staining with cori-
phosphine O, lignified cell walls were stained with Alcian 
blue, and the turquoise-blue colour represents the autofluo-
rescence of protein bodies within the storage cotyledons.

The hemicellulose composition of plant cells is very com-
plex. The monoclonal antibody analysis of hemicellulose com-
position of soybean seeds revealed galacturonan, homoga-
lacturonan, xylogalacturonan, xyloglucan, mannan, galactan, 
arabinan and rhamnogalacturonan (25). The total polysac-
charide composition of rapeseed includes 3.5 % arabinogalac-
tan, 6.9 % arabinan, 15.5 % amyloid, 24.1 % cellulose and 50.0 % 
pectin, while the secondary cell walls of rapeseeds con tain 
39.0 % pectins, 29.0 % hemicelluloses, 22.0 % cel lulose, 8.0 % 
of arabinogalactans and they make 20.0 to 28.0 % of the total 
seed (18,37). Rice bran dietary fibre contains approx. 90 % in-
soluble dietary fibre represented by cellulose, hemicellulose 
and arabinoxylans, and 10 % soluble dietary fibre, such as 
pec tin and β-glucan. Feruloyl polysaccharide in the rice bran 
is represented by oryzanol, which is a mixture of ferulic acid 
esters of sterol and triterpene alcohols (23,39). The polysac-
charide fraction of defatted Moringa oleifera seed flour con-
sists of arabinogalactan, xylan-type polysaccharides and cel-
lulose (41). 

ENZYMES DEGRADING POLYSACCHARIDES IN 
PLANT CELL WALLS

Despite the differences in the chemical composition of 
various types of oilseeds obtained in different studies, it can 
be concluded that the use of delignifying enzymes to destroy 
the cell walls of seeds in order to improve oil production may 

be inappropriate, because lignin is more abundant in the 
seed husks than in the oil-containing kernels, and the oxid-
ases themselves pose risks to the obtained oil quality. Much 
more promising is the application of hydrolytic enzymes for 
cellulose and hemicellulose hydrolysis. The following en-
zymes have been used for this purpose (Table 1): exocello-
biohydrolase (EC 3.2.1.91), endocellulase (EC 3.2.1.4), xylanase 
(EC 3.2.1.8), β-xylosidase (EC 3.2.1.37), β-mannanase (EC 3.2. 
1.78), β-mannosidase (EC 3.2.1.25), α-l-arabinofuranosidase 
(EC 3.2.1.55), α-l-arabinanase (EC 3.2.1.99), acetylxylan esterase 
(EC 3.1.1.72) and feruloyl esterase (EC 3.1.1.73). It is also pos sible 
to divide into two separate subgroups xyloglucan-degrading 
enzymes, such as xyloglucan-specific endo-β-1,4-glucanase 
(EC 3.2.1.151), xyloglucan-specific exo-β-1,4-glu canase (EC 
3.2.1.155), oligoxyloglucan β-glycosidase (EC 3.2.1.120), and 
arabinogalactan-degrading enzymes, represented by galac-
tan-1,3-β-galactosidase (EC 3.2.1.145), galactan endo-β-1,3-
galactanase (EC 3.2.1.181), galactan endo-1,6-β-galactosidase 
(EC 3.2.1.164) and arabinogalactan endo-β-1,4-galactanase 
(EC 3.2.1.89). Because oilseed kernels also contain many pec-
tin substances, including homogalacturonans and rhamno-
galacturonans, the following enzymes have been used for 
their degradation: endopolymethylgalacturonate lyase (EC 
4.2.2.10), exopolymethylgalacturonate lyase (EC 4.2.2.27), 
pectinesterase (EC 3.1.1.11), and rhamnogalacturonan-de-
grading enzymes, such as rhamnogalacturonan hydrolase 
(EC 3.2.1.171), rhamnogalacturonan galacturonohydrolase (EC 
3.2.1.173), rhamnogalacturonan rhamnohydrolase (EC 
3.2.1.174) and rhamnogalacturonan endolyase (EC 4.2.2.23) 
(Table 1). 

ENZYMES DEGRADING PROTEINS IN CELL 
WALLS AND LIPID BODY MEMEBRANES

The cotyledon is the main tissue in oilseeds, where pro-
teins and lipids are accumulated and stored in the form of 
protein and lipid bodies. Lipid bodies in seed cells are woven 
into a cytoplasmic membrane consisting of proteins and also 
externally protected by a stable pectin and lignocellulosic 
matrix of seed cell walls (12,13). The epidermal cells of the Mo-
ringa oleifera seed cotyledon (image j in Table 1), as well as 
the rapeseed cotyledon cells (image d in Table 1), are occu-
pied by lipid bodies, whereas protein bodies are seldom pres-
ent and starch grains are totally absent (36,40). Subepidermal 
cells of the cotyledon contain lipid bodies surrounded by the 
protein bodies and they fill most of the remaining space in all 
healthy cells (40). Most of the rice bran lipids are in a form of 
lipid bodies in the aleurone layer (23). Based on the structure 
of lipid bodies to intensify their destruction and improve oil 
extraction from oilseeds, it is advisable to use proteases that 
destroy not only proteins of the oleosome membranes, but 
also glycoproteins in the cell walls and cytoplasmic mem-
branes, including arabinogalactan proteins. 

Among proteolytic enzymes, proteases of animal, plant, 
fungal and bacterial origin with broad specificity deserve 
attention (Table 2 (58–96)). Nowadays, various proteases are 



H. VOVK et al.: Enzymatic Pretreatment for Oil Extraction

April-June 2023 | Vol. 61 | No. 2164

Table 2. Enzymes which can potentially be used for degradation of oilseed cell membranes and oleosome membranes

Enzyme Origin/Producer Substrate Reaction product Ref.

