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ABSTRACT

The stock market forecast is an important and challenging issue. Its
distribution forecast of returns can provide information that is more
complete, compared to point forecast and interval forecast. As intra-
day high-frequency information is available, we incorporate intraday

ARTICLE HISTORY
Received 6 January 2022
Accepted 26 July 2022

KEYWORDS

returns into the predictive modelling of daily return distribution in
two ways: realized volatility and scale calibration. Three parametric
models, EGARCH, EGARCH-X, and realGARCH, and two nonparamet-

Intraday information;
distribution forecast;
realized volatility; scale
calibration; model

ric models, NP and realNP, are used. Our improved NP model, the combination

realNP model, is based on intraday returns calibration. The results

show that intraday information improves goodness-of-fit and fore- éEl- CC°3DEg
51; C53; G17

casting effect, and the realGARCH model is relatively the best.
According to the realNP model results, the intraday returns can only
contribute about a 30% description of the daily distribution and less
than 1% information for a one-step-ahead distribution forecast.
Furthermore, three combinations are considered, and the log-score
and CRPS combinations are found to have direction predictability
and excess profitability statistically. The non-short-selling situation
consistently has more excess profits than the short-selling situation,
which implies that the non-short-selling rule protects investors. This
study reveals the importance of incorporating intraday information
and model combinations for stock market forecast modelling.

1. Introduction

The stock market is an important embodiment of a country’s economic and financial
activities. It plays an important role in the economic development of various coun-
tries and has an important impact on countries, enterprises, and individuals. If the
stock market evolution process is modelled properly, it will better ensure efficient
resource allocation. Investment institutions and investors benefit from early detection
of stock market movements. However, the stock market is a typical complex system
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with great uncertainty and volatility (Hwan et al, 2011). Therefore, stock market
forecast is an important and challenging issue.

Financial variables, such as stock prices, are typically available daily, and, in the
past decade, the availability of intraday level (high frequency) information has
increased dramatically. Therefore, research on high frequency data is extensive. High-
frequency data allow the study on intraday time scales and may contain valuable
information for longer time scales, which may be more meaningful to most market
participants. Consequently, many studies have attempted to incorporate intraday data
into the modelling and forecasting of daily and even lower frequency variables.
Naturally, financial market behaviour is investigated using mixed-sampling data. For
example, Gorgi et al. (2019) constructed a flexible and easy-to-implement framework
to forecast low-frequency time series variables using timely information from high-
frequency variables.

Regarding the application of high-frequency data, a large category involves the
realized measures, including the traditional realized volatility measures and the gener-
alized realized measures (Jiang et al., 2018; Jiang & Gu, 2019). The traditional realized
volatility measures include Realized Variance (RV) (Andersen & Bollerslev, 1998),
micro-noise robust Realized Kernel (Barndorft-Nielsen et al., 2008), and jump-robust
Realized Bipower Variation (Barndorff-Nielsen & Shephard, 2004). Generalized real-
ized measures include Realized Absolute Dispersion (Tsay, 2010) and realized Lower
Partial Moment (Huffman & Moll, 2012), as well as realized value at risk (VaR) and
realized expected shortfall (ES) (Wuertz et al., 2009). RV, introduced by Andersen
and Bollerslev (1998) and formally determined by Andersen et al. (2001), is the most
basic and commonly used measure. Compared with the model that only uses daily
data, the use of realized volatility measurement has been found to improve the pre-
diction of daily return volatility significantly (Wang & Huang, 2015; Lydcsa et al,
2021; Lu et al, 2021). Volatility involves only the first two moments of returns.
However, many financial situations have insufficient information on the first two
moments of returns. For example, in risk management, to calculate the VaR or the
ES, it is necessary to understand the specific quantile of the return distribution. In
addition, numerous studies have shown that higher-order moments, such as skewness
and kurtosis are time varying, and are related to portfolio allocation and asset pricing
(Brooks et al.,, 2005). Therefore, it is necessary to extend the return modelling that
incorporates high-frequency information to a higher-order moment or distribution
prediction level.

