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The generating function of the sequence that represents the number of graph vertices at a given
distance from the root is called the spherical growth function of the rooted graph. This mathe-
matical notion is first applied to finite and infinite graphs representing �n�helicenes, the sim-
plest nonplanar unbranched catacondensed benzenoid hydrocarbons. The calculation of growth
function is then generalized to graphs that have an arbitrary connected graph in place of each
hexagon and therefore represent a subclass of fasciagraphs. Also, the connection between the
growth function of a finite graph and its Wiener index is established.
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INTRODUCTION

A polyhex is a graph consisting of congruent hexagons,
where two hexagons either share exactly one edge or are
disjoint.1 A simply connected polyhex represents the
carbon skeleton of a benzenoid hydrocarbon and is ei-
ther called a benzenoid graph or a helicene graph de-
pending on whether it is geometrically planar or
nonplanar, respectively.2 In each case we consider only
graphs which represent benzenoid molecules without
holes, therefore excluding coronoids.3

A benzenoid graph is also known as a benzenoid
system, a hexagonal system and even as a polyhex.4 If
all vertices of a benzenoid graph G lie on its perimeter,
i.e., on the boundary, then G is said to be catacondensed,
otherwise it is pericondensed.5 Catacondensed benzenoid
graphs have two types of vertices; the ones of degree 2
that belong to only one hexagon, and the ones of degree
3 that lie on exactly two adjacent hexagons. The same is
true for nonplanar catacondensed polyhexes also known
as catacondensed helicene graphs.6 In general, helicenes

can include other aromatic compounds besides benzene
but we consider only [n]helicenes7 (also called helixes)8

made up of n angularly rotated benzene rings producing
helically shaped molecules.

Recall the definition of growth in rooted graphs.9

Let G be a connected, finite or locally finite graph (infi-
nite but with finite vertex degrees) and let V(G) be the
set of vertices of G. The distance d(u,v) between two
vertices u and v equals the number of edges in a shortest
path between vertices u and v in G. By selecting a vertex
r ∈ G we define the (spherical) growth sequence as
{d(G,r,i) | i = 0,1,2,...}, where d(G,r,i) denotes the num-
ber of vertices at a distance i from r. By taking the gen-
erating function10 for d(G,r,i) we get the growth function
(called also the growth) of graph G rooted at r:

D(G,r; x) =
i=

∞

∑
0
d(G,r,i) xi.

The vertex r, upon which the growth function de-
pends, is called the root. We can extend the definition by
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allowing a root to be any induced subgraph R of the
graph G, where the distance between a vertex u ∈G and
the root R is defined as d(u,R) = minr∈V(R){d(u,r)}. In
particular, the expression d(G,R,0) equals the number of
vertices in R. Two root types are of a special importance.
If a root is a vertex, it is known as a vertex root and if it
consists of two adjacent vertices, it is called an edge
root.

In our paper about the growth in catacondensed ben-
zenoid graphs11 we presented an algorithm to calculate
the growth recursively. In this paper we apply the meth-
ods from11 on to the set of graphs representing [n]heli-
cenes that are the simplest form of helicenes. Their un-
branched helicoidal structure allows us to write the growth
in a compact form for finite and infinite (but locally fi-
nite) graphs. The distinction between one-way and two--
way infinite [n]helicenes is made by denoting them [∞]he-
licenes and [±∞]helicenes, respectively.

We also show how the algorithm,11 used to calculate
the growth of [∞]helicene graphs, can be generalized to a
subclass of fasciagraphs,12 where the hexagon represent-
ing each benzene ring is substituted with an arbitrary
graph. A fasciagraph gm(G;X) is obtained from a line
graph of length m by replacing each vertex with an arbi-
trary graph G and each edge with a set of edges X ⊆
V(G) × V(G). If we start with a cycle instead of a line
graph, we get a structure known as a rotagraph.

THE WIENER INDEX AND THE GROWTH
FUNCTION

The Wiener index is one of many distance-based topo-
logical indices and has many uses in chemistry. It has
been studied thoroughly in the literature; generally13,14

or specific to catacondensed benzenoids,15,16 hexagonal
chains17 and fasciagraphs.18 For an arbitrary finite graph
G its Wiener index is defined as the sum of the distances
between all unordered pairs of its vertices. It can be
written as

W(G) = d u v
u v

( , )
,{ }⊆
∑

V(G)
.

The Wiener index of a graph G can also be calcu-
lated with the help of the growth functions of the graph.