Proteases

Serine proteases (Exopeptidases)

Carboxypeptidase Y
EC 3.4.16.5

Saccharomyces 
cerevisiae

Proteins with C-terminal side of the amino acids with 
broad specificity

Peptide and 
proteinogenic 
amino acid

(60)

Metalloproteases (Exopeptidases)

Carboxypeptidase A
EC 3.4.17.1 Bovine pancreas Proteins with C-terminal side of the amino acids, but has 

little or no action Asp, Glu, Arg, Lys or Pro
Peptide and l-amino 
acid (60)

Carboxypeptidase B
EC 3.4.17.2 Porcine pancreas Hydrolysis of proteins with C-terminal side of the Lys or 

Arg amino acids
Peptide and l-amino 
acid (l-Lys or l-Arg) (60,61)

Serine proteases (Endopeptidases)

Trypsin
EC 3.4.21.4 Porcine pancreas Protein at positions Arg-|-, Lys-|- Peptide (60–

63)

Elastase
EC 3.4.21.36 Porcine pancreas Proteins, including elastin, at position Ala-|- Peptide (60,61)

Proteinase K
EC 3.4.21.64 Tritirachium album Peptide amides and proteins, including keratin Peptide (60,64)

Cysteine proteases (Endopeptidases)

Papain
EC 3.4.22.2

Latex of the papaya 
(Carica papaya) fruit

Proteins with broad specificity, especially an amino acid 
bearing a large hydrophobic side chain at the P2 position, 
and protein at positions Arg-|-, Lys-|-

Peptide (58,60,
65,66)

Stem bromelain 
EC 3.4.22.32

Stem of pineapples 
(Ananas comosus)

Proteins with broad specificity, but strong preference for 
Z-Arg-Arg-|-NHMec amongst small molecule substrates Peptide (58,60,

67,68)

Fruit bromelain 
EC 3.4.22.33

Fruit of pineapples 
(Ananas comosus)

Proteins with broad specificity, especially the Bz-Phe-Val-
Arg-|-NHMec links, but no action on Z-Arg-Arg-NHMec Peptide (58,60,

67,68)

Ficin (ficain)
EC 3.4.22.3

Latex of the fig (Ficus 
carica, Ficus glabrata) Proteins with broad specificity, similar to that of papain Peptide (60,69)

Aspartic proteases (Endopeptidases)

Pepsin (pepsin A)
EC 3.4.23.1 Porcine gastric mucosa Protein Phe (or Tyr, Leu, Trp)-|- Trp (or Phe, Tyr, Leu) links Peptide (60,70)

Aspergillopepsin I
EC 3.4.23.18 Aspergillus species Proteins with broad specificity Peptide (71)

Penicillopepsin
EC 3.4.23.20 Penicillium janthinellum Proteins with broad specificity similar to that of pepsin A, 

preferring hydrophobic residues Peptide (71)

Rhizopuspepsin
EC 3.4.23.21

Rhizopus chinensis, 
R. niveus

Proteins with broad specificity, prefers hydrophobic 
residues, clots milk, and activates trypsinogen Peptide (71)

Saccharopepsin
EC 3.4.23.25

Saccharomyces 
cerevisiae Proteins with broad specificity for peptide bonds Peptide (71)

Metalloproteases (Endopeptidases)

Thermolysin
EC 3.4.24.27

Bacillus 
thermoproteolyticus Protein Leu (or Phe)-|- Leu (or Phe, Val, Met, Ala, Ile) links Peptide (60,72, 

73)

Phospholipases

Phospholipase A1

EC 3.1.1.32 Aspergillus oryzae Broad specificity, but prefers phosphatidyl choline
Lysophosphatidyl 
choline and fatty 
acid

(74,75)

Phospholipase A2

EC 3.1.1.4

Honey bee venom (Apis 
mellifera), bovine 
pancreas

Ester linkage at sn-2 carbon of fatty acid acyl bond of 
phospholipids, preferring phospholipids containing 
arachidonic acid

Lysophospholipid 
and free fatty acid

(74, 
76–79)

Phospholipase C
EC 3.1.4.3

Bacillus cereus, 
Clostridium perfringens 

The bond between the acylglycerol and the phosphate 
group, prefers phosphatidyl choline, phosphatidyl 
ethanolamine, sphingomyelin and phosphatidyl inositol

1,2-Diacyl-sn-
glycerol and 
phosphate 
monoester

(74,75, 
80–83)

Phospholipase D
EC 3.1.4.4

Streptomyces sp., peanut 
(Arachis hypogaea)

Phosphate diester bond of glycerophosphatides 
containing choline, ethanolamine, serine, or glycerol, 
preferring phosphatidyl choline

Phosphatidic acid 
and choline 

(74,84, 
85)

Phosphatases

Alkaline 
phosphatase
EC 3.1.3.1

Escherichia coli, bovine 
intestinal mucosa Phosphate monoester Alcohol and 

phosphate
(59, 
86–88)
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used by researchers to improve the production of protein 
products from natural sources, including oilseeds. It was pro-
posed to prepare soy protein hydrolysates selectively en-
riched with the soybean protein glycinin and β-conglycinin 
by hydrolysis with pepsin and papain, respectively (97). Rape-
seed protein isolate was hydrolyzed with Alcalase, Proteinase 
K, pepsin+pancreatin (P+P), thermolysin and Flavourzyme 
under different conditions (98). Porcine pepsin and pancre-
atin treatment were used to obtain sunflower protein hydro-
lysates (99). Bromelain and papain, which are used for ten-
derizing squid (Loligo vulgaris) muscle, are also potentially 
useful proteases (58). The hullless pumpkin oil cake protein 
isolate was hydrolysed by pepsin (100). In addition, the effec-
tiveness of pepsin for the destruction of oleosomes has also 
been proven. Gastric digestion of a walnut oil bodies by pep-
sin was investigated in vitro. The results of the experiment 
revealed that such kind of treatment causes destabilization 
and coalescence of the oleosomes (101). 

Despite the beneficial effect of proteases on the oil yield, 
it is important to remember that some preparations such as 
pancreatin contain not only various proteases and amylases, 
but also lipases, which catalyze the hydrolysis of triacylglyc-
erols (59). Such an effect is positive for the production of pro-
tein isolates or protein hydrolysates since it allows to increase 
product purity, but the presence of lipases for oil production 
is highly undesirable because it promotes the destruction of 
lipids and the release of free fatty acids (FFA). An increased 
amount of FFA in oil is a marker of reduced quality. Therefore, 
during the enzymatic treatment of oilseeds and oil-contain-
ing plant materials, it would be appropriate to use a combi-
nation of pepsin with another pancreatic enzyme like trypsin 
(EC 3.4.21.4) or elastase (EC 3.4.21.36) instead of pancreatin. 

ENZYMES DEGRADING PHOSPHOLIPID 
MEMEBRANES

The destruction of the phospholipid component of 
oleosome membranes is facilitated by the use of phos pho-
lipases and phosphatases. Phosphatases and phospholipases 
are very common in nature and regulate metabolic processes 
in animal, plant and microorganism cells. Phospholipases 
hydrolyze phospholipids and release lysophospholipids, free 
fatty acids, diacylglycerols, choline phosphate and phos pha-
tidates, while phosphatases catalyze the hydrolysis of phos pho-
monoesters (59,74–96,102,103). Traditionally, phospholipases 

are used in the industry for degumming of vegetable oils, as 
a replacement for emulsifiers in bread making to increase the 
dough stability, in dairy to increase cheese yield by hydrolysis 
of milk phospholipids, and for the modification of egg yolk 
in mayonnaise preparation (74). Most phospholipases cata-
lyze the hydrolysis of phosphatidyl choline (Table 2), which, 
as mentioned above, predominates in the phospholipid layer 
of oleosomes. Phospholipids are also important components 
of all cell membranes (14,15,74–85). It was found that the 
destruction of phospholipids by phosphatases detected in 
oilseeds causes the destruction of cell membranes. Protein 
bodies of the Moringa oleifera seed cells contain several hy-
drolytic enzymes and phosphatases and their release into the 
cytosol causes localized cellular autolysis and membrane de-
terioration (40). Therefore, the prospect of possible use of 
phospholipases and phosphatases for the destruction of 
seed cell membranes and oil body membranes could be a 
strategy to increase the oil yield during pressing.

