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ABSTRACT ARTICLE HISTORY
The estimation and prediction of financial asset volatility are Received 6 January 2022
important in terms of theoretical and practical applications. Accepted 17 August 2022

Considering that low-frequency and high-frequency information
plays an important role in volatility prediction, this article pro-
poses a mixed-frequency model based on the momentum of pre-
dictability (MF-MoP). To illustrate the advantages of the proposed
model, comparative research is conducted on the prediction
accuracy of volatility among the GARCH model, the Realized JEL CODES
GARCH model and the MF-MoP model, by the loss function and G17; C22; C52; C53
MCS test. The empirical results show that the MF-MoP model has

higher prediction accuracy than the other two models; especially

based on skewed-t distribution, the MF-MoP significantly outper-

forms the competing models. Moreover, the MF-MoP model can

improve the forecasting of volatility, regardless of different look-

back periods (including 1, 3, 6 and 9days), different data (includ-

ing the CSI 300 index, the N225 index and the KS11 index), and

realized measures (including RV, RRV and MedRV), indicating that

the model is robust.

KEYWORDS
Mixed-frequency; prediction;
loss function; MCS test;
realized measures

1. Introduction

Financial asset volatility plays a crucial role in risk management, derivative asset pric-
ing, portfolio selection and other related fields. In risk management, financial institu-
tions often use the volatility of return to measure risk. In asset pricing, the option
price depends on a precise forecast of the underlying asset volatility (Hongwiengjan
& Thongtha, 2021). In optimal management of asset portfolios, volatility is often used
as an indicator to construct optimal portfolio weights. However, volatility usually
refers to the variance of asset returns, which measures the change in the degree of
returns, and cannot be directly observed. The data on volatility can be extracted only
from the evolution process or distribution characteristics of return series, which is
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also a major challenge in volatility modelling. Therefore, the purpose of this article is
to build a model that can describe the characteristics of volatility, while estimating and
predicting volatility. Numerous studies link stock returns at a low-frequency (e.g.,
monthly or daily information) with high-frequency data based on intraday information
to study stock volatility and demonstrate superior forecasting abilities for volatility (see,
e.g., Andreou, 2016; Zhang et al, 2019; Wang et al,, 2020; Yu & Huang, 2021; Ma
et al., 2021). Therefore, it is important to thoroughly utilise the rich information avail-
able for high-frequency data and macro low-frequency to accurately depict the stock
market volatility and explore the operating mechanism of the stock market. This can
aid in optimising portfolio strategy, alleviating losses, and avoiding risks.

Considering that low-frequency and high-frequency information plays an important
role in volatility prediction, this article proposes a mixed-frequency model based on the
momentum of predictability (MF-MoP). The proposed model combines the GARCH
model based on low-frequency data, and the Realized GARCH model based on highfre-
quency data, using the momentum of predictability. This model also uses the informa-
tion on low-frequency and high-frequency data to construct the long-term volatility of
stock market using the relative performances of GARCH and Realized GARCH models.
Furthermore, financial returns often have peak fat-tail characteristics. Considering that
the model is based on the assumption that normal innovation cannot capture the skew-
ness and leptokurtosis of typical asset returns, the skewed-t distribution accurately cap-
tures the typical characteristics of financial data (see, e.g., Liu et al, 2015; Tian &
Hamori, 2015). We introduce the skewed-t distribution into the MF-MoP model to
predict out-of-sample volatility. In empirical analysis, we adopt the MF-MoP model to
the CSI 300 index (CSI300). Our empirical results indicate the MF-MoP model
improves the effect on volatility forecasts. In particular, the MF-MoP model based on
skewed-t distribution significantly outperforms the competing models. In the robustness
test, N225 and KS11 indexes are used to verify the robustness of the MF-MoP model.
Additionally, we also study the effects of different realized measures on the model
results. The abovementioned robustness tests support our results.

The remainder of this article is organised as follows. A literature review of this
study is provided in Section 2. Section 3 presents the methodology of MF-MoP model
and forecasting evaluation criteria. Section 4 conducts an empirical application and
presents the main findings. Section 5 conducts robustness tests. The final section con-
cludes this article.

2. Literature review

The research on volatility is of great significance to academics and practitioners alike.
In recent years, some researchers have used low-frequency data to study volatility
(Yu, 2005; Smetanina, 2017; Zhang et al., 2022). With the development of computer
technology, the acquisition of high-frequency financial data has become feasible and
convenient, and the increasing number of scholars are beginning to use high-
frequency data to model volatility (see, e.g., Corsi, 2009; Catania & Proietti, 2020;
Degiannakis & Filis, 2022).
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For low-frequency data, the GARCH model proposed by Bollerslev (1986) is the
most widely used, as it can accurately capture the characteristics of volatility cluster-
ing in financial time-series and forecast volatility. Subsequently, many scholars have
utilised and extended the GARCH model to study stock volatility (see, e.g., Nelson,
1991; Baillie et al., 1996; Wang & Wu, 2012; Kim et al., 2021; Wang et al., 2022).
However, the GARCH-class models are limited to using low-frequency data and
ignore a large amount of high-frequency intraday information.