Proposition 1

W(G) =
1

2
D' ( , ; )G

V(G)
v

v

1
∈
∑ . (1)

Proof: Since D' ( , ; )G v 1 sums the distances from v to all
other vertices and the summation over all vertices of G
counts the distances twice, i.e., d(u,v) is included in
D' ( , ; )G v 1 and in D' ( , ; )G u 1 .

In this paper we examine the possibility of using the
growth function to calculate the Wiener index of a
helicene graph.

GROWTH IN [n]HELICENE GRAPHS

We will use the algorithm11 for calculation of the growth
function for graphs representing [n]helicenes. The idea
of the algorithm is as follows: a graph is divided into
subgraphs whose growth functions are then calculated
recursively and included in the corresponding place to
calculate the growth function of the whole graph.

Let us limit ourselves to the case of vertex roots.
The hexagon that includes the root is called a starting
hexagon. Each hexagon adjacent to the starting hexagon
is a derived hexagon and is used as the starting hexagon
in the recursion process. For a root of the derived hexa-
gon, we take the vertex that is the closest to the root of
the starting hexagon. If there are two such vertices, both
are denoted as a derived root, i.e., we get an edge root. It
can be seen that a derived root can only be a vertex root
or an edge root. This observation is the key to the gener-
alization presented in the next section.

When calculating the growth function of a graph by
using the growth functions of its subgraphs the problem
of counting some vertices twice must be avoided. The
details of this procedure are discussed in the work of
Luk{i~ and Pisanski.11

The [1]helicene is represented by only one hexagon,
called a six cycle in graph theory19 and denoted as C6. Its
growth is D( , ; )C6 r x = 1 + 2x + 2x2 + x3 and is independ-
ent of the vertex r we take as the root. The case of
[2]helicene is described in detail in Ref. 11 and thus left
out.

We now consider the cases where the number of
hexagons n is larger than 2. To find all possible growth
functions of a graph H(n) representing an [n]helicene
when the root is a single vertex, we have to calculate each
of the growths separately depending on the root. This is
done by determining which of the hexagon types defined
in Luk{i~ and Pisanski11 can occur in the case of
[n]helicenes. Table II and Table III show the possible
types of [n]helicenes depending of the root vertex. Let us
use the notation from the mentioned work11 for the labels
p1, p2 and p3 of the derived hexagons, which also corre-
spond to the growth of the subgraphs they define (see Ta-
ble I). The hexagons in gray in Table II and Table III de-
note the starting hexagons and the arrows show the path
in which the growth is calculated recursively. This en-
ables us to distinguish derived roots from the main root.
The dashed hexagons show the possible continuation of
the structure. A note about the symmetries is also needed
since all of the types from Table I, Table II and Table III
can be rotated and mirrored horizontally and vertically
while still producing an identical growth function.
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The helical structure is even more useful when de-
termining the possible derived hexagons. As seen from
Table II and Table III, the derived hexagons can only be
of types p1, p2 or p3 as shown in Table I. If we encounter
p1, we know we are at one end of the chain. Besides
type p1, we can only get type p2 as the derived hexagon
after the second step of the recursion. Moreover, this is
the only type we can get after the second step if we have
a [±∞]helicene.

Let us present an example of growth function calcu-
lation of a graph H1(n) representing an [n]helicene
(n > 2) with the root vertex labeled 1 (see the first type
in Table II). We write the system of equations that deter-
mine the growth of H1(n):

D(H1(n),1;x) = p2
2( )

+ x + 2x2 + x3 ,

p p x x x x
i i

2 2
1 2 31

( ) ( )= + + + ++
,

p p x x x
n

2 1
2 31 2 2

( ) = = + + + . (2)

The first equation in (2) is the growth function of
H1(n) rooted at the vertex 1 (see Table II). The term p

i

2
( )

represents the growth function of a subgraph of H1(n)
that has its starting hexagon of type p2 and the index i,
where 1 < i < n, denotes the i-th recursion step of the
algorithm11 calculating the growth. The last equation in
(2) is the growth of the last hexagon in the chain form-

ing a helicene. It can be shown that this system of equa-
tions forms the growth function of the graph H1(n) as

D(H1(n),1;x) =

1 + 3x + 5x2 + 5x3 + 4 x x xi n n

i

n

+ + +

=

−

∑ 3 1

4

1

. (3)