At the same time, this enzymatic treatment should be 
used with caution. Authors who studied the effect of phos-
pholipases in the degumming of vegetable oils on their 
quality reported an increase in the peroxide value of sun-
flower oil after treatment with phospholipase A1, and a de-
crease in oxidative stability of rapeseed oil after degumming 
with phospholipase C and soybean oil with each of phos-
pholipases A1 and C (80–82). Such changes can probably be 
explained by the fact that the destroyed phospholipids could 
play the role of natural antioxidants in oils (81,82). 

COMBINATION OF ENZYMES USED FOR 
OILSEED PRETREATMENT

Given the multicomponent composition of oilseed cells, 
it can be deduced that for a maximum oil release it is impor-
tant to destruct the polysaccharides which are cell wall com-
ponents together with proteins and possibly also phospho-
lipids that are components of the cytoplasmic membrane 
and oleosome membranes. For such a strategy a mixture of 
enzymes with different activities is suggested. For example, 
enzymes used to hydrolize plant protein isolates contain a 
combination of proteases (brand names) like Alcalase (Bacil-
lus licheniformis, P4860), Neutrase (Bacillus amyloliquefaci-  
ens, P1236) and Flavourzyme (Aspergillus oryzae, P6110) (104). 
For the production of protein isolates from pumpkin seeds, 
a mixture of pectinase and cellulase in a ratio of 1:1 was 

Enzyme Origin/Producer Substrate Reaction product Ref.

Protein phosphatase
EC 3.1.3.16

Escherichia coli, bovine 
kidneys, bovine brain

Serine- or threonine-bound phosphate group from a wide 
range of phosphoproteins

Protein (containing 
Ser/Thr) and 
phosphate

(59, 
89–91)

Acid phosphatase
EC 3.1.3.2

Lupin seeds (Lupinus 
luteus), potato tubers Phosphate monoester Alcohol and 

phosphate (59,92)

Phosphatidate 
phosphatase
EC 3.1.3.4

Cotton seed (Gossypium 
hirsutum L.), 
Saccharomyces cerevisiae

1,2-Diacyl-sn-glycerol-3-phosphate
1,2-Diacyl-sn-
glycerol and 
phosphate

(59, 
93–96)

Table 2. continued
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employed (105) and for the extraction of polysaccharides 
from bamboo shoots or ginger stems, an enzyme mixture of 
cellulase, papain and pectinase in a ratio of 1:1:1 worked well 
(106,107). 

The use of enzymes with different activities has also been 
investigated for the extraction of vegetable oils from seeds, 
e.g. a mixture of proteases and cellulases in different ratios 
and under different conditions in order to increase the yield 
of pressed oil from pumpkin seed and rapeseed (108–110). 
Many researchers have treated various oilseeds with mixtures 
consisting of enzymes with proteolytic, cellulolytic and pec-
tolytic activity (6,9,13,111,112). Some studies have also used the 
treatment of oil material with separate enzyme preparations, 
such as Ronozyme VP (endoglucanase, hemicellulase and 
pectinase) from DSM Nutritional Products (Basel, Switzer-
land), Protex 7L (protease) and Multifect CX 13L (cellulase, 
β-glucanase, hemicellulase and arabinoxylanase) from Ge-
nencor (Rochester, NY, USA), Viscozyme L (cellulase, β-glu-
canase, hemicellulase, arabanase and xylanase) from Novo-
zymes (Bagsvaerd, Denmark), Natuzyme (cellulase, α-amylase, 
pectinase, xylanase and phytase) from Bioproton Pty Ltd 
(Acacia Ridge, Australia), and Kemzyme (protease, cellulase, 
β-glucanase, α-amylase, hemicellulase and xylanase) from Ke-
min Europa N.V. (Herentals, Belgium) (11,25,113,114). In vitro 
non-starch polysaccharide analyses of solubilized soybean 
meal cell walls after treatment with the multienzyme product 
Ronozyme VP (Aspergillus aculeatus) revealed a statistically 
significant reduction in insoluble sugar residues for (in %): 
rhamnose 35, arabinose 36, galactose 36 and glucose 39. The 
solubilisation of xylose, mannose and uronic acid was about 
18, 14 and 22 % respectively. The specific degradation of pec-
tin homogalacturonan epitopes, β-1,4-mannan, xyloglucan, 
galactan and arabinan of soybean meal cell walls was detect-
ed with monoclonal antibodies (25). The treatment of Mor-
inga oleifera seed with Protex 7L increased the oil yield by 69.4 
% compared to all other enzymes, which can be explained by 
its proteolytic activity and, consequently, by hydrolysis of 
proteins that are part of lipid spherosome membranes, unlike 
other enzymes, which were characterized by more cellulo-
lytic and pectolytic activity (114). 

FACTORS INFLUENCING ENZYME ACTIVITY AND 
EFFICIENCY

Particle size

It is known that increasing the degree of grinding of the 
material particles leads to additional destruction of its cell 
walls, thereby increasing the yield of the finished product 
(7,12,18,115). At the same time, the smaller the particle size of 
the material, the larger its surface area in contact with en-
zymes (12,115,116). The degree of grinding is an important pa-
rameter that affects the yield of oil from the oil material, both 
with and without enzymatic pretreatment (18). A study on 
grape seeds using solvent extraction in the Soxhlet apparatus 
without prior enzymatic treatment found that reducing the 

particle size from 1.0–1.4 to <0.5 mm leads to an increase in 
oil extraction yield from 6.66 to 15.30 %, while at the particle 
sizes of 1.0–1.4 mm with enzymatic pretreatment, the 
extraction yield ranged from 6.71 to 17.5 %, and the highest 
oil yield of 19.5 % was achieved after fermentation of the 
material with particle sizes <0.5 mm (112). By reducing the 
particle size of soybean seeds from 2.5 to 0.5 mm during the 
solvent extraction, the extractability (expressed as the 
reduction of oil relative to the total oil content of the material) 
of prefermented samples increased from 25 to 60 %, while 
the extractability of untreated samples increased from 15 to 
45 %, respectively (117). However, it is also important to con-
sider that excessive reduction of the particle size of the ole-
aginous material during extraction with an organic solvent 
can lead to particle adhesion, microporosity reduction of the 
material and, as a result, it prevents the solvent movement 
between particles and decreases the oil yield (116). 