For high-frequency data, Andersen and Bollerslev (1998) first proposed the realized
volatility (RV), a volatility measure defined as the sum of squares of intraday returns,
which has greatly promoted the research progress of financial high-frequency finan-
cial data. Christensen and Podolskij (2007) proposed the realized range volatility
(RRV) in considering the impact of microstructure noise of the stock market on the
volatility prediction, effectively addressing the market microstructure noise. Andersen
et al. (2012) proposed the minimum realized volatility (MinRV) and the median real-
ized volatility (MedRV) based on high-frequency data to estimate volatility, and
showed that MinRV and MedRV have better finite-sample robustness for jumps and
small returns. These realized volatility measures are extracted from high-frequency
data and are used in modelling and forecasting volatility. Consequently, several stud-
ies combined the GARCH model with realized volatility measures to model volatility.
Hansen et al. (2012) proposed the Realized GARCH model by establishing the rela-
tionship between implied conditional variance and realized volatility in an equation,
and demonstrated the superior performance of the proposed model compared to the
GARCH model in terms of forecasting volatility. Huang et al. (2016) developed the
Realized HAR GARCH model by introducing the heterogeneous autoregressive
(HAR) specification into the volatility dynamics, which can improve the accuracy of
volatility prediction by capturing the long memory characteristics of the high-
frequency financial series. The generalised realized risk measures were introduced
into the Realized GARCH model by Jiang et al. (2018) to estimate the daily volatility
of stock markets. The results showed that the performance of the Realized GARCH
model for the in-sample estimation and out-of-sample forecasting of volatility signifi-
cantly improved after the introduction of generalised realized risk measures, especially
the realized expected shortfall. Hung et al. (2020) employed a Realized GARCH
model incorporating various realized measures (RV, RBV and RTV) to create out-of-
sample daily forecasts of the volatility of Bitcoin returns in the presence of jump
dynamics. The empirical results suggested the RGARCH model with jump-robust
realized measures can provide steady forecasting performance. However, the above
volatility models only use high-frequency data to estimate realized volatility, whereas
the volatility structure of financial markets is affected not only by the high-frequency
information at micro level, but also by the low-frequency information at the
macro level.

In the existing literature, stock volatility is studied based on a single frequency,
while ignoring the impact of different frequency information on volatility. Presently,
the mixed-frequency technique of mixed data sampling (MIDAS) model is used to
predict volatility (see, e.g., Andreou, 2016; Mei et al., 2020; Shang & Zheng, 2021).
Some scholars have also proposed the mixed frequency method, different from
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MIDAS mechanism. Wang et al. (2018) proposed the momentum of predictability
(MoP) to estimate the predictability of stock returns. They found that a univariate
model that has outperformed the benchmark in recent history can also outperform
the benchmark in the near-future out-of-sample. Zhang et al. (2019) applied the
momentum of predictability to volatility prediction, and switched between the
GARCH-class models and the HAR-RV-type models by using the model switching
mechanism of the MoP strategy. The empirical results showed that MoP can improve
the prediction accuracy of volatility. Inspired by Wang et al. (2018) and Zhang et al.
(2019), we propose a mixed frequency model based on momentum predictability
(MF-MoP) to study volatility. Unfortunately, Zhang et al. (2019) only used normal
distribution to describe the characteristics of financial time series. Forecasting volatil-
ity under the assumption of normal distribution may lead to underestimation or
overestimation of actual market volatility. Numerous studies have shown that asym-
metric fat-tailed distribution can improve the forecasting effects of volatility (see, e.g.,
Liu et al., 2015; Tian & Hamori, 2015; Wu et al., 2020; Cai et al., 2021). Therefore,
we also consider the asymmetric and fat-tailed characteristics of financial returns and
introduce skewed-t distribution into the MF-MoP model to better describe the char-
acteristics of volatility. Furthermore, as previous mixed-frequency models have not
considered the impact of microstructure noise and volatility jumps on the volatility
prediction, multiple realized measures are used to verify the robustness of the MF-
MoP model. This research enriches the dynamic mixed-frequency volatility models
and provides a substantial reference for financial investors and risk managers to
make investment decisions.

3. Methodology

In this section, we describe the proposed approach to study stock volatility. First, we
introduce the basic models—the GARCH and the Realized GARCH models. We then
build a novel mixed-frequency model based on the momentum of predictability, which
combines the GARCH model based on low-frequency data and the Realized GARCH
model based on high-frequency data, by using the momentum of predictability.

3.1. GARCH model

In estimating asset volatility, the GARCH model is the most widely used model. For
financial data, the GARCH model under first-order conditions is sufficient to charac-
terise the ARCH effect of financial asset returns. Therefore, we use the GARCH (1)
model, which is defined as

re=pu+é, gt:Zt\/}Tt (1)

hy = o+ “/Sf_l + Bhiy (2)

where r; is the return of asset on day ¢, u = E(r;|F;_,) is the conditional mean, and
Fi_y = o(ri-1,7—2,...), hy = var(r|F;_;) is the conditional volatility. Considering the
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typical factual features of financial data such as asymmetric thick tails, and to better
fit the actual residual distribution, this article assumes that the residual z; is subject
to normal and skewed-t distributions, respectively. According to the probability dens-
ity function of standard normal distribution, the log-likelihood function of the
GARCH model based on normal distribution is

L LI lil h IXT:F“Z 3)
n=——1In2n—— nh —=)» —+
2 2T t 25 he

Compared to the standard normal distribution, the skewed-t distribution can
describe the high peak and fat tail of the return series with more accuracy. The dens-
ity function of the skewed-t distribution is

2 7% a
be|1+5L (B0) | a2

f() I 4

pel1 ks ()| e -
where 2<n< + 00, —1<i<]1, a = 4)'C(ﬁ2), P =1+32—a2, =Lt
n ['(n/2)y/7(n—-2)

Hansen (1994) proved that E(x) = 0 and var(x) = 1. The degree of freedom param-
eter n controls the thickness of the tail, and when n — 400, the distribution degen-
erates to normal distribution. The parameter A reflects the skewness of the
distribution. When 1<0, the distribution is left-skewed; when A>0, the distribution
is right-skewed; when A = 0, the distribution degenerates to the Student-t distribu-
tion. Note that, when n — 400 and A = 0 are simultaneously satisfied, the skewed-t
distribution degenerates to normal distribution. Therefore, skewed-t distribution is
more flexible than normal and Student-t distributions.