However, the simplest proof of formula is by induc-
tion. Let us examine the change in the growth when a
hexagon is added at the end of the structure, thus creat-
ing a [n+1]helicene. The growth function of a hexagon
equals 1 + 2x + 2x2 + x3 but since two of its vertices are
shared with another hexagon, there are already included
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TABLE I. Possible derived hexagon types, labeled p1, p2 and p3,
in a graph representing an [n]helicene. Their labels are also used
as the growth functions of the subgraphs starting with these (gray
colored) hexagons. The dashed hexagons are from the previous
step of recursion. Note that i ∈ {1,2}.

p1 = 1 + 2x + 2x2 + x3

p2 = 1 + (1 + pi)x + x2 + x3

p3 = 1 + 2x + (1 + pi)x
2

p1

pip2

pip3

TABLE II. Possible helicene types with a vertex root when the start-
ing hexagon (in gray) has only one neighbor (i ∈ {1,2})

D(H,1; x) = p2 + x + 2x2 + x3

D(H,2; x) = 1 + (1 + p2)x + x2 + x3

D(H,3; x) = 1 + 2x + (1 + p2)x2

D(H,4; x) = 1 + 2x + (1 + p3)x2

D(H,5; x) = 1 + (1 + p3)x + x2 + x3

D(H,6; x) = p3 + x + 2x2 + x3

pip2

pip2

pip2

pip3

pip3

pip3



in the growth function of H1(n). We therefore have to
add only x + 2x2 + x3 to the growth function. Since the
distance from the added hexagon to the root is n – 1, the
expression gets multiplied by xn–1 yielding xn + 2xn+1 +
xn+2. One can check that D(H1(n+1),1;x) – D(H1(n),1;x)
produces the same polynomial, thus proving formula (3).

If we rewrite formula (3) as

D(H1(n),1;x) = –3 – x + x2 + x3 + 4 x x xi n n

i

n

+ + +

=

−

∑ 3 1

0

1

,

it holds for n = 1 and n = 2, too. Similar expressions are
obtained if the vertex root is in a different position (see

Table II). The exception is when there are two subgraphs
derived from the starting hexagon as is the case in Table
III. Then we must use another index that tells us how
many hexagons are in one of such subgraphs.

The [7]helicene in Figure 1 is an another example of
a helicene of the first type regarding to the types pre-
sented in Table II.

In order to get the Wiener index of a graph H(n) rep-
resenting an [n]helicene, we must calculate the expres-
sion D'(H(n),v;1) for each vertex v ∈ H. We do this by
using the growth function of a rooted graph Hv(n). For
example,

D'(H1(n),1;1) =

–1 + 2 + 3 + 4 i
i

n

=
−∑ 0

1
+ 3n + n + 1 = 2n(n + 1) + 5.

This procedure can be used to calculate the alrea-
dy known8 Wiener index of an [n]helicene W(H(n)) =
1

3
(8n3 + 72n2 – 26n + 27).

We now extend the calculation of the growth func-
tion to the one-way infinite helicene graph H(∞) rooted
at r. We first select the root, e.g., a vertex labeled 1, so
that the rooted graph is H1(∞). Our system of equations
consists only of the first two equations in (2). We can
therefore write p2 = (1 + x + x2 + x3)/(1 – x) for |x | < 1.
Hence,

D(H1(∞),1; x) =

1

1

2 3+ + +
−

x x x

x
+ x + 2x2 + x3 =

( )( )1 1

1

2 3+ + + −
−

x x x x

x
.

The same argument holds with the other vertices as
roots:

D(Hv(∞),v; x) =
f x

x

( )

1−
, (4)

where v is the vertex root, |x | < 1 and f(x) is a polyno-
mial of a finite degree. Moreover, the formula (4) holds
also for graphs representing two-way infinite helicenes.

GROWTH IN FASCIAGRAPHS

In the previous section we noticed that only one of the
hexagon types was repeating itself in the recursion pro-
cess. The reason for this is in the way the growth calcu-
lation is transferred to the derived hexagons. Since two
adjacent hexagons share a same edge, the growth func-
tion of that edge in the derived hexagon is always 1 + x.
If the starting root of the graph is an arbitrary connected
subgraph, each derived hexagon has the growth on the
adjacent edge either 1 + x or 2. This fact holds for all
types of catacondensed polyhexes.11
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TABLE III. Possible helicene types with a vertex root when the start-
ing hexagon (in gray) has two neighbors (i,j∈ {1,2}; k,l∈ {1,3})

D(H,7; x) = pi + pjx + x2 + x3

D(H,8; x) = 1 + (1 + pk)x + plx
2

D(H,9; x) = pk + x + (1 + pi)x
2

pi

pj

pk

pl

pk

pi

p2p2 p2

p2

p2
p2

p1

Figure 1. An example of a graph H1(7) representing a [7]helicene
rooted at the vertex 1. The labels p1 and p2 are used to identify
the hexagon types for the growth calculation. The starting hexa-
gon is colored gray with the labels showing the possible roots.