English documents such as Andersen et al. (2003), Clements et al. (2008), Maheu
and McCurdy (2011), and Hansen et al. (2012), as well as Chinese documents such as
Wang and Huang (2012a, 2015), Huang et al. (2015), Zhu and Tang (2017), and Yu
and Wang (2018), extend the use of volatility measures to the quantile or distribution
level. In such studies, the realized volatility is linked with the density (or quantile) of
daily returns. It includes two components: First, a parametric time series modelling
of volatility, which includes some realized volatility measurements, to simulate and
generate a daily volatility point forecast. The second component is the assumption of
the parameter distribution of daily returns, which allows the density or quantile fore-
cast of daily returns to be generated from the point forecast of daily-realized
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volatility. Commonly used models are GARCH (Wang & Huang, 2015), MIDAS
(Clements et al., 2008), and HAR (Maheu & McCurdy, 2011; Zhu & Tang, 2017),
among others. Owing to the excellent performance of the GARCH model in trad-
itional volatility modelling, the combination of realized volatility and the GARCH
model has become a major research focus.

Regarding the limitations of the above methods, Hallam and Olmo (2014a) pro-
posed a density prediction method for a single fractal. Under the assumption of a sin-
gle fractal, the form of the distribution scale can be estimated using a given data
sample, and these estimates can be used to accurately rescale intraday returns so that
they are equal under the daily return distribution; then, the density of daily returns
can be directly estimated from these rescaled intraday observations. However, the
empirical application of Hallam and Olmo (2014a) shows that with large assumption
deviation from the single fractal distribution, the predictive ability of the single fractal
method may be limited. Furthermore, Hallam and Olmo (2014b) proposed a more
general and flexible multi-fractal density prediction method. This method overcomes
the key theoretical limitations of the single fractal method and allows for scaling rela-
tionships between the return distributions to be more flexible under different sam-
pling frequencies. The variation range and sign of the intraday returns can be
incorporated into the estimation of the daily return density, allowing the intraday
data to directly affect moments that are higher than the second moment of the daily
returns. However, the implementation of this method has limitations, that is, it needs
to set a specific parameter form for the daily return distribution.

This study aims to model the conditional distribution forecast of daily returns. We
hope to take advantage of the GARCH model and consider the parametric method that
combines intraday high-frequency information with the GARCH model. The EGARCH
model proposed by Nelson (1991), which is widely used in the literature, is used as the
benchmark parametric model. The GARCH-X model adds the realized volatility, as an
exogenous variable, into the conditional variance equation, and the real GARCH model,
which combines the realized volatility and the daily-implied volatility, is included.
However, to reduce the risk of model ‘misspecification’, nonparametric models are con-
sidered. The model proposed by Harvey and Oryshchenko (2012) (short form, NP)
serves as a benchmark for nonparametric models. Furthermore, we consider intraday
returns calibration and integrate them into NP through a recursive mechanism. To
reflect the impact of intraday high-frequency information, model comparison is
adopted. Model combinations are also considered to reduce the bias of individual mod-
els. Statistical evaluation and economic evaluation are both conducted in this study.

In general, this study has three innovations. (1) Based on the scale calibration, a
new model, realNP, is proposed, which can effectively quantify the influence of intra-
day information on daily return distribution and one-step-ahead distribution forecast.
(2) The importance of intraday high-frequency information is considered from the
perspective of overall distribution forecast through model comparison. The distribu-
tion forecast is more complete, with credible results. (3) Statistical evaluation results
of the distribution forecast are used to construct combinations of parametric and
non-parametric models, and to find valuable combined models, directional predict-
ability and excess profitability are considered as economic evaluation.
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The remainder of this paper is organized as follows. Section 2 presents the data
description and information pre-processing. Section 3 introduces the models and
methods. Section 4 presents the empirical results, including the full-sample parameter
estimation and fitting results, statistical evaluation of the rolling-sample distribution
forecast, and model combinations and economic evaluation. In Section 5, a robust-
ness test is conducted. Finally, Section 6 presents the conclusions, some limitations,
and scope for further research.

2. Data description and information pre-processing
2.1. Daily returns and intraday high frequency returns

The Shanghai Composite Index (SHCI) is often used to represent China’s stock mar-
ket (Yao et al, 2021), and it was selected as the research object. Since 2010, China’s
stock market has launched margin and securities lending businesses and stock index
futures trading. Therefore, profits are not only made unilaterally, as per the history of
China’s stock market. The evolution of return distribution after 2010 may be different
from that before 2010. Therefore, this empirical study was conducted from 4 January
2010 to 29 December 2017. The return is calculated as the closing price’s logarithmic
return percentage, namely,