Assuming that the residual z; follows skewed-t distribution, the log-likelihood
function of the GARCH model based on the skewed-t distribution is

1L
Ly = E;(z In be — In hy — (e, hy)) (5)
where I(-) is an indicator function, [ = —§+/h;,
5 2
(&, ) = (14 1) In (14— ("Sf/ vh ”) H@<1)+

n—2 1—4 6)

1 bsf/\/h_t+a>2 ,

>
(n—l—l)ln(l—i—n_z( 117 I(ef > 1)
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3.2. Realized GARCH model

The Realized GARCH model, proposed by Hansen et al. (2012), is constructed by
introducing the realized volatility measure estimated using high-frequency data into
the conditional volatility equation. Compared to the GARCH model, the Realized
GARCH model adds a measurement equation. The Realized GARCH model is
defined as

Ty =W+ &8 :Zt\/l/Tt (7)
logh; = w+ ylogx;_, + flogh;_, (8)
logx, = &+ ¢ploghy + t(z;) + uy, uy~N(0, Gi) 9)

where Eq. (7) is the conditional mean equation, r; represents the return on day ¢,
u = E(r|F,_1) is the conditional mean, h; is the conditional volatility, and z; is the
residual term; Eq. (8) is the conditional variance equation, where x; represents the
realized measure of volatility on day ¢ estimated using high-frequency data; Eq. (9) is
the measurement equation, which indicates that the realized measure is related to
future volatility and return information. 2z, and u, are mutually independent. Note
that, 7(z;) is a leverage function, given as follows:

(z) = 1121 + rz(ztz—l) (10)

where 7; and 1, represent the impact of a positive return and a negative return on
volatility, respectively. The positive and negative price disturbances have distinct
influences on price fluctuation. Generally, negative price disturbances are considered
to have a greater impact on price fluctuation than positive price disturbances of the
same degree. According to the residual following the normal and skewed-t distribu-
tions, the log-likelihood functions of the Realized GARCH model are as follows:

T 1< & u?
Ln:_E ln2n—zz<lnh,—h—tt—lnai—a—;> (11)

t=1

1 u?
Ly = EZ (2 In bc — In by — (&2, hy) — In 27 — In o2 — o_—%) (12)

3.3. The mixed-frequency model based on the momentum of predictability

In this article, we introduce the momentum of predictability (MoP) proposed by
Wang et al. (2018) and combine the GARCH model for low-frequency data with the
Realized GARCH model for high-frequency data to construct a mixed-frequency
model based on the momentum of predictability (MF-MoP). The momentum of pre-
dictability defines that the forecasting performance of some univariate regressions is
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persistent. A good recent past forecasting performance, in other words, is always fol-
lowed by a good future performance. The GARCH model based on low-frequency
data is a classic model to estimate asset volatility, which shows good performance in
estimating and forecasting volatility. The Realized GARCH model with high-fre-
quency data can be combined with different volatility measures to study volatility; it
also has good volatility prediction ability. Therefore, we use the momentum of pre-
dictability to study whether the GARCH or the Realized GARCH model can persist-
ently present relatively good forecasting performance, and investigate the influence of
mixed-frequency information on volatility prediction. The current performance of the
Realized GARCH model forecasts relative to the GARCH model forecasts at day ¢ is
defined as

cpt:1<(RVt—l%R,t)2— (th—izG,J2 <o> (13)

where I(-) is an indicator function that takes a value of 1 when the condition in par-
enthesis is satisfied and 0 otherwise. RV, is the true volatility, and hR ¢ and hG ¢ repre-
sent the volatility forecasts of the Realized GARCH and GARCH models, respectively.
Similarly, the past performance of the Realized GARCH model forecasts relative to
the GARCH model forecasts at day ¢ is given by

t—1 t—1

ppi(k) = I(Z (RVi =) = 3 (RVi— ) < 0> (14)

i=t—k i=t—k

where k is the length of the look-back period.

The validity of the MF-MoP model depends on the existence of momentum of
predictability assuming that predictability was present in a previous period, and is
also found in the current period. According to the definition of the MF-MoP model,
the dependence between pp, and cp, indicates the existence of momentum of predict-
ability. Following Wang et al. (2018), we use the Pesaran and Timmermann (2009)
statistic to test for cross-dependence between pp; and cp;. The null hypothesis is that
the two time series pp; and c¢p; are independent in the presence of serial dependen-
cies; the alternative hypothesis is that both time series are dependent. If the GARCH
model or Realized GARCH model can persistently perform relatively good forecasts,
we generate new volatility forecasts by switching between the two, depending on their
recent past performance. According to the relatively past performance of pp;(k), we
can generate the volatility forecast of the MF-MoP model as follows:

7 _ ) hre ppi(k) =
o) = {hc o ppi(k) = e
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3.4. Forecast evaluation