We can replace the hexagons representing benzene
with an arbitrary connected graph and calculate the
growth the same way as before. The new graph belongs
to a subclass of fasciagraphs gm(G;X) that has its edges
defined as X ⊆ V(G) × {u,v}, where u and v are adjacent
in G. An example can be seen in Figure 2 using a
subgraph G of the well-known Petersen graph, labeling
its vertices 1, 2,..., 8 and defining X = {{1,1},{3,2},
{7,2},{8,1}}. As a result we get a chain of m – 1
Petersen graphs that ends with the graph G.

To calculate the growth functions of a fasciagraph
gm(G;X) at its vertices we could use the same method as
with the helicenes, i.e., define the possible subgraph
types gm(G;X) can be made up from, depending on what
vertex we take for the root, and use them to calculate the
growth recursively (the types for helicenes are seen in
Table II and Table III). But, since G can be a large
graph, there can be a lot of subgraph types. It is more in-
teresting to find the growth at the adjacent vertices u and
v that represent the ends of the edges from X. One or
both of these vertices are in fact the root of the derived
graphs (the generalization of derived hexagons). When
looking at the growth at these vertices locally in the de-
rived graph, it can be written as one of the following:
(1, x), (x,1) or (1,1), where the components represent the
growth in u and v, respectively. Since the derived graphs
are all the same, there must be a recurring pattern for the
growth. From example in Figure 2 we can see how the
growth at vertices 1 and 2 changes in the derived graph:

(1, x) → (1, x),

(x,1) → (1,1),

(1,1) → (1, x).

Therefore, from some step onwards we always get a
derived Petersen graph with the growth (1, x) at vertices
1 and 2, respectively. That assures us that there is a com-
pact form of writing the growth function. From example
in Figure 3 we can deduce the growth function of the
fasciagraph g3(G,X), where G and X are the same as in

Figure 2 and the graph G is rooted in the vertex labeled
1. The growth equals D(g3(G;X),1; x) = 1 + 3x + 8x2 +
7x3 + 5x4 and can be easily generalized to

D(gm(G;X),1; x) = –7 – 5x + 8 x i

i

m

=

−

∑
0

1

+ 7xm + 5xm+1

due to the recurring growth pattern (1, x) for the vertices
1 and 2 in each of the derived graphs. If the graph would
be one- or two-way infinite, we would get the same re-
sult as in the previous section; see formula (4). If G is an
arbitrary connected graph, we can obtain similar conclu-
sions by looking at the growth locally at the adjacent
vertices u and v, where X ⊆ V(G) × {u,v}.

CONCLUSIONS

In the paper we presented the concept of growth in
rooted graphs. It was used on the simplest helicene
graphs that represent [n]helicenes. The connection be-
tween the growth of a finite graph and its Wiener index
was presented and used in the case of [n]helicenes. The
growth calculation in both types of [n]helicenes (finite
and infinite) was generalized to a subclass of fasciagra-
phs, where an arbitrary connected graph replaced the he-
xagonal rings. In further work, the growth function cal-
culation is to be extended to all fasciagraphs as well as
to the rotagraphs, which can be used to represent
coronoids.
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SA@ETAK

Rast u [n]helicenima

Primo` Luk{i~ i Toma` Pisanski

Generiraju}a funkcija za niz koji predstavlja broj ~vorova grafa na danoj udaljenosti od korijena grafa zove
se sferna funkcija rasta grafa s korijenom. Ova nova matemati~ka veli~ina prvo je izra~unata za kona~ne i bes-
kona~ne grafove koji predstavljaju [n]helicene a zatim je poop}ena i izra~unata za grafove u kojima je svaki
heksagon zamijenjen proizvoljnim povezanim grafom te stoga predstavljaju podklasu tzv. fasciagrafova. Za ko-
na~ne grafove uspostavljena je tako|er veza izme|u funkcije rasta i Wienerovog indeksa.
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