Effect of Ergot Alkaloids on ³H-Flunitrazepam Binding to Mouse Brain GABA_A Receptors

Ante Tvrdeić¹ and Danka Peričić²

¹ Department of Pharmacology, School of Medicine, University of J. J. Strossmayer Osijek, Osijek, Croatia

² Laboratory for Molecular Neuropharmacology, »Ruđer Bošković« Institute, Zagreb, Croatia

ABSTRACT

In vitro effects of dihydroergotoxine, dihydroergosine, dihydroergotamine, α -dihydroergocriptine (ergot alkaloids), diazepam, methyl- β -Carboline-3-carboxilate (β -CCM), flumazenil (benzodiazepines), γ -amino butyric acid (GABA) and thiopental (barbiturate) were studied on mouse brain (cerebrum minus cerebral cortex) benzodiazepine binding sites labeled with ³H-flunitrazepam. Specific, high affinity (affinity constant, $K_d = 57.7$ 8.6 nM) binding sites for ³H-flunitrazepam on mouse brain membranes were identified. All benzodiazepine drugs inhibited ³H-flunitrazepam binding with nanomolar potencies. In contrast to benzodiazepines, all ergot drugs, GABA and thiopental produced an enhancement of ³H-flunitrazepam binding to its binding site at the GABA_A receptor of the mouse brain. The rank order of potency was: neurotransmitter (GABA) > dihydroergotoxine > thiopental > α -dihydroergocriptine > dihydroergosine > dihydroergotamine. The results suggest that dihydrogenated ergot derivatives do not bind to the brain benzodiazepine binding sites labeled with ³H-flunitrazepam. However, an enhancement of ³H-flunitrazepam binding sites of GABA_A receptors.

Key words: ergot drugs, ³H-flunitrazepam, GABA_A, mouse.

Introduction

The GABA_A receptor is a ligand gated chloride channel, an ionothropic receptor that is opened after release of γ -amino butyric acid (GABA) from presynaptic neuron and binding of GABA to neurotransmitter recognition site¹. It contains neurotransmitter binding site, the benzodiazepine modulatory center with binding sites for anxiolytic and anxiogenic compounds, the picrotoxin/convulsant bind-

Received for publication January 7, 2003

ing site, the barbiturate binding site and the steroid binding site that seems to mediate rapid, nongenomic effects of neuroactive steroid hormones in the brain^{2,3}. The recognition sites for other classes of compounds on GABA_A receptors were also hypotesized². Ergot drugs have been used clinically in many settings: as diagnostics, cognition enhancers and in the management of orthostatic hypotension. The primary uses of ergot alkaloids today are limited to treatment of postpartum hemorrhage and migraine. To a varying degree these drugs act at peripheral or brain α-adrenergic, dopaminergic and serotonergic receptors⁴. The results of behavioral experiments indicate that these drugs might be also active at brain $GABA_A$ receptors. Dihydroergotoxine and dihydroergosine, for example, affect the occurrence and latency of convulsions produced by antagonists of GABA_A receptors^{5,6}. Besides, these ergot compounds prolonged pentobarbital induced sleeping time in mice and produced anticonflict effect in rats^{7,8}. A more direct interaction of dihydrogenated ergot derivatives with brain GABA_A receptors was suggested by receptor binding experiments. Ergot alkaloids non-competitively displaced the binding of ³Ht-butyl-bicycloorthobenzoate (TBOB), a compound that labels picrotroxin/convulsant binding site of GABA_A receptors, with IC₅₀ values comparable or even lower (2.5 times, dihydroergotoxine) than that of GABA7,9. Moreover, GABA enhanced the affinity of dihydroergotoxine for ³H- TBOB binding to mouse brain GABA_A receptors by two orders of potency and this effect was completely abolished by GABA_A receptor competitive antagonist bicuculline. The authors suggested that dihydroergotoxine binds to an unidentified recognition site of the brain GABA_A receptor complex, other than that labeled with ³H-TBOB, to produce its aforementioned behavioral actions⁷. To test the hypothesis whether benzodiazepine binding site is target for ergot derivatives at brain GABA_A receptors, we studied the effects of dihydroergotoxine, α -dihydroergocriptine, dihydroergotoxine and dihydroergotamine, benzodiazepine receptor ligands (diazepam, β -CCM, flumazenil), GABA and barbiturate (thiopental) on ³H-flunitrazepam binding to mouse brain (cerebrum minus cerebral cortex) membranes. The brain region was chosen since our results using ³H-TBOB as a ligand have shown the greatest binding affinity of dihydroergotoxine (the most potent inhibitor of ³H-TBOB binding) in this brain region⁶.