To compare the prediction effect of the MF-MoP, GARCH and Realized GARCH
models, we use loss function to compare the volatility prediction accuracy of these
models. As real volatility cannot be directly observed, following Hansen et al. (2012),
we use the RV as the volatility proxy to measure the volatility prediction accuracy of
different models. The four loss functions used in this article are denoted as L;(i =
1,2,3,4), and given as follows:

T,+N R
Li: MAE=N" Y ‘th—ht (16)
t=T,+1
T,+N N2 2
L,: MSPE=N"! Z ((th—ht) /th) (17)
t=T)+1
T\ AN .
Ly: MAPE=N"' Y ’(th—ht)/th (18)
t=T1+1
T,+N R 2
Ly: R*log =N! Z (ln (RV/ht>> (19)
t=T1+1

where h, are the volatility forecasts of each model on day ¢, T; is the sample size of
the estimated parameters, N is the length of the one-step prediction, and RV is the
true volatility. According to the definition of the loss function, the smaller is the loss
function, the higher is the prediction accuracy of the model.

These loss functions are disadvantageous as they do not clarify whether the differ-
ences in predicted losses between models are statistically significant. Therefore, this
article uses the model confidence set (MCS) test proposed by Hansen et al. (2011) to
compare the volatility forecasting accuracy for the out-of-sample. The process of the
MCS test is as follows:

The first step: let M = M,, where M, is the model set originally used for compari-
son, comprising m models. For the predicted values of each model, four correspond-
ing loss function values can be obtained, which are recorded as L;j,
(i=1,234; j=12,...,m; n=T +1,..,T). Then we calculate the relative loss
function of any two models and record it as d;,, . which is defined
as di,uv,n = Li,v,n_Li,v,n‘

The second step: the test statistics are constructed and defined as follows:

Tr = ma }ai’uv‘
R X

u, veM /Var(ai) W)

(20)
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-2
d:
Tsq = max M (21)
uveMvar(d; )

T +N

ai,uv:pji1 Z di,uv,n (22)

n=T1+1

where d; ,,, is the average value of the relative loss function of the model. If the statistics
Tr and T are larger than the given critical value, the null hypothesis is rejected. The sta-
tistics Tr, Tsq and the corresponding p-values are obtained using the Bootstrap method.
The third step: test the null hypothesis stating that the two models have the same
predictive ability at the significance level o. If the null hypothesis is accepted, define
M, , = M; otherwise, use "elimination rules" to eliminate the model that rejects the
original hypothesis. The second step is repeated until it no longer rejects the original
hypothesis. Finally, the "optimal model set" under the MCS test is obtained.

4., Empirical research
4.1. Data selection and descriptive statistics

In this article, we select the CSI 300 index, a Chinese representative share index, as
the research object, and the data come from the JoinQuant database. Considering the
extremely high volatility caused by the stock market crash of 2015, and the period-
icity and trading restrictions of bull and bear markets of 2014-2016, our sample data
cover the period from January 2, 2014 to December 18, 2018 (Miao et al., 2017; Qiao
et al., 2019), with a total of 1212 trading days. The daily rate series uses the logarith-
mic return of the index closing price. The realized measurements require intraday
high-frequency data. Andersen and Bollerslev (1998) pointed out that, when the
acquisition frequency is 5minutes, the estimation of RV can not only ensure accur-
acy, but also reduce the negative impact of microstructure noise. Liu et al. (2015) also
pointed out that the RV estimated by 5-minute sampling data is statistically superior
to the other 400 estimators of volatility. Therefore, we select 5-minute high-frequency
data to calculate the RV. According to the trading rules of Shanghai and Shenzhen
Stock Exchanges, the trading time is 9:30-11:30 hours and 13:00-15:00 hours, every
day. Therefore, a total of 58,176 high-frequency data can be obtained. The formula
for calculating the logarithmic return and realized volatility is as follows:

m
Ty = 100 x (lnpt—lnpt,l),RVt = Z rii (23)
i=1

Table 1. Descriptive statistics of returns and realized measure.

Mean Standard deviation Skewness kurtosis JB test ADF
Low-frequency return 0.0246 1.5534 —1.0180 6.3441 2.25 x 10** —10.6413*
High-frequency return 0.0005 0.2153 —1.7434 82.9178 1.67 x 107* —35.4364*
RV 2.2257 5.1205 6.9144 62.5583 2.08 x 10°* —6.7736*

Note: * in the JB test means that the null hypothesis of normal distribution is rejected at the 1% significance level.
In the ADF test, * indicates that the null hypothesis of unit root is rejected at the 1% significance level.
Source: authors.
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Figure 1. Closing price sequence of the CSI 300 index.
Source: authors.
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Figure 2. Daily return series of the CSI 300 index.
Source: authors.

where p; is the closing price of the stock on day ¢, r,; is the logarithmic return at the
ith collection point on the t day, and m = 48 is the daily sampling frequency of high-
frequency data.

Table 1 presents the descriptive statistics of the CSI 300 index return rate series
and realized volatility. In Table 1, both of the return series are slightly left-skewed,
while the realized volatility is right-skewed, and all three series have excess kurtosis.
The Jarque-Bera (JB) test results show that at the 1% significance level, each index
sequence refuses to accept the null hypothesis, that is, they do not follow the normal
distribution. Therefore, the distribution of the CSI 300 index shows the characteristics
of partial peak, fat tail and non-normality. The Augmented Dickey-Fuller (ADF) test
results show that all index series reject the null hypothesis at the 1% significance
level, indicating that the series does not have a unit root and is stable.