)’t — (lnpt - lnpt_l) X IOO,t — 1, 2, ooy T, (1)

where p, represents the closing price of SHCI on day t, and p, corresponds to the
closing price on the trading day before 4 January 2010. The sample size of the returns
is T =1940. To realize the return distribution forecast, the rolling samples are
adopted. The initial fitting sample comprises data from 4 January 2010 to 31
December 2014. Therefore, the in-sample size is To = 1208. The out-of-sample fore-
cast period is from 5 January 2015 to 29 December 2017: the out-of-sample size is
n =T — Ty = 732. The robustness test uses the returns from 4 January 2010 to 30
June 2021, and T = 2788. The initial fitting sample comprises data from 4 January
2010 to 29 December 2017 (eight years), that is To = 1940. 2 January 2018 to 31 June
2021 is the out-of-sample prediction interval, that is n =T — T, = 848. Figure 1
shows the closing price data for the Shanghai Composite Index from 4 January 2010
to 30 June 2021. The period between the solid red lines is the empirical forecast time
interval. This covers three market states: ‘consolidation’, ‘bull’, and ‘bear’. The blue
dotted lines are the forecast periods for the robustness test, including two market
states of ‘consolidation’ and ‘bear’.

We hope to utilize the potential value of the intraday trading information fully,
and carefully avoid the interference of market microstructure noise caused by overly
short sampling intervals. Therefore, the sampling frequency problem is worth consid-
ering, and Hansen and Lunde (2006), Bandi and Russell (2008), and Wang and
Nishiyama (2015) have discussed it. This problem has also been encountered in the
studies on realized volatility, such as Andersen et al. (2001), which find that the 5-
minute sampling interval is a good trade-off between the above two factors. Many
documents on intraday high-frequency information, such as Maheu and McCurdy
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Figure 1. The SHCI's daily closing price and forecast period.
Source: compiled by authors with the help of R software.

(2011) and Hallam and Olmo (2014a, 2014b), also use 5-minute trading data. Therefore,
this study selects intraday 5-minute trading data. The time span for intraday returns is
similar to that for the daily return: from 4 January 2010 to 29 December 2017. There are
N; 5-minute closing prices on the t-th trading day, and similar to the daily return, the
intraday return is defined by a ‘closing price-closing price’ form, that is

Tti = (lnpt)i — lnpt,,;l) x 100,t = ].,2, ceey T,l = 1,2, ...,Nt, (2)

where r,; and p,; represent the i-th 5-minute return and closing price, respectively,
on the t-th day. In particular, the first 5-minute closing price of each day is compared
with the last 5-minute closing price of the previous day, that is, p, o = pi—1,n,_,; there-
fore, this intraday return is also called the overnight return. It can be seen that N,
also represents the sample size of high-frequency returns on day t.

As China’s stock market trading time is 9:30-11:30 and 13:00-15:00, N; = 48, and
there are N = N; x T = 931205-minute high-frequency returns. What are the character-
istics of intraday high-frequency returns? Andersen and Bollerslev (1997) and Engle and
Sokalska (2012) proposed that the intraday returns of regular sampling are ‘seasonal’.
For a deeper understanding of intraday returns, we average the returns at the same time
point, from 9:35 to 15:00, a total of 48 5-minute average returns. As shown in Figure 2,
the returns are abnormal when the market opens, closes in the morning, and closes in
the afternoon. Compared with the previous day’s closing, the opening of the market
shows a relatively ‘pessimistic’ performance, and the return is significantly negative,
while the closing of the market in the morning and afternoon shows a state of
‘excitement’, with significant positive returns; however, for other time points, most of
these fluctuate around ‘zero’, with no obvious positive or negative characteristic.

2.2. Realized volatility

Realized volatility is the most commonly used to model intraday high-frequency
returns. The simplest realized volatility measurement is proposed by Andersen and
Bollerslev (1998) and is defined as
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Intraday averaged 5-minute returns

Average 5 min returns
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Figure 2. The intraday averaged 5-minute returns.
Source: compiled by authors with the help of R software

N;
RV, = Z o (3)
i=1

It uses RV, and its logarithm In(RV;) for model construction. Figure 2 depicts the
square of daily returns and the daily-realized volatility, and shows that the realized
volatility describes the fluctuation characteristics of the square of return. (Figure 3)

2.3. Scale calibration of intraday high frequency returns

Intraday high frequency information modelling is used because of the conjecture that
‘daily returns and intraday high-frequency returns may have a certain relationship’.
What is the relationship between daily return distribution and intraday high fre-
quency return distribution? First, descriptive statistics is performed on daily return
{»} and intraday return {r;;}. Based on the maximum and minimum values shown
in Table 1, the two seem ‘equal’, but from the 25% and 75% quantiles, the difference
between them is very big. The interquartile range of daily return (75% quantile-25%
quantile) is 1.2018, while the interquartile range of 5-minute return is only 0.1507.
The differences between their median and mean are also great. Further, as shown in
Figure 4, the difference between the kernel densities of daily return {y;} and 5-
minute return {r;;} is obvious. The daily return is ‘shorter and fatter’, the expansion
range is wider, and the maximum does not exceed 0.5, while the 5-minute returns
are mostly concentrated between —1 and 1, with the maximum being close to 4. This
scale difference is mentioned by Hallam and Olmo (2014a, 2014b). To establish the
relationship between the daily return and the 5-minute return, the 5-minute return
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Return squared and realized volatility
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Figure 3. The square of daily returns and realized volatility.