Material and Methods

Animals

Female CBA/HZgr mice from »Ruđer Bošković« Institute, Zagreb, Croatia, weighing 20–25 g were used. They were housed at a constant temperature (22 °C) and under a light cycle of 11h light/13 h darkness (lights on at 7:00 a.m.). Food and water were freely available.

Drugs

Dihydroergotoxine methane sulfonate, dihydroergosine methane sulfonate, α -dihydroergocriptine methane sulfonate and dihydroergotamine methane sulfonate, all from Lek, Ljubljana, Slovenia, were used. GABA and diazepam were from Sigma, St. Louis, MO. Flunitrazepam, flumazenil and β -CCM were from Hoffman – La Roche, Basel. Thiopental sodium was from Byk Gulden, Konstantz. ³H-flunitrazepam (specific activity 85 Ci/ mmol) was purchased from Amersham.

Preparation of the membranes

Synaptic membranes were prepared from the mouse brain according to a method previously described¹⁰. Briefly, the brains (cerebrum minus cortex) from four mice were pooled and homogenized in 20 volumes of ice – cold 50mM Tris citrate buffer, pH = 7.4. After centrifugation at 10,000 ms⁻² for 10 min, the pellet was discarded and the supernatant centrifuged again at 120,000 ms⁻² for 20 min. The second pellet was resuspended and centrifuged under the same conditions two more times. The resultant pellet was resuspended and suspension frozen at -20 °C for 24 hours. After 24 hours suspension was thawed at room temperature and centrifuged again as above. Freeze thaw - centrifugation cycle was repeated to remove endogenous GABA. The final pellet was obtained by centrifugation at 170,000 ms⁻² for 20 min and resuspended in 40 volumes of 50 mM Tris citrate buffer containing 250 mM NaCl (pH = 7.4 at 37 °C) to give a protein concentration of ~0.7 mg/mL. Protein concentration was determined as described by Lowry et al¹¹.

³H-flunitrazepam binding assay

³H-flunitrazepam binding assay was performed according to the method of Zarkovsky¹². To determine the concentration of drug required to displace 50% of ³H-flunitrazepam from receptor sites, IC₅₀ a single concentration of ³H-flunitrazepam (0.05 mL, 1 nM final concentration), the various concentrations of unlabeled drugs (0.05 mL), 100 µM diazepam (0.05 mL) to define non-specific binding and 0.05 mL of assay buffer (50 mM Tris citrate + 250 mM NaCl, pH = 7.4 at 37 °C) or drug solvent were incubated with 0.3 mL of the synaptosomal membrane suspension for 30 minutes at 37 °C. To determine the number of ³H-flunitrazepam binding sites, B_{max}, and the ligand dissociation constant, K_d, hot-cold dilution binding assays were performed - the same compound, flunitrazepam, was used as labeled and unlabeled ligand. Assay conditions were, in general, the same as aforementioned, except the concentrations of flunitrazepam ranged from 0.1-1,000 nM. In any case, incubation was stopped by filtration of 0.5 mL (final volume) incubation mixture through Whatman GF/C filters. The filters were rapidly rinsed with 10 mL of assay buffer, transferred to counting vials and dried. After addition of scintillation cocktail (toluene, PPO, POPOP), the radioactivity retained in the filters was counted by liquid scintillation counter at 40-45% efficiency. Specific ³H-flunitrazepam binding was defined as the difference between binding in the absence and presence of diazepam and was 75-85% of the total binding. Binding data were analyzed using a computer-based equilibrium binding data analysis (EBDA) program¹³. EBDA calculates K_d, B_{max} and IC₅₀ values from binding data. In the case of enhancement of ³H-flunitrazepam binding, it is not possible to use EBDA program. Therefore, we used another computer-based program¹⁴ to calculate the EC_{50} values (the concentration of drug required for the half of the maximum enhancement) from the linear portion of the enhancement curve. E_{max} is the maximum enhancement of radioligand binding observed in the presence of drug over the control value (100% specifically bound 1 nM ³H-flunitrazepam without drug). The data, expressed as the mean standard error of the mean (SEM), were subjected to two way analyses of variance (ANOVA) followed, if significant, with Newman - Kuels multiple comparison procedure. P values of less than 0.05 were considered significant.