Figure 1 shows the closing price sequence of the CSI 300 index over the sample
period. As shown in the figure, the price trend of CSI 300 fluctuates greatly. After a
brief rise in early 2015, the price begins to fall sharply in June 2015, and continues to
fluctuate thereafter. Figure 2 presents the daily return series of the CSI 300 index. In
the figure, the selection of data includes the extreme range, and there is obvious fluctu-
ation aggregation phenomenon, implying that large fluctuations are followed by large
fluctuations, and the same applies to small fluctuations. Generally, large fluctuations for
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Figure 3. Realized volatility.
Source: authors.

Table 2. Estimation results of GARCH model parameters.
Residual distribution w y p n A

Normal distribution 0.0076 (0.0304)  0.0688 (0.0000)  0.9302 (0.0000) /
Skewed-t distribution ~ 0.0122 (0.0223)  0.0739 (0.0000)  0.9251 (0.0000)  4.5667 (0.0000)  0.9998 (0.0000)

Note: the numbers in brackets in the table refer to the p-value of each parameter.
Source: authors.

a long time, and so do small fluctuations. Figure 3 summarises the daily high-frequency
information using the RV. It also depicts the volatility of the full trading days.

4.2. Parameter estimation results

Hansen and Lunde (2005) and Hansen et al. (2012) show that the GARCH (1) model
and the Realized GARCH (1) model have good estimation effect. Therefore, this sec-
tion builds the GARCH (1) and Realized GARCH (1) models on the basis of the CSI
300 index data.

In this article, we use the maximum likelihood estimation method to estimate the
parameters of the GARCH and Realized GARCH models, and the residual terms fol-
lowing the normal and skewed-t distributions, respectively. Table 2 shows the param-
eter estimation results of the GARCH model, and the p-values of each parameter are
less than 0.05, indicating that the parameter values estimated by the model are signifi-
cant, suggesting that the model has a good fitting effect. The sum of the parameters 7y
and f of the GARCH model is less than 1 but very close to 1, indicating that stock
return series has strong volatility persistence. In particular, the degree-of-freedom
parameter n of the GARCH model based on the skewed-t distribution is equal to
4.5667, indicating that the distribution of the daily return residual shows fat tail phe-
nomenon. The skewness parameter 4 is equal to 0.9998 and greater than 0, which
means that the distribution of the daily return residuals is right-skewed.

Table 3 shows the parameter estimation results of Realized GARCH model based
on normal and skewed-t distributions at the 5% significance level, where each param-
eter estimation of the model is significant. The value of  + ¢y is close to 1, reflecting
the persistence of stock return volatility. Regardless of whether the model is based on
normal distribution or skewed-t distribution, the coefficients 7; and 7, of the lever
function are significant and are positive and negative, indicating that the return series
has a significant leverage effect. In the two Realized GARCH models, f>y>0
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indicates that the positive contribution of the previous conditional variance to the
current conditional variance is higher than that of the realized measure. In particular,
the degree-of-freedom parameter n of the Realized GARCH model based on the
skewed-t distribution is equal to 4.6654, indicating that the distribution of the daily
return residual shows fat tail phenomenon; and skewness parameter A = 0.9650>0
indicates that the distribution of the daily return residuals is right-biased, consistent
with the GARCH model based on skewed-t distribution.

4.3. Out-of-sample volatility forecast

In this article, we divide the sample data into two parts, namely in-sample and out-
of-sample. The in-sample data covers 812 data points from January 2, 2014 to May 3,
2017, and the out-of-sample data covers the remaining 400 data points from May 4,
2017 to December 18, 2018. We use rolling time window to predict the out-of-sample
volatility. The specific steps are as follows: (1) use the time windows 1,2,...,T; to
estimate the parameters and forecast the volatility on day T} + 1; (2) use the time
window samples 2,3,...,T; + 1 to estimate the parameters and forecast the volatility
on day T;+2; (3) re-peat the operation until the time window samples
T—Ti,...,T—1 are used to estimate the parameters and predict the volatility on
day T. Thus, we obtain the N =T-T; day volatility prediction sequence,
where T = 1212, T} = 812, N = 400.

As discussed in Section 3.3, the validity of the MF-MoP model depends on the exist-
ence of momentum of predictability, and the dependence between pp; and c¢p; indicates
the existence of momentum of predictability. We use the Pesaran and Timmermann
(PT) statistic to test the MF-MoP model, that is, to test the cross-dependence between
pp: and cp;. Table 4 shows Pesaran and Timmermann test statistics and p-values. At
the 1% significance level, the null hypothesis is rejected, indicating that there is depend-
ence between pp; and cp;. This means that a good past performance can consistently
lead to a good current performance, indicating that there indeed exists a momentum of
predictability between the GARCH and Realized GARCH models.

Based on normal and skewed-t distribution, we can get six volatility models. We
use loss function and MCS test to compare the volatility prediction accuracy of these

Table 4. The results of the PT test.

Normal distribution Skewed-t distribution
Statistic 4.6507 4.9684
p-value 0.0000 0.0000

Source: authors.

Table 5. Loss function value of volatility prediction.