Source: compiled by authors with the help of R software

Table 1. Descriptive statistics of daily return and 5-minute return.

T
2000

Type Minimum 25% quantile Median Mean 75%quantile Maximum
Daily return —8.8729 —0.5650 0.0595 0.0026 0.6368 5.6036
5-min return —6.9193 —0.0735 0.0012 0.00001 0.0772 5.7431

Source: calculated by authors via R software.

Dally Returns
w <
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Figure 4. The kernel density of daily return and 5-minute return.

Source: compiled by authors with the help of R software
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should be rescaled so both returns have the same ‘scale’. Hallam and Olmo (2014a,
2014b) proposed rescaling methods for intraday returns for single-fractal and multi-
fractal scenarios; however, proving whether intraday returns follow single-fractal or
multi-fractal distribution is difficult. Therefore, this paper proposes different model-
ling ideas based on the central limit theorem.

As our return model adopts the logarithmic ‘closing price - closing price’ model,
the relationship between daily return and the intraday return is as follows:

N;
Y=Y i (4)
i=1

From Figure 2, except for the three time-points of opening and closing in the
morning, and closing in the afternoon, the intraday returns at other time-points can
be regarded as having the same ‘fluctuation pattern’. Therefore, the intraday returns
are assumed as independent and identically distributed (iid). According to the central
limit theorem, when N; is large enough, then

yi ~ N(N; - E(rei), Np- Var(rys)), (5)

where E(r1i) and Var(r,;) represent the mean and variance of the intraday returns,
and N(-) indicates normal distribution. As such, we only need to estimate the mean
and variance of intraday returns to construct the distribution of the daily returns.
E(r,i) can be estimated by sample mean, and Var(r;;) can be estimated by sample
variance, namely,

1
E(r,i) =~ i == Tt,i> (6)
-
Var(r,;) =~ S}, = N1 Z (Fei — Me,1)’- (7)

i=1

Here, N; is expected to be larger, but a larger N; indicates a shortened sampling
interval, which will be interfered with by microstructure noise. The use of a 5-minute
return means N; = 48. N, = 48 is considered ‘large enough’. The value of N; and the
iid assumption of the intraday returns may have some potential deviations. Therefore,
the above-mentioned normal distribution pattern of daily return y, may be regarded
as ‘information’ in the model construction, rather than the whole distribution of y;.

3. Models and methods

To investigate the impact of intraday high-frequency information on the distribution
of daily returns, parametric and nonparametric methods are both studied, based on
model comparison. There are three parametric models. The first is the EGARCH
model, which performs well, based on the literature. The second is the EGARCH-X
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model, which directly adds the realized volatility to the variance equation. The third
is the real GARCH model proposed by Hansen et al. (2012) and improved by Wang
and Huang (2012a). According to the literature, in the parametric models, the mean
equation is modelled through ARMA processing, and the residual distribution is set
as a skewed student’s t distribution (sstd) (Jiang & Gu, 2019).

The nonparametric model comprises two models: NP and reaINP. The NP model,
proposed by Harvey and Oryshchenko (2012), models the entire return distribution
rather than the first or second-order moments. The realNP model is this study’s
innovative model, which integrates intraday high frequency returns into the NP
model through scale calibration.

3.1. Parametric models

3.1.1. The EGARCH model

The EGARCH model allows leverage effects, removes non-negative constraints of the
parameters to be estimated, and is more flexible in estimation. Many documents have
shown that it has a good fitting effect on security returns. Owing to the above advan-
tages, increasing security empirical studies adopt it to perform modelling. The
EGARCH model with sstd residuals often performs relatively better. Therefore, it is
selected as the parametric benchmark model in this paper. As ARMA modelling of
the conditional mean may have certain benefits, the ARMA(1,1) is used to model the
conditional mean, and the overall model is expressed as follows:

Yy =U~+0y_1 + 01 + &,

&1 &1

lnht =w+ ﬁlﬂht_l + + v — >
) hi—1 ®)
iid )

i ~ {f(/hf/fh_) (e > 0) +fv</1\8/th_,> (e < 0)].