Results

³*H*-flunitrazepam binding affinity, density and pharmacological specificity

Analysis of hot-cold dilution binding data revealed a mean dissociation constant (K_d) of 57.7 \pm 8.6 nM and a mean maximum receptor density (B_{max}) of 0.485 \pm 0.130 pmol/mg protein for ³H-flunitrazepam binding sites at mouse brain GABA_A receptors (Table 1). All benzo-diazepine ligands displaced ³H-flunitra-

TABLE 1
DISSOCIATION CONSTANT, KD, AND A MAXIMUM RECEPTOR DENSITY, BMAX, FOR
³ H-FLUNITRAZEPAM BINDING SITES AT MOUSE BRAIN GABA₄ RECEPTORS

	$\begin{array}{c} K_d \ (nM) \\ X \pm \ SEM \end{array}$	$\begin{array}{c} B_{max} \; (pmol/mg \; protein) \\ X \pm \; SEM \end{array}$	Number of experiments*	
³ H-flunitrazepam	$57.7\pm8.6~nM$	0.485 ± 0.130	3	

 \ast The brains (cerebrum minus cortex) from four mice were pooled and used in each separate experiment

zepam binding in a concentration dependent manner and with nanomolar potency (Table 2). Benzodiazepine receptor antagonist flumazenil was the most potent occupying agent (IC₅₀ = 6.3 ± 2.5 nM), followed by full agonist diazepam (IC₅₀ = 28.6 ± 9.1 nM) and inverse agonist β -CCM (IC₅₀ = 32.8 ± 11.6 nM).

The effect of ergot drugs on ³H-flunitrazepam binding

In contrast to benzodiazepines, dihydroergotoxine (1 nM-90 µM; ANOVA: F $(9.45) = 17.01; p < 0.01), \alpha$ -dihydroergocriptine (10 nM -500μ M; ANOVA: F (6,10) = 8.91; p<0.01), dihydroergosine(100 nM-1 mM; ANOVA: F(7,14) = 8.88;p<0.01) and dihydroergotamine (100 nM-900 μ M; ANOVA: F (5,13) = 30.43; p< 0.01), all produced an concentration dependent enhancement of ³H-flunitrazepam binding to its binding site at the GABA_A receptor of the mouse brain (Table 3). The rank order of potency for ³H-flunitrazepam binding enhancement was: dihydroergotoxine > α -dihydroergocriptine > dihydroergosine > dihydroergotamine. The most effective enhancer of ³H-flunitrazepam binding, as judged by E_{max} values listed in Table 3, was dihydroergotamine (E_{max} = 338 ± 32 % over control value), followed by dihydroergotoxine ($E_{max} = 241 \pm 11$ %), dihydroergosine $(E_{max} = 81 \pm 20 \%)$ and α -dihydroergocriptine ($E_{max} = 66 \pm 5 \%$).

TABLE 2DISPLACEMENT POTENCIES OFBENZODIAZEPINE RECEPTOR LIGANDS ON³H-FLUNITRAZEPAM BINDING TO MOUSEBRAIN GABAA RECEPTORS

	$\begin{array}{l} IC_{50} \ (nM) \\ X \pm \ SEM \end{array}$	Number of experiments*
Flumazenil	6.3 ± 2.5	3
Diazepam	28.6 ± 9.1	3
β-CCM	32.8 ± 11.6	3

* The brains (cerebrum minus cortex) from four mice were pooled and used in each separate experiment. IC_{50} is the molar concentration of drug required to displace 50% of ³H-flunitrazepam from specific binding sites.

The effect of GABA and thiopental on ³H-flunitrazepam binding

100 nM-1mM concentrations of GABA (ANOVA: F (8,15) = 28.19; p<0.01) and 100 nM-1 mM concentrations of thiopental (ANOVA: F (4,12) = 7.88; p<0.01) enhanced ³H-flunitrazepam binding to its binding site at the GABA_A receptor of the mouse brain. GABA was the most potent enhancer of ³H-flunitrazepam binding $(EC_{50} = 4.3 \pm 1.5 \ \mu M$, Table 3) among all drugs used, with EC_{50} value about 8 times lower than that of the most potent ergot drug dihydroergotoxine and about 30 times lower than that of thiopental $(EC_{50} = 117.5 \pm 19.4 \ \mu M$, Table 3). E_{max} values of GABA and thiopental listed in Table 3 were lower than that of dihvdroergotamine and dihydroergotoxine.