Model Distribution MAE MSPE MAPE R2LOG
GARCH Normal 0.8808 2.2323 1.0793 0.7042
Skewed-t 0.8447 19115 0.9784 0.6699
Realized GARCH Normal 0.8234 2.1825 1.0409 0.6375
Skewed-t 0.7740 1.8274 0.9400 0.5797
MF-MoP Normal 0.8078 1.9406 0.9577 0.6026
Skewed-t 0.7636 1.6018 0.8660 0.5560

Source: authors.
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Table 6. The results of MCS test.

MAE MSPE MAPE R2LOG
Model Distribution Tsa Ta Tso Tr Tsq Tr Tso Tr
GARCH Normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.4912 0.0000 0.8152 0.0000 0.6532 0.0000 0.2786 0.0000
Realized GARCH Normal 0.4060 0.0000 0.0000 0.0000 0.0000 0.0000 0.3874 0.0000
Skewed-t 1.0000 0.5328 0.9992 0.0000 0.9952 0.0000 1.0000 0.1674
MF-MoP Normal 0.9564 0.0000 0.2076 0.0000 0.4996 0.0000 1.0000 0.0000

Skewed-t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: bold font indicates the best volatility model, and p-value less than 0.1 indicates that the model is rejected by
MCS test at 10% significance level.
Source: authors.

models. Table 5 shows the four groups of loss function values for the out-of-sample
volatility prediction of each model. The following results are obtained: (1) Under the
four loss function standards, compared to the GARCH model that only considers
low-frequency data, the loss function values of the Realized GARCH model that con-
siders high-frequency data are relatively small. The four loss function values of the
MF-MoP model based on mixed-frequency data are the smallest, indicating that this
model based on low-frequency information and high-frequency information has the
minimum prediction loss. (2) From the perspective of the asymmetric and fat-tailed
distribution, the skewed-t distribution is considered to be more accurate in describing
the typical characteristics of financial data, such as asymmetry and fat tail. Therefore,
all models based on skewed-t distribution are taken as comparative models. The loss
function values of the GARCH, Realized GARCH and MF-MoP models based on
skewed-t distribution are smaller than those of the same three models based on nor-
mal distribution. This suggests that the four loss function values (MAE, MSPE,
MAPE and R2LOG) for the models based on skewed-t distribution are all smaller
than those based on normal distribution. Among them, the MF-MoP model based on
the skewed-t distribution has the smallest loss function under the loss function MAE,
MSPE, MAPE and R2LOG, indicating that the prediction error of this model is rela-
tively small. To obtain more robust and scientific results, it is necessary to further
test the prediction results.

Therefore, to better test the volatility prediction ability of the MF-MoP model, we
conduct MCS tests on the GARCH, Realized GARCH and MF-MoP models. In the
MCS test, we set the significance level of 0.1, indicating that the prediction perform-
ance of the model with a p-value less than 0.1 is significantly worse than that of other
models in the MCS test. Such a model will be eliminated in the process of the MCS
test. The volatility prediction model with a p-value greater than 0.1 is a model with
good out-of-sample prediction ability and can survive the MCS test; the larger is the
p-value, the higher is the volatility prediction accuracy of the model. If the p-value of
the model is equal to 1, the model is considered to be the optimal volatility model in
the MCS test set.

To obtain the p-value of the MCS test, we set the block length to 2 and simulation
times to 10000 as the control parameters of the Bootstrap process. Table 6 shows the
MCS test results of different volatility models, presenting the following: (1) under any
loss function, the p-value of the MF-MoP model based on skewed-t distribution is 1,
indicating that this model is the most optimal model among the six volatility models.
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(2) On the whole, under the assumption of the same residual distribution, the p-value
of the MF-MoP model is higher than that of the GARCH or the Realized GARCH
models, indicating that the MF-MoP model combining low-frequency and high-
frequency information can improve the prediction accuracy of volatility. It also indi-
cates that the MF-MoP model is robust under different distribution assumptions. In
addition, under the premise of the same volatility model, the model considering the
fat-tailed distribution has better prediction performance. Among them, the MF-MoP
model based on the skewed-t distribution passes the MCS test, and has better predic-
tion effect than the MF-Mop model based on normal distribution. This shows that
the model based on skewed-t distribution can accurately describe the asymmetric
thick-tailed characteristics of financial data.

5. Robustness test

To illustrate the advantages of the MF-MoP model, this article verifies the robustness
of the MF-MoP model based on different realized measures, look-back periods and
stock data.

5.1. Different realized measures

First, considering the impact of microstructural noise and volatility jumps on the
volatility forecast in the stock market, we introduce realized range volatility (RRV)
and realized median volatility (MedRV) into the model to verify whether the empir-
ical results of the MF-MoP model based on different realized measures are robust.
The RRV proposed by Christensen and Podolskij (2007) can effectively solve the mar-
ket microstructure noise, and is defined as follows:

m

Z (InH; ;—1In Lt)i)2 (24)

i=1

RRV, = ——
"7 4In2

where H;; and L;; are the highest and lowest prices of the stocks of the ith collection
point on day ¢, and m is the daily sampling frequency of high-frequency data.

The MedRV, proposed by Andersen et al. (2012), is robust for stock micro-struc-
ture noise and jumping behaviour, which is defined as follows:

m—1
Y m 2
MedRV, = d(|re i1 |7l e 25
edRV: 6—4\/§+n<m—2> ?:2 med(|ry,ia, [re,il, [re,i1]) (25)

Table 7. The results of PT test for different realized measures.

RRV MedRV
Normal distribution Skewed-t distribution Normal distribution Skewed-t distribution
Statistic 9.6135 9.2637 8.6095 8.4814
p-value 0.0000 0.0000 0.0000 0.0000

Source: authors.
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Table 8. MCS test results of different realized measures.