In the EGARCH model, y; represents the daily return, h, is the conditional hetero-
scedasticity of y;, and y is the leverage effect parameter. F;_; represents the informa-
tion set at time t-1, f,(-) represents the density function of the student t distribution
with the freedom degree v, 4 is the skewness coefficient, and I(-) represents the indi-
cative function.

t—1

3.1.2. The EGARCH-X model

High-frequency data has become increasingly accessible, which has led to many
‘realization’ metrics based on high-frequency data, and the realized volatility in
Section 2.2 is the traditional and most commonly used one. How is the realized vola-
tility integrated into the modelling of return distribution? As EGARCH has good per-
formance, the lagging realized volatility is included naturally as an ‘exogenous
variable’ to the conditional variance equation. The earliest research on this method
was by Engle (2002), which can be attributed to the GARCH-X model category
(Wang & Huang, 2012b). As the conditional variance in the EGARCH model is loga-
rithmic, here we take the logarithm of the realized volatility and add it to the
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conditional variance equation with one lagging period. The corresponding model is
called the EGARCH-X model, which is specifically expressed as follows:

Ve =1+ 0y_1 + Oy + &,
Inhy = @ + Bl + o= 49221 4 oInRV,_,

iid Vhir Vit )
olFs~ oy (o) 162 94 (o) 10 <)

where [nRV;_; represents the logarithm of realized volatility at time t-1, and other
symbol definitions are the same as those in the EGARCH model.

3.1.3. The realGARCH model

Wang and Huang (2012a) pointed out that the GARCH-X model, in which the real-
ized volatility is directly added to the variance equation, was not complete, because it
cannot explain the changes in the realized volatility. To improve this point, research-
ers began to explore the ‘complete’ model, such as the relatively simple and straight-
forward Realized GARCH model (abbreviated as real GARCH) proposed by Hansen
et al. (2012). In the model, a latent variable is used to realize the joint modelling of
returns, volatility, and realized volatility, and the measurement equation includes the
asymmetric response to shocks, that is, the leverage effect. Similar to the EGARCH
and EGARCH-X models, the ARMA(1,1) processing is considered to model the con-
ditional mean. The initial realGARCH model proposed by Hansen et al. (2012) has
norm distribution residuals. Owing to the widespread ‘fat tail’ phenomenon in finan-
cial time series, Wang and Huang (2012a) extended the model to fat tail distribution.
To examine the skewness of the residuals simultaneously, the residual distribution
should to be sstd, still denoted as real GARCH, which is described as follows:

Ve=1+ 0y + 01 +ep6 = Vhi -z,
Inhy = 0 + Plnh;_; + alnRV;_y,

iid
InRV; = &+ ¢lnh; + 1(z;) + up,uy ~ N(0, 62), (10)
iid 2
wlfr~ e {(N‘) (e 20)+1 (N‘) I(e < 0)}

where h; is called implied volatility. As h; and RV, are both measures of volatility,
the third equation of (10), also called the measurement equation, is equivalent to tak-
ing RV, as a measured value of h;. 7(z;) represents leverage function and is set to a
quadratic form as follows:

T(z) =mz + ’72( - 1) (11)

where 7, is required to be negative, to capture asymmetric effects, and Et(z;) = 0.
The model of Eq. (10) is essentially the same as that of Wang and Huang (2012a).
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3.2. Nonparametric models

3.2.1. The NP model

The basic idea of GARCH modelling entails modelling the conditional mean and con-
ditional variance of returns separately, and then assuming the distribution of residuals
to obtain the distribution forecast of returns. However, is the hypothetical form of
the model too strong? Will there be a bias in the model set? A natural idea is to dir-
ectly model the distribution (or density) as a whole. Nonparametric researchers have
proposed a series of prediction methods that directly target density and distribution
based on the kernel method. Harvey and Oryshchenko (2012) systematically proposed
a kernel-density estimation method for time series. For some time series, the cumula-
tive distribution function forecast can be expressed as follows:

Fiop(y) = oF g1 (y)+ (1 —w)H <y7t>,t =1,2,..,T. (12)

This is the recursive mechanism of the so-called NP model, which serves as a
benchmark for nonparametric models. Where F (+) represents the cumulative distribu-
tion function of the daily returns, H(-) is a kernel function in the form of a cumula-
tive distribution function, w(0 < w < 1) is a decay factor, and h is a bandwidth.
®, h are two parameters to be estimated, which can be realized by maximizing the
average predicted log-likelihood function. The average predicted log-likelihood func-
tion is