Very small particle size of oilseeds is also undesirable for 
enzyme-assisted aqueous extraction (EAAE), as well as for sol-
vent extraction. The demulsification process might become 
more complicated due to the reduction in the oleosome sizes 
caused by excessive grinding of the material (12,115). The par-
ticle sizes of sunflower seeds were 0.762–1.0 mm for enzyme-
assisted hexane extraction (EAHE) and EAAE. Oil yields 
ranged from 41.36 to 55.38 % with EAHE and from 15.95 to 
34.05 % with EAAE, depending on the method of seed 
preparation for extraction (118). During the ultrasound-assist-
ed aqueous enzymatic extraction, the particle size of the  
perilla seeds was 0.8–1.2 mm, the highest oil yield reached  
32.66 % (calculated on seed mass basis), while in another 
study of the ultrasound-assisted aqueous enzymatic extrac-
tion of perilla seeds with a particle size of 250 µm, the maxi-
mum oil yield was 31.47 % (111,113). Cotton, hemp, sunflower, 
sesame, canola and Moringa oleifera seeds were ground for 
EAAE to a fraction passing through an 80-mesh sieve (mesh 
size of 0.177 mm), oil yields ranged from: 3.0 to 6.5, 22.5 to 
29.0, 24.0 to 40.0, 13.0 to 25.0, 19.5 to 26.0, and 18.5 to 22.5 %, 
respectively, depending on the type of enzyme used to treat 
the seeds and other parameters of the fermentation process, 
such as pH, enzyme concentration, water/seed ratio or mois-
ture content, temperature and time of extraction. The same 
particle size of oleaginous material was also used in the study 
of oil extraction from cotton, hemp, sunflower, sesame, ca-
nola and Moringa oleifera seeds by enzyme-assisted cold 
pressing (EACP). The oil yields varied from: 5.5 to 13.0, 25.7 to 
32.7, 31.5 to 39.0, 23.7 to 28.1, 23.0 to 28.5 and 15.5 to 21.5 %, 
respectively (11). Soybean seed flakes with particle sizes of 
0.5–1.0 mm and soybean seed collets with an average diam-
eter of 20 mm and a length of 50 to 100 mm were subjected 
to enzyme-assisted mechanical pressing. Pressing of flakes at 
65 MPa allowed to obtain oil yield from 7.91 to 12.3 % (calcu-
lated on seed mass basis), while during pressing of collets at 
pressures of 37 and 65 MPa oil yield varied from 8.0 to 11.96 % 
and 14.34 to 18.75 %, respectively, depending on the enzyme 
used to treat the oleaginous material (119). During the pressing 
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of rice bran crushed to a fraction passing through a 20-mesh 
sieve (mesh size of 0.841 mm), the yield of the obtained oil 
was 16.5 % (6). 

Therefore, during the enzyme-assisted pressing, as well 
as at the enzyme-assisted aqueous extraction, reduction of 
the seed particle sizes within a certain interval helps to 
increase oil yield; however, excessive grinding is inefficient, 
so this parameter has to be optimized for each case.

 

Amount of added water

Water is a necessary component to enable enzymatic ac-
tivity and perform hydrolysis. However, its amount in relation 
to the substrate is limited by the used extraction technology. 
In particular, during aqueous enzymatic extraction, which is 
commonly used to obtain protein hydrolysates and protein 
isolates from vegetable raw materials, the substrate/water 
mass ratio can be quite low, e.g. 1:6, 1:10, 1:20, 1:25, 1:40 and 
1:100 (97–99,120–127). Also, for the extraction of polysaccha-
rides, high water mass ratios ranging from 1:20 to 1:100 have 
been reported (106,107,128). Such a large amount of added 
water can be explained by the fact that proteins and polysac-
charides are hydrophilic and more water is beneficial for an 
efficient solubilization and extraction from vegetable raw 
materials. For the extraction of oil from the various oilseeds 
after enzymatic treatment, much lower water mass ratios 
were applied. Perilla seeds were treated with separate en-
zyme preparations Cellulase, Viscozyme L, Alcalase 2.4 L, Pro-
tex 6 L, and Protex 7 L at a substrate/water mass ratio of 1:6, 
as well as a mixture of cellulase, neutral proteinase and pec-
tinase at a substrate/water mass ratio of 1:3 to 1:7. An oil yield 
of 31.34 % was obtained at a mass ratio of 1:4.4, which was 
chosen as the optimal for this oil crop (111,113). Aqueous en-
zymatic extraction of sunflower kernels was performed using 

Viscozyme L at a substrate/water mass ratio of 1:6. The high-
est oil yield of 34.05 % (which represented 61.46 % of the total 
extractable oil) was obtained from raw sunflower kernels by 
this kind of treatment (118). 

Despite the advantages and significant number of stud-
ies on aqueous enzymatic extraction, this method has not 
found wide practical application, in particular for the extrac-
tion of vegetable oils. Nowadays, most of vegetable oil pro-
ducers use either pressing, or solvent extraction, or a combi-
nation of both. A significant disadvantage of aqueous 
enzymatic extraction is the formation of an emulsion, which 
is then difficult to separate (7). 

Many researchers have worked to combine the hydrolyt-
ic enzyme pretreatment of oil material with methods that are 
widely used in the industry. Different mixtures of enzymes 
with proteolytic, cellulolytic and pectolytic activity were used 
at substrate/water mass ratios of 1:5.5; 1:7 and 1:10.5 for en-
zymatic pretreatment of cotton seeds with subsequent hex-
ane extraction of oil from the treated material (129). However, 
to combine enzymatic pretreatment with the oil extraction 
method, the use of water amounts that exceed several times 
the substrate amount is highly undesirable. Applying exces-
sive amounts of water will significantly increase the cost of 
time and energy for the material drying to bring it to the re-
quired value of moisture for pressing, the process will be 
technologically more complicated and economically unprof-
itable (11). In addition, a prolonged contact of oil material with 
free moisture can cause hydrolysis of oil, which can further 
adversely affect its quality after removal from the seed. Most 
scientists who developed the technology of enzymatic treat-
ment before pressing of various oilseeds tried to minimize 
the amount of water added to the substrate during enzymatic 
hydrolysis (Fig. 1 (3,6,9,108,114,118,130)), in particular, they re-
duced the substrate/water mass ratio to 1:1, or to the amount 

Fig. 1. Parameters of enzymatic hydrolysis of oilseeds and oil yields. References are given in brackets 
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of water relative to substrate 45–50 % (3,4,9,10,108–110,119). 
There are also studies where the preliminary enzymatic treat-
ment of oil material was performed at different water amount 
added to the substrate. The enzymatic pretreatment of apri-
cot kernels with pectolytic and cellulolytic enzymes was in-
vestigated at 20 to 32 % water added during hydrolysis. The 
highest value of increased oil recovery (2.53 %) was achieved 
when 23 % of water was added (on substrate mass basis) (131). 
The enzymatic hydrolysis of borage seeds with enzyme prep-
arations Olivex and Celluclast was performed using 20 to 50 
% of water. Better result (oil yield of 85.5 %) was obtained with 
20 % of water (132). Rape, sunflower, sesame, cotton, hemp 
and Moringa oleifera seeds were enzymatically pretreated us-
ing 35 to 55 % of water. It was found that the addition of wa-
ter between 35 and 45 % was optimal for most of these crops 
during hydrolysis (11). 