MAE MSPE MAPE R2LOG
Model Distribution Tso Tr Tsq Tr Tsq Tr Tsq Tr
RRV
GARCH Normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.3676 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Realized GARCH Normal 0.1878 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.9998 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MF-MoP Normal 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MedRV
GARCH Normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.0000 0.0000 0.2892 0.0000 0.0000 0.0000 0.1634 0.0000
Realized GARCH Normal 0.0000 0.0000 0.4110 0.0000 0.0000 0.0000 0.1108 0.0000
Skewed-t 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
MF-MoP Normal 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000

Skewed-t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: bold font indicates the best volatility model, and p-value less than 0.1 indicates that the model is rejected by
MCS test at 10% significance level.
Source: authors.

where r,; is the stock return rate at the ith collection point on day ¢, and m is the
daily sampling frequency of high-frequency data.

This chapter uses the empirical data from Section 3 to establish volatility predic-
tion models based on RRV and MedRV. First, we use PT statistics to test whether the
MF-MoP model based on different realized measures has the momentum of predict-
ability. Table 7 shows the results of the PT test for different realized measures. It is
evident that regardless of the realized measure being RRV or MedRV, the p-values of
the model are less than 0.01, rejecting the null hypothesis that the two time series of
pp: and cp, are independent in the presence of serial dependencies. Thus, there is a
momentum of predictability between the GARCH and Realized GARCH models
based on the realized measures of RRV and MedRV.

Table 8 shows the MCS test results of the six prediction models based on RRV and
MedRV. The results show that the p-value of the MF-MoP model based on the skewed-
t distribution is 1 whether RRV or MedRV is used, indicating that the MF-MoP model
based on the skewed-t distribution is the optimal model from the six volatility models.
Second, based on the perspective of the asymmetric thick-tailed distribution, the
skewed-t distribution can more accurately describe the typical factual characteristics of
financial data such as the asymmetric thick tail. Thus, we take various models based on
the skewed-t distribution as comparison models. The p-value of the MF-MoP model is
greater than that of the GARCH and the Realized GARCH models, indicating that the
MF-MoP model has higher volatility prediction accuracy and that the volatility predic-
tion effect of the MF-MoP model is robust under different realized measures.

5.2. Different look-back periods

The prediction of the MF-MoP model is to switch between the prediction of the
GARCH model and the Realized GARCH model to generate a new prediction, which
depends on their recent past performance, and the past forecasting performance is
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Table 9. The results of PT test in different look-back periods.

k=1 k=3 k=6
Normal Skewed-t Normal Skewed-t Normal Skewed-t
distribution distribution distribution distribution distribution distribution
Statistic 6.3503 7.6864 6.9398 7.7582 5.9361 6.8244
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Source: authors.

Table 10. The results of MCS test in different look-back periods.

MAE MSPE MAPE R2LOG
Model Distribution Tso TR TsQ TR TSQ TR TsQ TR
k=1
GARCH Normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.0000  0.0000  0.0000  0.0000 0.2662  0.0000  0.1538  0.0000
Realized GARCH  Normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1708 0.0000
Skewed-t 0.0000 0.0000 0.0000 0.0000 0.4810 0.0000 1.0000 0.0000
MF-MoP Normal 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000
Skewed-t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
k=3
GARCH Normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.0000 0.0000 0.6270 0.0000 0.2062 0.0000 0.1634 0.0000
Realized GARCH ~ Normal 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000 0.1108  0.0000
Skewed-t 0.3250 0.0000 0.7164 0.0000 0.5560 0.0000 1.0000 0.0000
MF-MoP Normal 0.1238 0.0000 0.6290 0.0000 0.9886 0.0000 1.0000 0.0000
Skewed-t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
k=6
GARCH Normal 0.0000 0.0000 0.1028 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.2436 0.0000 1.0000 0.0000 0.1728 0.0000 0.2200 0.0000
Realized GARCH ~ Normal 0.1668 0.0000 0.1112 0.0000 0.0000 0.0000 0.2632 0.0000
Skewed-t 1.0000 0.1134 1.0000  0.0000  0.8918  0.0000 1.0000  0.0000
MF-MoP Normal 1.0000 0.0000 1.0000 0.0000 0.4638 0.0000 1.0000 0.0000

Skewed-t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: bold font indicates the best volatility model, and p-value less than 0.1 indicates that the model is rejected by
MCS test at the 10% significance level.
Source: authors.

affected by the choice of look-back periods. Therefore, we test the volatility prediction
performance of the MF-MoP model for look-back periods with k= 1,3,6.

Table 9 shows the results of the Pesaran and Timmermann tests in look-back peri-
ods. When the look-back periods k=1,3,6, the MF-MoP model rejects the original
hypothesis at the 1% significance level, indicating that pp, and cp; are interdependent.
Therefore, a better past performance can consistently lead to a better current per-
formance, suggesting that momentum of predictability exists in MF-MoP model
under different look-back periods.

Table 10 shows the MCS test results of the six prediction models used in different
look-back periods. The results show that, in the look-back periods k= 1,3,6, the MCS
test of the MF-MoP model based on the skewed-t distribution, always produces the
largest p-value of 1, while the remaining models cannot always pass the MCS test. In
other words, the MF-MoP model based on the skewed-t distribution is more likely to
be the best model for volatility prediction, that is, the volatility prediction ability of
the MF-MoP model is robust under different look-back periods.
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Table 11. The results of PT test of different data.