(w,h)

T—
=m

ZK(ytHh_yi> wt,i(w)]. (13)
i=1

Where T is the total sample size and m is a preset parameter. The practical proc-
essing is to use the initial m observations to estimate Fm‘m 1(¥), and then use Eq.
(13) to estimate the later F te-1(Y)> thus the evaluation is only performed on the last
T —m distribution. f (-) is the corresponding density function of the distribution
function F(-), and K() is the kernel function of the density form corresponding to
H(-). In this paper, the Gaussian kernel function is used to describe K(-), m = 50,
and the initial value of the bandwidth A is determined using a rule-of-thumb, namely,

h=105-S-T7, (14)

Here S represents the standard deviation of the return time series. The exponential
weighted moving average (EWMA) strategy is considered; as such, the weight func-
tion wy ;(w) is

Wt,i(w) = (15)
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3.3.2. The realNP model

Based on Section 2.3, the distribution of y; derived from the intraday information is
Ye ~ N(N; - E(r1,i), Ni-Var(ry;)), the cumulative distribution is denoted as Gi(y),
and the probability density function is denoted as g (y). The EWMA strategy is still
used, considering that the forecast distribution and density at time t+ 1 are not
only related to the daily return at time t but may also be related to the intraday
high-frequency return at time t; therefore, the distribution forecast at time t+1 is
revised to

Fiop(y) = oF g () + (1 — ) {ocH(%) +(1— oc)Gt(y)},t =1,2,..,T. (16)

The above formula is called the realNP model. Here 1 — o reflects the degree of
interpretation of intraday information on the distribution of daily return, and
(1 — ) - (1 — a) reflects the influence of intraday information on the distribution
forecast of the previous step. Therefore, the density forecast at time t+ 1 is modi-
fied to

t
Feone (1) = Z [“Kh (ytﬂh yl) +(1 - OC)gi(ym)] wy,i(w), (17)
i=1
wherein K, (*52) = IK(*52) = \/Zl_nh exp [— %@y’)z} The average predicted log-
likelihood function correspondingly becomes

=
/(w,h) = — Zlnftﬂlt(ytﬂ)
t=m

- T_l mi‘;ln{i [ocKh (”“T_y) +(1— O‘)gi()’t+l):| Wr,i(w)}

i=1

; (18)

wherein the calculation of w; ;(®w) is consistent with the NP model.

4, Empirical results

This section presents the relevant empirical results from the full-sample fitting, the
out-of-sample forecast of the rolling sample, the model combinations, and the eco-
nomic evaluation.

4.1. Parameter estimation and full-sample fitting results

First, all empirical samples from 2010 to 2017 are used for the five models. The max-
imum likelihood estimation is used to solve each model. Table 2 presents the relevant
parameter estimates. The EGARCH-X model directly adds the realized volatility into
the variance equation of EGARCH. The ¢ estimate of EGARCH-X is 0.1435 and is
significant at the 1% level, and the log-likelihood function value of EGARCH-X has
been raised from —2970.82 of EGARCH to —2953.04, indicating that the realized
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Table 2. Parameter estimation and fitting of full sample in the empirical period.

Model

Parameter EGARCH EGARCH-X realGARCH NP realNP

0 0.0189 0.0176 0.0043

o —0.8648%** —0.8563*** 0.1618

0 0.8782*%** 0.8735%** —0.1788

[0} 0.0022 0.0630*** 0.14271%** 0.9809 0.9751
o —0.0090 —0.0254 0.2950*** 0.6592
B 0.9946*** 0.8541%** 0.6882%**

v 0.1199%** 0.1564%**

A 0.9454*** 0.9473%** 0.9372%**

v 4.5900%** 4.6200%** 4.4978***

I 0.1435%*

13 —0.4571%%*

¢ 0.9914%**

ol 0.5231%**

m —0.1057*

n, 0.9914%**

h 0.5002 0.2563
LogL —2970.82 —2953.04 —4447 24 —2984.39 —2939.38

Note: (1) *** represents significant at the 1% level. (2) The same parameter of different models may have different
meanings, and the specific settings should be consistent with the previous model introduction. (3) LogL represents
the log-likelihood function values.