 

Enzyme to substrate ratio 

The mass ratio of enzyme to substrate during hydrolysis 
may vary depending on the enzyme activity, the substrate 
nature, as well as the desirable depth of hydrolysis. Alcalase, 
Proteinase K, pepsin, pancreatin, thermolysin and Flavour-
zyme were used to obtain protein hydrolysates of rapeseed 
and oat bran at w(enzyme)=4 % and w(pepsin+pancreatin)= 
4.0 %. The highest yield of rapeseed protein hydrolysate 
(76.67 %) was produced by Alcalase, and the lowest yield 
(36.18 %) was produced by Flavourzyme (98,121). A mixture of 
w(pepsin+pancreatin)=10 % was used to obtain protein hy-
drolysates from low-fat Jatropha curcas flour. The degree of 
hydrolyzation of protein hydrolysates obtained from defat-
ted Jatropha curcas flour was 19.3, 18.8 and 19.0 % at 60, 90 
and 120 min, respectively (123). 

It is known that increasing the enzyme amount increases 
the volumetric activity; however, this is only valid until the 
enzyme fully saturates the substrate surface, after that in-
creasing the amount of enzyme will no longer be effective 
(7). As for the use of enzymatic pretreatment of oil material 
before pressing, an excessive increase of the enzyme amount 
will not be economically profitable due to its high cost. Excess 
enzyme can also lead to hydrolysis of polysaccharides and to 
the formation of free reducing sugars, which will caramelize 
during the drying of oil-containing plant material immediate-
ly before pressing, interfere with oil production and reduce 
the oil yield (7,11). In addition, excessive increases of the en-
zyme amount can lead to deterioration of the obtained prod-
uct by causing odours and bitterness (7). That is why it is im-
portant to find the optimal amount of individual enzymes or 
their mixtures for each type of substrate, which is sufficient 
to ensure maximum efficiency, but does not lead to the for-
mation of undesirable by-products.

Studies testing enzymatic pretreatment of various oil-
seeds performed at an enzyme mass fraction of 2.0–2.5 % 
(3,10,133) showed that such an enzyme amount was optimal 
during the optimization of enzymatic hydrolysis parameters 
(6,11). Aqueous enzymatic extraction of pumpkin seed oil was 

performed by using a mixture of proteolytic, cellulolytic and 
pectolytic enzymes at the amount of 2.0 % by mass of seeds. 
The oil recovery ranged from 37.81 to 72.91 % (13). 

The work of other researchers has also been devoted to 
the study of the effect of the amount of enzymes or their mix-
tures on the oil yield after enzymatic pretreatment of seeds. 
Aqueous enzymatic extraction of oil from the palm pulp was 
performed by using a mixture in the range from 0 to 1.0 % of 
enzyme preparations Cellic CTec2, Cellic HTec2 and Pectinex 
Ultra SP-LThe highest oil yield of 88.0 % was obtained at the 
optimal amounts of these enzyme preparations taken in the 
mass ratio of 0.46:0.34:0.2 %, respectively (134). It was found 
that the optimal amount of enzyme mixtures with cellulolyt-
ic and pectolytic activity for enzymatic hydrolysis of soybean 
seeds is 1.0 %, and for sunflower seeds 2.0 %, with achieved 
oil extractability of 55.0 and 98.5 %, respectively (117). The 
enzymatic pretreatment of rapeseed was carried out by using 
a mixture of enzyme preparations Protolad and Celulad at the 
amount from 0.4 to 1.4 % by mass of the substrate. The opti-
mal amount of enzymes was 0.4 %, the oil yield ranged from 
32.2 to 45.9 %, depending on other process parameters, such 
as processing time and moisture content before pressing 
(109,110). 

There are also studies where enzymatic pretreatment of 
borage, soybean and pumpkin seeds was carried out by us-
ing the enzyme preparations of 0.25, 0.5 and 0.6 % by mass 
of seeds, respectively (108,119,132). 

 

Process pH 

Enzymatic activity depends on the pH of their environ-
ment. Each enzyme has an optimal range of pH in which it 
shows maximal activity, but also the stability of the enzyme 
depends on pH (7,135,136). The effect of the pH on enzyme 
activity primarily originates from ionizable amino acids in the 
catalytic site as well as in the binding site, which influences 
the formation of the enzyme-substrate complex and the ac-
tivation of the substrate (135,136). The pea protein isolates 
were hydrolyzed by using Alcalase, Neutrase and Flavorzyme, 
as well as mixtures thereof at pH=7.4 (104). Protein isolates of 
oat bran were prepared by hydrolysis with cellulase or Visco-
zyme L at pH=4.5 for 1.5 h, then pH was raised to 9.5 and the 
process continued for another 1.5 h to dissolve the proteins. 
The soluble protein content of extracted proteins from Visco-
zyme-treated oat brans was (86.3±3.3) % on a dry mass basis, 
compared to the value of (51.4±2.4) % obtained from cellu-
lase-treated brans (121). For the production of protein hy-
drolysates, low-fat Jatropha curcas flour was first hydrolysed 
with Alcalase at pH=8.0 for 1.0–2.0 h, then for 0.5–1.0 h with 
pepsin at pH=2.0 and again for 0.5–1.0 h with pancreatin at 
pH=7.5. The degree of hydrolyzation of the protein hydro-
lysates obtained from defatted J. curcas flour with Alcalase 
was 10.4, 10.6 and 11.5 %, while 19.3, 18.8 and 19.0 % was 
achieved with pepsin–pancreatin at 60, 90 and 120 min, re-
spectively (123). The pumpkin flour was hydrolyzed in the pre-
sence of cellulase at a pH=3.0 to 5.5 to obtain water-soluble 
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polysaccharides. The highest yield of polysaccharides (17.34 
%) was observed at pH=4.5 (128). Sulfated polysaccharides 
were removed from green seaweed Ulva lactuca by hydrolysis 
first using cellulase (C-2730) with an activity of 700 U/g at 
pH=5.0, and then protease (P-1236) with an activity of 0.8 U/g 
at pH=7.0, which led to the highest yield of 17.14 % polysac-
charides, while the lowest yield of 3.04 % was obtained by 
hydrolysis without enzymes at pH=1.5 and 90 °C (137). 