	$\begin{array}{l} EC_{50} \ (\mu M) \\ X \pm \ SEM \end{array}$	$\begin{array}{c} E_{max} \left(\%\right) \\ X \pm SEM \end{array}$	Number of experiments*
GABA	4.3 ± 1.5	127 ± 3	3
Dihydroergotoxine	$32.4 \pm 2.6^{**}$	$241\pm11^{\dagger\dagger}$	6
Thiopental	117.5 ± 19.4	135 ± 19	3
α -dihydroergocriptine	$174.1 \pm 43.9^{**}$	66 ± 5	3
Dihydroergosine	340.4 ± 64.4	81 ± 20	3
Dihydroergotamine	388.5 ± 19.1	$338\pm32^{\dagger\dagger}$	2

TABLE 3	
THE ENHANCEMENT POTENCIES AND EFFICACIES OF ERGOT DRUGS,	GABA AND THIOPENTAL
ON ³ H-FLUNITRAZEPAM BINDING TO MOUSE BRAIN GABA _A	RECEPTORS

* The brains (cerebrum minus cortex) from four mice were pooled and used in each separate experiment.

 $\rm EC_{50}$ = molar concentration of drug required for 50% of the maximum observed enhancement; $\rm E_{max})$ = ³H-flunitrazepam binding over the control value (100% specifically bound 1 nM ³H-flunitrazepam without drug, about 0.040 pmol/mg protein).

** p< 0.01 for dihydroergotoxine and α -dihydroergocriptine EC₅₀ values against dihydroergosine and dihydroergotamine EC₅₀ values, Newman Kuels test (ANOVA: F (3,10) = 26.47).

^{††} p<0.01 for dihydroergotoxine and dihydroergotamine E_{max} values against dihydroergosine and α -dihydroergocriptine E_{max} values, Newman Kuels test (ANOVA: F (3,10) = 59.31).

Discussion

³*H*-flunitrazepam binding affinity, density and pharmacological specificity

In this kind of experiments is crucial to prove that radioligand, in our case ³H-flunitrazepam, has identified the correct binding site, in our case benzodiazepine binding site at the brain GABA_A receptor. Dissociation constant (K_d) and a maximum receptor density (B_{max}) values for ³H-flunitrazepam listed in Table 1, are in agreement with the data^{15,16} obtained under similar conditions (physiological or near physiological incubation temperature, presence of NaCl in incubation mixture, absence of detergents during membrane preparation). To further validate ³H-flunitrazepam binding assay, benzodiazepine drugs with well-known potencies for benzodiazepine binding sites, GABA and thiopental were used in competitive binding experiments. Again, there is a good match between IC₅₀ values

for flumazenil, diazepam and β-CCM reported here (Table 2) and IC_{50} values reported elsewhere using the same drugs under similar ³H-flunitrazepam binding conditions^{17,18}. One of the most consistent findings on the pharmacology of GABA_A receptor is the existence of several binding sites on these receptors, all of which exhibit multiple allosteric binding interactions with each other^{2,19}. Since benzodiazepine/GABA/barbiturate binding sites allosteric interactions remain intact in the absence of detergents during membrane preparation²⁰, GABA and thiopental enhanced ³H-flunitrazepam binding to mouse brain membranes (Table 3). It has been already reported that binding of benzodiazepines to the brain membranes which are not subjected to the treatment with detergents is stimulated by GABA, by depressant barbiturates and by anxiolytic, anticonvulsant and hypnotic steroids^{2,21-23}. EC₅₀ and E_{max} values for GABA and thiopental presented here are in reasonable agreement with literature data^{16,24,25}. Taking together, above mentioned results clearly suggest that ³H-flunitrazepam labels high affinity benzodiazepine binding sites, the same site at the brain GABA_A receptor complex by which the benzodiazepines exert their clinically important actions¹.