Source: calculated by authors via R software.

volatility does affect the change of conditional variance. The scale-calibrated daily
return distribution is derived from the intraday 5-minute return, and realNP directly
adds the scale-calibrated distribution into NP. The o estimate of realNP is 0.6592,
which means that the intraday 5-minute returns contribute 1 — o = 0.3408 = 34.08%
to the daily return distribution and only contribute (1 — @) - (1 — ) = 0.85% to the
previous step distribution forecast. At the same time, for realNP, due to the integra-
tion of high-frequency information, the bandwidth h is significantly smaller, from
0.5002 of NP to 0.2563, and the log-likelihood function value increases from
—2984.39 of NP to —2939.38. Comparisons of models EGARCH-X and EGARCH,
realNP, and NP indicate that the intraday high-frequency return effectively improves
the models’ fitting effect. The intraday return is part of the description of the daily
return distribution and the advance distribution forecast. The real GARCH model also
includes intraday volatility; however, its log-likelihood function value is significantly
lower than that of other models, which may be due to differences in its modelling
mechanism, compared to other models.

Leverage effects are all considered in the parametric models. From Table 2, the y
estimates of EGARCH and EGARCH-X are significantly positive and the #, estimate
of real GARCH is significantly negative at the 1% level. This proves the existence of
the leverage effect and indicates that the impact effect of negative returns on the
next-day volatility is greater than that of positive returns.

Further comparison of NP and realNP indicates that the intraday return influences
daily return distribution; however, the degree is less than expected. Its impact on the
daily return distribution only accounts for 1 — o = 34.08%, while the ‘single point’
realization y; accounts for o = 65.92%. The impact of intraday information on the
one-step-ahead distribution forecast is only (1 — ) (1 —a)=(1—0.9751)-
(1 —0.6592) = 0.85%. This result may be attributed to two reasons: (1) the scale of
intraday high-frequency returns is not properly calibrated, and (2) the intraday
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Figure 5. Intraday variance v.s. daily variance.
Source: compiled by authors with the help of R software.

returns are highly correlated with daily returns. Therefore, based on the f‘ ; Hlt(ytﬂ)
expression of Eq. (18), the ‘single point’ kernel density values of the daily return at
time T is denoted as follows:

d,—Kh()%) t=1,2,.,T—1. (19)

Then the intraday calibrated density values of the daily return at time T is denoted
as follows:

din[ = gt()’T) - (20)

B (yT—ﬂt,f] |

2nVar(ry ;) 2Var(r.,;)

The estimated result h = 0.2563 of realNP is substituted into the calculations of d;
and din;, then their Pearson correlation is calculated to obtain 0.6989, which means
that the intraday return calibration effect is good, and the calibrated intraday return
has a strong positive correlation with the daily return. In addition, the daily average
of intraday returns is defined as r = N%Zf\il 1, and its variance is
ot = Ntl_ 12?21 (r,,,-—rt)2 (short form intraday variance). Thereafter, the variance of
daily returns J; = (yi—7)° (short form daily variance) is defined, where
y = %Zthl y;. Figure 5 shows both the intraday and daily variances and that the two
variance-series fluctuate similarly. The Pearson correlation of the two variances is
0.5367. Again, it shows that our intraday data calibration effect is good. Therefore,
the intraday high-frequency return has a low impact on daily return distribution
mainly because most of the intraday information (din,) has been included in the
‘single point’ realization (d;) of daily return y;. Thus, for the distribution forecast of
ys, ding only complements d;. This indicated the rationality of realNP modelling.
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Table 3. Statistics of HL test in empirical period.

Statistic

Model M@, 1) M(2, 2) M(3, 3) M4, 4) M(1, 2) M2, 1) W
EGARCH —0.89 1.06 2.12 2.66 —1.46 2.98 12.36
EGARCH-X —1.32 —0.44 —0.10 —0.04 —1.57 0.88 11.81
realGARCH —2.00 —1.44 —0.89 —0.62 —2.16 —0.30 5.80
NP —0.24 13.58 28.61 36.48 5.87 2.57 75.90
realNP 1.10 21.05 41.49 52.25 9.86 4.84 70.97

Source: calculated by authors via R software.

4.2. Statistical evaluation of distribution forecast

Section 4.1 shows the impact of high-frequency information on the fitting of the daily
return distribution in a full sample. For both parametric and nonparametric methods,
integrating high-frequency information helps to improve the goodness of fit; however,
the impact of high-frequency information on the out-of-sample forecast may receive
more attention. The following sections present three statistical evaluation results of
the daily return distribution forecast. The three evaluations are probability integral
transformation (PIT) evaluation, score evaluation, and evaluation of marginal calibra-
tion and sharpness.