It was found that for many oilseeds the results of the oil 
and protein aqueous extraction correlate: the process condi-
tions resulting in the highest oil yield often also coincide with 
the conditions resulting in the highest protein yield. The au-
thors suggest that the basis of this pattern is the dependence 
of the protein solubility on the pH value. During aqueous ex-
traction the highest oil yield is obtained at pH values   corre-
sponding to the maximum solubility of the protein in the 
aqueous system, and the lowest oil yield is obtained when 
the protein solubility is the lowest, supposedly at the isoelec-
tric point. At the pH range corresponding to the isoelectric 
point, the protein binds the oil much better, which prevents 
its release, so for most oil seeds aqueous extraction of oil and 
proteins is tried at pH values   not close to the isoelectric point. 
The total isoelectric point of most oilseed proteins usually 
corresponds to a pH=4.0–5.0 (7,115). 

Aqueous enzymatic extraction of essential oil from La-
vandula pubescens was performed using enzymes with cel-
lulolytic activity at pH=7.0. The highest essential oil yield of 
0.50 % was achieved by cellulase pretreatment (130). Aqueous 
enzymatic extraction of perilla seeds was carried out with an 
enzymatic mixture of cellulase, neutral proteinase and pecti-
nase also at pH=7.0. The oil yield ranged from 24.13 to 31.47 %, 
depending on other process parameters, such as liquid-to-
-solid ratio, hydrolysis time, hydrolysis temperature and ultra-
sound treatment time (111). Some researchers also enzymati-
cally pretreated soybean, sunflower, rape and borage seeds 
by using proteolytic, cellulolytic and pectolytic enzyme prep-
arations and their mixtures at a pH value corresponding to 
the pH of distilled water (6.5–7.0) (Fig. 1) (109,110,117,132). 

It is also necessary to consider the pH range of each en-
zyme in enzyme mixtures. Combining enzymes with similar 
pH ranges together allows their effective use in a single step 
process and avoids the necessity to separate the hydrolysis 
process in two or more stages. The pH optimum for most en-
zymes with cellulolytic and pectolytic activities is in the range 
of pH=  4.5–5.5. Enzymatic pretreatment with the commercial 
enzyme preparations Kemzyme, Feedzyme, Natuzyme, 
Phytezyme, Allzyme and Viscozyme L of rapeseed, sunflower, 
sesame, cotton, hemp and Moringa oifera has shown that 
pH=5.0 is optimal (11). EAAE of pumpkin seed oil was per-
formed using mixtures of enzyme preparations with proteo-
lytic, cellulolytic and pectolytic activities at pH ranging from 
4.0 to 5.0. The highest oil yield of 72.64 % was obtained at 
pH=4.7 (13). An enzymatic mixture of cellulase and pectinase 
at pH=5.0 was used during aqueous enzymatic extraction of 
pumpkin seed proteins. The highest yield of protein isolate 

was 9 g of soluble protein from 100 g pumpkin seeds (105). 
Many studies (Fig. 1) have also used proteolytic, cellulolytic 
and pectolytic enzyme preparations at pH ranging from 4.5 
to 5.0 during enzymatic pretreatment of other oilseeds 
(6,9,108,133,134). 

 

Temperature of the enzymatic hydrolysis

Thermostability is another important characteristic of en-
zymes, which determines their applicability in industrial pro-
cesses. High temperatures are beneficial for hydrolytic pro-
cesses, because the rate of the reaction increases with the 
temperature. This is also true for enzymatic reactions; how-
ever, the protein fold of enzymes limits the maximal appli-
cable temperature. The catalytic activity of most enzymes 
increases up to 50 °C; above this temperature the denatur-
ation of the enzyme starts and reduces activity by irreversible 
denaturation (135,136,138). However, despite the general pat-
tern of enzymatic activity dependence on temperature re-
gimes, each individual enzyme has an individual temperature 
optimum, according to the type of enzyme, protein fold and 
also its substrate.

An example is the production of protein hydrolysates 
from different plant raw materials for which a combination of 
the natural enzymes pepsin and pancreatin was used at a hy-
drolysis temperature of 37 °C (98,99,120–123). At the same 
time, the thermostable, engineered proteases Alcalase and 
Flavourzyme were used without detrimental effects on the 
enzyme activity at 50–60 °C (98,121,123). The enzymatic hy-
drolysis of biogas residues was performed using cellulase at 
50 °C (139). The enzymatic saccharification of bamboo resi-
dues was performed at the same temperature with a mixture 
consisting of xylanase, α-l-arabinofuranosidase and cellulase. 
The xylan degradation yield of the sample pulped with 12 % 
effective alkali charge increased from 68.20 to 88.35 %, while 
the enzymatic saccharification efficiency increased from 
58.98 to 83.23 % (140). Water-soluble polysaccharides were 
obtained from pumpkin flour by hydrolysis using cellulase at 
40 to 65 °C. The highest yield of polysaccharides (17.34 %) was 
achieved at 55 °C (128). The enzymatic pretreatment of cotton 
seeds was performed with individual enzymes, in particular 
papain at 25 °C, bacterial protease at 37 °C, Savinase at 55–  
60 °C and Termamyl at 85–115 °C; the increase in oil extract-
ability ranged from 4.32 to 27.73 % compared to control 
sample, depending also on other process parameters, such 
as enzyme amount, time and water/substrate mass ratio. The 
enzyme mixtures used were: Savinase+bacterial protease at 
40 °C, Savinase+papain at 30 °C, Savinase+Termamyl at 70 °C, 
Savinase+cellulase at 45 °C, Savinase+pectinase at 35 °C, 
Savinase+pectinase+bacterial protease at 50 °C and Savi-
nase+pectinase+cellulase at 50 °C, and the relative increases 
in hexane-extracted oil were 37.1, 28.9, 34.9, 30.1, 39.7, 44.9 
and 38.9 %, respectively (129). 

At the same time, it was found that during the extraction 
of oil from different types of oilseeds, the highest oil yields 
were obtained at temperatures ranging from 40 to 60 °C 
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(12,115). Enzymatic hydrolysis was carried out mainly at 40–  
50 °C in the studies (Fig. 1) using enzymes with proteolytic, 
cellulolytic and pectolytic activity to improve aqueous ex-
traction, organic solvent extraction and press extraction of 
the oil (3,4,6,9,10,109–114,117,118,130,131,133,134). 