KS11 N225 CSI 300
Normal Skewed-t Normal Skewed-t Normal Skewed-t
distribution distribution distribution distribution distribution distribution
Statistic 2.3331 5.9391 6.8122 5.6643 3.2784 41794
p-value 0.0098 0.0000 0.0000 0.0000 0.0000 0.0000

Source: authors.

Table 12. MCS test results of different data.

MAE MSPE MAPE R2LOG
Model Distribution Tso Tr Tsq Tr Tsq Tr Tsq Tr
KS11
GARCH Normal 0.0000 0.0000 0.9978 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.0000 0.0000 0.3490 0.2198 0.0000 0.0000 0.0000 0.0000
Realized GARCH Normal 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.9226 0.3856 1.0000 1.0000 0.3570 0.3536 1.0000 0.4226
MF-MoP Normal 0.4010 0.0000 1.0000 1.0000 0.0000 0.0000 0.1794 0.0000
Skewed-t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
N225
GARCH Normal 0.0000 0.0000 0.2008 0.0000 0.2120 0.0000 0.2938 0.0000
Skewed-t 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Realized GARCH Normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewed-t 0.0000 0.0000 0.2008 0.0000 0.7384 0.0000 0.5518 0.0000
MF-MoP Normal 1.0000 1.0000 0.5742 0.0000 1.0000 0.2406 0.9260 0.4658
Skewed-t 0.9928 0.745 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CSI 300
GARCH Normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2650 0.0000
Skewed-t 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3010 0.0000
Realized GARCH Normal 0.8010 0.7974 0.0000 0.0000 0.4544 0.4714 1.0000 1.0000
Skewed-t 0.9890 0.9872 0.8986 0.9066 1.0000 1.0000 0.8674 0.5014
MF-MoP Normal 0.9958 0.9934 0.0000 0.0000 0.1964 0.1986 1.0000 1.0000

Skewed-t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  0.8792 0.5252

Note: bold font indicates the best volatility model, and p-value less than 0.1 indicates that the model is rejected by
MCS test at 10% significance level.
Source: authors.

5.3. Different stock data

In this section, we consider the CSI 300 index (the representative stock index of
China), the N225 index (the representative stock index of Japan) and the KS11 index
(the representative stock index of South Korea), which are widely used in stock vola-
tility forecasting. To illustrate that our results do not depend on the selection of time
periods, we select the data from 1 January 2014 to 31 December 2021. Note that the
COVID-19 pandemic took place during this period, and therefore, it is even more
meaningful to study it. The data of N225 and KS11 indexes are obtained from the
Oxford-Man Institute of Quantitative Finance. Additionally, the sample length is
2000 and the rolling prediction length is 400.

Table 11 presents the results of Pesaran and Timmermann tests of different data. It is
evident that the MF-MoP model also has the momentum of predictability under the data
of the KS11, N225 and CSI 300 indexes. To illustrate the influence of different data on
model results, the results of the MCS test are presented in Table 12. It can be seen that
under most stock indexes and various loss function indexes, the p-values of the MF-MoP
model based on the skewed-t distribution are far greater than that of other models. In
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other words, the MF-MoP model based on the skewed-t distribution is never eliminated
by the MCS procedure. In contrast, the GARCH model is usually discarded by the MCS
test. Compared to the GARCH model, the Realized GARCH model shows larger p-values,
but the model cannot always enter MCS. In summary, the out-of-sample prediction per-
formance of the MF-MoP model considering fat-tailed distribution is significantly better
than that of other models, which is consistent with the previous research results.

6. Conclusion

In this article, we introduce the momentum of predictability proposed by Wang et al.
(2018) to combine the GARCH model based on low-frequency data, with the Realized
GARCH model based on high-frequency data. Subsequently, we construct a mixed-fre-
quency model based on the momentum of predictability to describe the interaction
process between low-frequency and high-frequency volatility. The CSI 300 index data
are selected as the research object to conduct empirical tests on the model. We use the
rolling time window method to make out-of-sample forecasts of volatility, and imple-
ment four loss function evaluation indicators and the MCS test to compare the volatil-
ity prediction effect of the GARCH, Realized GARCH and MF-MoP models. Finally,
we discuss the robustness of the MF-MoP model under different look-back periods,
stock data and realized measures, and the following conclusions are obtained.

First, compared to the traditional GARCH model based on low-frequency data and
the Realized GARCH model based on high-frequency data, the MF-MoP model com-
bining low-frequency and high-frequency data has higher volatility prediction accuracy.
This demonstrates that our proposed models can achieve better performances in fore-
casting volatility. Second, the out-of-sample findings based on four loss function criteria
and the MCS test suggest that the MF-MoP model based on the skewed-t distribution
has better prediction effect than the model based on normal distribution. Thus, consid-
ering the asymmetric fat-tailed distribution in volatility, the MF-MoP model can
improve the prediction effect of volatility, which is consistent with the previous related
research results. Third, according to the robustness test, these conclusions are robust to
different look-back periods, realized measures and stock data. Finally, through the
Pesaran and Timmermann test, it is proved that momentum of predictability does exist
in the MF-MoP model, which further confirms its effectiveness.

This research provides a new tool for investors and managers to understand stock
market volatility. Naturally, we can extend this research by using other basic models,
such as the TGARCH model and Realized HAR GARCH model. We leave this to
future research.
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