The effect of ergot drugs on ³H-flunitrazepam binding

As shown in Results, all ergot drugs produced an enhancement of ³H-flunitrazepam binding to its binding site at the GABA_A receptor of the mouse brain. To our knowledge, this is the first demonstration that ergot compounds affect brenzodiazepine binding sites labeled with ³H-flunitrazepam. Moreover, E_{max} values for ergot drugs listed in Table 3 are comparable or even higher (2-3 times, dihydroergotoxine and dihydroergotamine) than that for GABA or thiopental. Sometimes is difficult or even impossible to unmistakably conclude whether drug interacts directly or allosterically with binding sites of GABA_A receptor complex, especially in the case of inhibition of radioactive ligand binding. On the contrary, an enhancement of binding of radioactive ligand by the compound to be investigated in any case identifies an allosteric interaction with the respective binding site². Thus, the fact that all ergot compounds used in our study stimulate rather than inhibit ³H-flunitrazepam binding clearly indicate an allosteric inter- action of these drugs with benzodiazepine binding site at the brain GABA_A receptor. Because ergot compounds allosterically modulate ³H-flunitrazepam binding to benzodiazepine binding site, we can presume that ergot drugs do not bind to the benzodiazepine recognition site at the brain GABA_A receptor. The mechanisms responsible for the enhancing effect of ergot drugs on ³H-flunitrazepam binding to the brain GABA_A receptor in vitro could be a few.

Although ergot drugs are known to have a high, nanomolar potency for brain amine receptors²⁶, the enhancement effect of ergot drugs on ³H-flunitrazepam binding in vitro could not be explained on the basis of a non- GABA_A receptor mechanism, since ³H-flunitrazepam exclusively labels high affinity benzodiazepine binding sites in our experimental system. Regarding GABA_A re- ceptor related mechanisms, the neurotransmitter site could also be excluded as a possible explanation of the results presented here. Namely, Hruska and Silbergerd reported that ergot alkaloids do not affect ³H-GABA binding to brain GABA_A receptors²⁶. These results are in accordance with our unpublished data, showing very low, nearly milimolar potency of ergot drugs for ³H-muscimol (GABA analogue) binding. It has been already reported that dihydrogenated ergot drugs bind with high affinity to GABA_A receptor associated chloride ionophore labeled with ³H-TBOB⁹. The potency for inhibition of 3H-TBOB binding sites was 2-6 times higher than that for enhancement of ³H-flunitrazepam binding sites listed in Table 3. Moreover, in the presence of physiological concentration of GABA, at least one of these drugs, dihydroergotoxine, non-competitively displaced ³H-TBOB binding with potency (IC₅₀ = 46) nM) comparable to that reported for brain amine receptors⁸. Besides, the rank order of potency for ergot drugs on ³H-TBOB inhibition⁸ was the same as that for enhancement of ³H-flunitrazepam binding reported here: dihydroergotoxine > α -dihydroergocriptine > dihydroergosine > dihydroergotamine (Table 3). Therefore, we can presume that binding site for ergot drugs at the brain GABA_A receptor responsible for the enhancing effect of ergot drugs on ³H-flunitrazepam binding is located near to picrotoxin/convulsant site. Finally, intri- guing possibility of direct interaction between ergot drugs and steroid binding site of the brain GABA_A receptor could not be excluded, since binding of benzodiazepines is stimulated also by anxoiolytic, anticonvulsant and hypnotic steroids²³.

In conclusion, the results of present study suggest that dihydrogenated ergot derivatives do not bind directly to the brain benzodiazepine binding sites labeled with ³H-flunitrazepam. However, these findings indicate that ergot com-

REFERENCES

1. CHARNEY, D. S., J. MIHIC, R. A. HARRIS, Hypnotics and sedatives. In: HARDMAN, J. G., L. L. LIMBIRD, A. GOODMAN GILMAN (Eds.): Goodman & Gilman's the pharmacological basis of therapeutics. (McGraw Hill, New York, 2001). - 2. SIE-GHART, W., Pharmacol. Rev., 47 (1995) 181. - 3. FALKENSTEIN, E., H. C. TILLMAN, M. CHRIST, M. FEURING, M. WEHLING, Pharmacol. Rev., 52 (2000) 513. - 4. HOFMANN, B. B., Catecholamines, sympathomimetic drugs and adrenergic receptor antagonists. In: HARDMAN, J. G., L. L. LIMBIRD, A. GOODMAN GILMAN (Eds.): Goodman & Gilman's the pharmacological basis of therapeutics. (McGraw Hill, New York, 2001). - 5. PERIČIĆ, D., H. MANEV, Psychopharmacology, 80 (1983) 171. — 6. PERIČIĆ, D., H. MANEV, J. Neural. Transm., 79 (1990) 125. -7. TVRDEIĆ, A., D. PERIČIĆ, Eur. J. Pharmacol., 221 (1992) 139. — 8. PERIČIĆ, D., A. TVRDEIĆ, Eur. J. Pharmacol., 235 (1993) 267. - 9. TVRDEIĆ, A., D. PERIČIĆ, Eur. J. Pharmacol., 202 (1991) 109. – 10. GORDON - WEEKS, P. R., Isolation of synaptosomes, growth cones and their subcellular components. In: TURNER, A. J., H. S. BACHELARD (Eds.): Neurochemistry: A practical approach. (IRL Press, Oxford, 1987). - 11. LOWERY, O. H., N. J. ROSEBROUGH, pounds have an appreciable modulation activity at the benzodiazepine binding site labeled with ³H-flunitrazepam, and affect the mouse brain GABA_A receptor complex in a manner which is typical for drugs acting on this allosteric receptor complex. Therefore, the results presented here further support the hypothesis that ergot drugs interact with the brain GABA_A receptor complex.