During the production of pumpkin seed protein isolates 
and pumpkin seed oil, the temperature of the hydrolytic en-
zymatic treatment was 45 and 48–54 °C, resulting in the high-
est soluble protein content in protein isolate, and the oil yield 
increased from 62.3 % (control sample) to 70.0 % from total 
oil content (42.4 %) of seeds, respectively (105,108). Aqueous 
enzymatic extraction of pumpkin seed oil was performed by 
using a mixture of proteolytic, cellulolytic and pectolytic en-
zyme preparations at temperatures ranging from 45 to 55 °C. 
It was found that the optimal temperature for this process is 
54 °C with achieved oil yield of 72.64 % (13). 

 

Duration of hydrolysis

A factor affecting the efficiency of enzymatic hydrolysis 
is the process time during which the enzyme can act on its 
substrate and weaken cellular structures. It is known that in-
creasing the duration of enzymatic pretreatment of oilseeds 
to a certain point helps to increase oil yield (11). Soybean and 
sunflower seeds were treated with mixtures of cellulolytic 
and pectolytic enzymes for 1 to 12 h before removing the oil 
from the seeds by extraction with an organic solvent in a Sox-
hlet apparatus. It was found that the optimal duration of en-
zymatic hydrolysis of both types of seeds is 6 h, in which the 
extracted oil from soybean was 54.0 % and from sunflower 
seeds 97.8 %. A further increase of the process time did not 
increase the oil yield (117). This indicates that the cellular 
structures are sufficiently weakened after a certain time to be 
processed. At the same time, the content of free reducing 
sugars in the fermented material increases with the prolong-
ing of hydrolysis time, which in further processing can cara-
melize and prevent the oil release. The excessive increase of 
the contact time of the oil-containing plant material with the 
aqueous enzyme solution can lead to the hydrolysis of tria-
cylglycerols and the deterioration of the organoleptic prod-
uct properties. A long process of preparing oil material for oil 
extraction can also reduce the economic profitability (11,117). 

To increase the yield of olive oil, olive paste was treated 
with enzymatic mixtures of pectinase, cellulase and hemicellu-
lose and the duration of the process varied from 0.5 to 2.5 h. 
Enzymatic treatment for 1.5 h was optimal for this type of oil 
material, resulting the oil yield of 15.72 g from 100 g paste 
(141). The treatment of rapeseeds before pressing was per-
formed with a mixture of the commercial enzyme prepara-
tions Protolad and Cellulad for 2.0 to 4.0 h. As the study 
showed, the duration of the enzymatic treatment of oilseeds 
for 2 h is sufficient to obtain a high oil yield of 43.4 % (109,110). 
To increase oil yield from perilla seeds, pumpkin seeds, Mo-
ringa oleifera seeds and palm pulp, the plant material was 
treated with proteolytic, cellulolytic and pectolytic enzyme 
preparations for 2 h (Fig. 1) (108,113,114,134). The analysis of 

the data presented in Fig. 1 shows that the individually opti-
mized factors for oil extraction are not valid for different oil-
seeds. However, the following trend is observed: a higher en-
zyme amount, a longer incubation time and a smaller particle 
size increase the oil yield. 

TECHNICAL CONSIDERATIONS FOR ENZYMATIC 
PRETREATMENT

The technology of oilseed preparation for oil extraction 
by pressing includes operations of seed reception, cleaning 
and weighing, dehulling, flaking and cooking (142,143). All 
these operations affect or are affected by enzymatic pretreat-
ment. To prevent spoilage of seeds during long-term storage 
in the silos, as well as to facilitate their further technological 
processing and to obtain a high-quality product, seeds 
should be cleaned (143). Dehulling is the next operation after 
cleaning; this process usually consists of two stages: opening 
the seed coats by cracking and separating the hulls from the 
kernels by screening and aspiration. The presence of a certain 
amount of hulls in the oleaginous material is necessary to en-
sure its desired structure during pressing. However, the hull 
material is also a substrate for many of the reported hydro-
lases and would be a competitive substrate to the oilseed 
cells, thus reducing the enzymatic action on the oilseed cells. 
An approximate hull content of 8.0 % is recommended for 
sunflower kernels that undergo flaking and further pro-
cessing. However, for some types of oilseeds that are very 
small in size and have the seed hulls firmly stuck to the 
kernels, the process of dehulling is impractical. For example, 
flaxseed and rapeseed are flaked immediately after cleaning 
(142,143). Small particles of oil-rich material will stick together 
and decrease the porosity. Therefore, the particle size after 
grinding should be optimal (142). The analysis of works 
devoted to the application of enzymatic treatment of oil-
containing material before oil extraction showed that the 
process is effective if the particle size of the oilseeds is in the 
range of 0.5–1.0 mm (6,11,111–113,117–119). At the same time, 
according to the recommendations of the traditional technol-
ogy of oil extraction from oleaginous material by pressing, 
the particle size should be 0.4–1.0 mm for sunflower seeds, 
approx. 1.0 mm for flax- and cottonseeds, and 0.25–0.30 mm 
for soybean seeds (142,143). Therefore, the particle size of the 
seeds in the range of 0.3–1.0 mm can be considered optimal 
for enzyme-assisted mechanical pressing, smaller diameters 
result in a higher specific surface area and provide a better 
accessibility of the plant structures by enzymes.

Cooking is a key step in preparing oilseeds for oil 
extraction by pressing. This process involves the simultaneous 
or sequential treatment of oleaginous material with water 
and heat in order to change its colloid-chemical and physico-
mechanical properties, and to weaken the cell walls. Cooking 
is also a necessary operation for inactivating enzymatic 
activity, preventing the hydrolysis of triacylglycerols and 
development of mould and bacteria, as well as for binding 
anti-food substances, such as gossypol in cottonseeds (142–
145). 
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Oilseeds contain their own set of enzymes that catalyze 
complex biochemical processes during storage and process-
ing, which will affect the quality of the obtained oil. Lipases 
from oilseeds cause hydrolysis of triacylglycerols, accom-
panied by an increase in free fatty acids in the oil (142–145). In 
rice bran, lipase is so active that in the first hours of storage 
the acidity of crude oil increases at a rate of 1 % per h, 5–7 % 
per day, and can finally reach up to 50 % of free fatty acids 
(143,146). Flaxseeds, in addition to lipase, also contain the 
glucoside linamarin and the enzyme linase, which catalyzes 
the cleavage of its glucosidic bonds with the release of 
hydrocyanic acid. Press cake containing hydrocyanic acid can 
be dangerous to livestock during feeding (142,143). The effect 
of high humidity and temperature of 40–60 °C in the process 
of cooking will significantly increase the activity of these 
enzymes, while their inactivation requires short-term (30–40 
s) heating of wet oilseeds at 80–90 °C. In industry, inactivation 
is carried out at the first stage of cooking in a separate screw 
steamer, or in the roaster, where all subsequent stages of 
cooking take place (142,144,145). It is recommended to sterilize 
rice bran immediately upon arrival at the plant by heating at 
90–100 °C and drying to stop lipase activity, or to stabilize it 
by heating at 125–135 °C for 1–3 s at 11–15 % moisture or by 
wet extrusion at 120 °C and 10 % added water as steam (143, 
146). 

During cooking, the hydrophilic gel particles increase 
significantly in volume, and as a result, the volume of all oil-
filled cavities decreases, and the oil is pushed to the surface 
of the particles under the action of swelling pressure (142,145). 

At the moistening stage during cooking in the industry, 
the oil-containing material is usually adjusted to the humidity 
values of 8.0–9.0 % for sunflower seeds and flaxseeds and 
11.5–17.5 % for cottonseeds (142,144,145). However, for en-
zymatic pretreatment of oilseeds, the optimal amount of 
added water should be in the range of 20–50 % (3,4,9–11,108–
110,119,131,132). A water content below 20 % may not be 
enough to fully carry out the enzymatic hydrolysis and to 
evenly distribute the dissolved enzyme between the particles 
of the material, while increasing the water level above 50 % 
will cause an increase of time and energy during drying and 
roasting. Under industrial conditions, the amount of water 
added to the oleaginous material during cooking is usually 
much smaller than the theoretically possible amount that can 
be absorbed and bound. For example, the maximum swelling 
of ground sunflower seed kernels is achieved at 35 % of the 
added water, which will be completely absorbed and bound. 
When the oil-containing material is overwetted, the processes 
of oil displacement by water become much more intense, due 
to swelling, which allows oil to be easily separated from the 
material even with very little external pressure (142). Already 
in 1929–1934, a method was invented to prepare oilseeds for 
oil extraction, which involves treating ground seeds with wa-
ter or hot steam for 2–7 min at a temperature of 20–80 °C with 
bringing the oil-containing material to a humidity of 12–20 %. 
The method allowed to extract 60–70 % of high-quality oil 

from seeds; however, its disadvantages were the difficulty of 
introduction into continuous process and the high degree of 
denaturation of protein compounds in the material (142,147). 
Although this method has not become widespread in 
industry and has been quickly replaced by other technologies 
currently used in oil production, its basic idea allows us to 
make the assumption that adding more water (20–50 %) to 
the oleaginous material during enzymatic pretreatment may 
be acceptable for cooking.

The wet material is excessively ductile, which makes it 
impossible to use for pressing. To remove excess moisture 
from the oil-containing material and provide a more rigid 
structure necessary for its further processing, it is first dried 
and then roasted by gradually raising the temperature. Under 
the action of heat, the moisture begins to evaporate from the 
lower layers of the processed material and passes successively 
through the middle and upper layers, resulting in a process 
of self-evaporation of oleaginous material (142,144,145). 
Heating to 50–60 °C causes a sharp decrease in its oil viscosity, 
while with a further increase in temperature, the viscosity 
changes are less significant (142). At the same time, a tem-
perature range from 40 to 55 °C is the optimal for enzymatic 
pretreatment of oilseeds, at lower temperatures the process 
will not be efficient enough, and above 60 °C denaturation of 
the enzyme protein part and its inactivation will occur (3,4, 
6,9,10,13,108–114,117,118,130,131,133,134). 

During roasting, the temperature gradually rises from 80 
to 105 °C, which causes denaturation of proteins, aggregation 
of particles, and the material becomes more rigid. Carrying 
out the process at temperatures above 105 °C is undesirable, 
as it will intensify the oxidation processes in the obtained oil. 
The final moisture content of the oil material after roasting 
has to be 5.0–6.0 % for sunflower seeds, 4.5–5.0 % for flax-
seeds and 4.6–6.0 % for cottonseeds (142,144,145). 

A possible application of the enzyme-assisted mechanical 
pressing in industry is shown in Fig. 2, where the enzymatic 
treatment of oil-containing material is carried out in the 
mixer-expositor (3) during cooking, i.e. after the stage of seed 
enzyme inactivation in the screw steamer (2), and before the 
stage of roasting material in the roaster (6). The enzyme 
solution with the required pH=4.5–5.5 is prepared in a tank 
(5) and fed to the mixer-expositor (3). The enzymes added to 
the oleaginous material are inactivated in the roaster (6).

In the analysis given in the previous section, it was found 
that 1.5–2.0 h is the optimal duration of the oil-containing 
material incubation with the enzymes before pressing, 
excluding time for inactivation and roasting, while the 
duration of traditional cooking in industry, including inac-
tivation, humidification and roasting, usually is 40–45 min 
(108–110,113,114,133,141,142). A twofold increase of the process 
duration is a significant disadvantage of this technology and 
might be difficult to implement in continuous industrial pro-
cess. However, enzyme-assisted pressing can be effectively 
used in smaller enterprises with a non-continuous, periodic 
production. 
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CONCLUSIONS
Nowadays, enzymatic pretreatment of oil-containing 

plant materials and oilseeds is investigated mainly at the 
laboratory scale and only in a few pilot studies. To transfer 
this technology to the industry, it has to increase the yield of 
oil extraction significantly, but not to interfere with the es-
tablished processes. A key factor is the treatment time, which 
has a strong influence on technical applicability, commercial 
feasibility and product quality. Therefore, it is important to 
optimize the applied enzyme cocktails and the key parame-
ters of the enzymatic pretreatment to keep the process time 
short, the particle size big enough to maintain porosity for 
pressing, and the moisture content as low as possible. Other 
factors such as temperature and pH during enzymatic pre-
treatment are easier to adapt to increase enzyme perfor-
mance. The biggest factor is, however, an optimal combina-
tion of enzymes for a given substrate that attacks not only 
the cell wall, but also the membrane oleosome simultane-
ously and combines different strategies to weaken the cell 
microstructures for efficient oil extraction. The cell structure 
is a very complex and multicomponent system and varies 
with the type of seed. In order to make efficient use of enzy-
matic pretreatment, its chemical composition has to be in-
vestigated and the enzymes have to be selected accordingly. 
A beneficial outcome of the enzymatic pretreatment might 
be a reduced pressure during pressing, which reduces the 
energy demand and costs. The combination of enzymatic 
pretreatment with mechanical extraction by pressing has the 
potential to be more eco-friendly than solvent oil extraction 
methods. Due to the different properties and composition of 
various oilseeds, each of them needs an individual optimiza-
tion for pretreatment.

The increased hydrolysis of plant biopolymers can also 
intensify the recovery of other valuable components, such as 
carbohydrates, protein isolates, or protein hydrolysates from 

the plant biomass. In combination with the improved oil re-
covery, this can ensure waste-free production and promote 
the efficient use of renewable materials. 
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