A. L. FARR, R. J. RANDALL, J. Biol. Chem., 193 (1951), 265. - 12. ZARKOVSKY, A. M., Neuropharmacology, 26 (1987) 1653. - 13. McPHERSON, G. A., Comput. Prog. Biomed., 17 (1983) 107. - 14. TALLA-RIDA, R. J., R. B. MURAY: Manual of pharmacologic calculationas with computer programs. (Springer Verlag, New York, 1986). - 15. WONG, P. T. H., Can. J. Physiol. Pharmacol., 69 (1991) 109. - 16. DE LO-REY, T. M., G. B. BROWN, J. Neurochem., 58 (1992) 2162. - 17. MAGUIRE, P. A., H. O. VILLAR, M. F. DAVIES, G. H. LOEW, Eur. J. Pharmacol., 226 (1992) 233. - 18. BROWN, C. L., I. L. MARTIN, Eur. J. Pharmacol., 106 (1985) 167. - 19. COSTA, E., Neuropsychopharmacology, 2 (1989) 167. - 20. ENNA, S. J., S. H. SNYDER, Mol. Pharmacol., 13 (1977) 442. -21. KAROBATH, M., G. SPERK, Proc. Natl. Acad. Sci., 76 (1979) 1004. - 22. THYAGARAJAN, R., R. RAMNJANEYULU, M. K. TICKU, J. Neurochem., 41 (1983) 578. - 23. GEE, K. W., Mol. Neurobiol., 2 (1988) 291. - 24. BUREAU, M. H., R. W. OLSEN, J. Neurochem., 61 (1993) 1479. - 25. PRICE, R. J., M. A. SIMMONDS, Neurosci. Lett., 135 (1992) 273. -26. HRUSKA, R. E., E. K. SILBERGELD, J. Neurosci., 6 (1981) 1.

A. Tvrdeić

Department of Pharmacology, School of Medicine, University of J. J. Strossmayer Osijek, J. Huttlera 4, 31000 Osijek, Croatia

UČINAK ³H-FLUNITRAZEPAMA ZA GABA_A RECEPTORE IZ MOZGA MIŠA

SAŽETAK

U in vitro uvjetima istraživani su učinci dihidroergotoksina, dihidroergozina, dihidroergotamina, α-dihidroergokriptina (ergot alkaloidi), diazepama, metil-β-karbolin-3karboksilata (β-CCM), flumazenila (benzodiazepini), γ-amino maslačne kiseline (GABA) i tiopentala (barbiturat) na vezno mjesto za benzodiazepine obilježeno ³H-flunitrazepamom iz mozga miša (veliki mozak bez kore). Na membranama pripremljenim iz mozga miša identificirano je specifično vezno mjesto, visokog afiniteta (konstanta afiniteta $K_d = 57.7 \pm 8.6$ nM) za ³H-flunitrazepam. Svi benzodiazepini su inhibirali vezanje ³H-flunitrazepama sa nanomolarnom potencijom. Za razliku od njih, svi ergot alkaloidi, GABA i tiopental su povećavali vezanje ³H-flunitrazepama za njegovo vezno mjesto na GABA_A receptorima iz mozga miša. Redoslijed potencije za taj učinak je bio: neurotransmiter (GABA) > dihidroergotoksin > tiopental > α -dihidroergokriptin > dihidroergozin > dihidroergotamin. Spomenuti rezultati sugeriraju da se ergot alakloidi ne vezuju za vezno mjesto za benzodiazepine obilježeno ³H-flunitrazepamom iz mozga miša. Međutim, povećanje vezanja ³H-flunitrazepama sa svim ergot alkaloidima upotrebljenim u ovom istraživanju jasno ukazuje na alosteričku interakciju ergot alkaloida sa veznim mjestom za benzodiazepine na GABA_A receptorima.