4.2.1. PIT evaluation

The years 2015, 2016, and 2017 are considered as the forecast interval, and the rolling
window width is set as Ty = 1208; thus, each model performs parameter estimation
and one-step-ahead forecast n =732 times. The return distribution forecast
Ftirl‘t(y)(i =1,2,...,5) can be obtained. As the realized value of the return at time
t+1 is yr41, the PIT sequence at time t+1 is

i & (1)
PIT£+>1 =Fp () (21)

If the model’s forecast result can well reflect the data generation process, the PIT
sequence should be independent and iid in the uniform distribution U(0, 1), which
is the probability calibration described in Gneiting et al. (2007).

There are two commonly used PIT tests: Berkowitz (2001)’s test (Berkowitz test
for short) and Hong and Li (2005)’s test (HL test for short). If all models pass or fail
the test, the Berkowitz test cannot be used to compare the advantages of the models.
However, the HL test can be used to compare the quality of the models by the
moment statistics M(i, j) and the W statistics; therefore, the HL test is adopted here.
Taking the lag order as 4, Table 3 lists statistics for the HL test of the five models,
and the significant values are emphasized in bold.

When the sample size is large enough, the statistics almost obey the standard nor-
mal distribution N(0, 1), and only the right-tail test is required. At the 5% signifi-
cance level, the critical value of N(0, 1) is 1.65. Based on M(j, j) in Table 3, it can be
concluded that the first four moments of EGARCH-X and realGARCH are correctly
specified, but for the W statistic, the five models reject the null hypothesis, that is,
the PIT sequence cannot be regarded as iid in U(0, 1). Comparing the W statistic, it
can be concluded that the order of the model from good to bad is real GARCH >
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Table 4. Score and ranking of five competitive models in the empirical period.

Model Bayesian Winner ~ Winner ranking  Average Log-score  Log-score ranking ~ CRPS  CRPS ranking
EGARCH 145 1 —1.9809 4 0.8952 4
EGARCH-X 98 3 —2.3626 5 1.0008 5
realGARCH 125 2 —1.5063 1 0.7582 1
NP 81 5 —1.8498 3 0.8697 3
realNP 91 4 —1.8205 2 0.8609 2

Source: calculated by authors via R software.

EGARCH — X > EGARCH > reaIlNP > NP. Once again, this proves that, real GARCH
and EGARCH — X with high-frequency information are better than EGARCH, and
realNP with high-frequency information, which in turn are better than NP. From a
forecasting perspective, the real GARCH model is the best, and it realizes both realized
volatility and ‘implicit volatility’ forecast modelling.

4.2.2. Score evaluation

In many documents, the scoring rule of the logarithmic score is considered as correct
and appropriate because of its many ideal attributes. The logarithmic score ranking of
each model at time t is compared, and the model ranked first at time t is called the
Bayesian winner. The more Bayesian winners are, the better the forecast performance
of the model. In addition, the mean logarithmic score reflects the average similarity
between the model forecasts and the observations. Furthermore, the Continuous
Ranking Probability Score (CRPS) proposed by Gneiting et al. (2007), a scoring met-
ric that considers sharpness, is also commonly used in the literature. Referring to Yao
et al. (2020), this article adopts three scoring indicators: the number of Bayesian win-
ners, average log score, and CRPS. Table 4 presents the relevant results. From the
number and ranking of Bayesian winners, EGARCH is significantly better than other
models, followed by real GARCH, EGARCH-X, realNP, and finally NP. From the
average log score and CRPS, the order of the models from good to bad is
real GARCH > realNP > NP > EGARCH > EGARCH-X. In general, realGARCH is the
best model.

4.2.3. Marginal calibration and sharpness

Marginal calibration and sharpness are distribution forecasting evaluation tools pro-
posed by Gneiting et al. (2007) that do not rely on nested models. Gneiting et al.
(2007) noted that the model should be calibrated for distribution prediction, espe-
cially for marginal calibration (Yao et al., 2021). Figure 6 shows the five models” mar-
ginal calibration diagrams. According to the calibration principle, the closer the
calibration value is to 0, the better the calibration effect. As in Figure 6, for the two
tails and the negative returns near zero, realGARCH, NP, and realNP have better
calibration than EGARCH and EGARCH-X, and EGARCH is better than
EGARCH-X. Within the 0% — 1% return range, NP and realNP show the worst
calibration effects, and, overall, real GARCH has the best calibration effects. This
may be due to the different modelling mechanisms and NP and realNP show great
inconsistency with the parametric models. Parametric and nonparametric models
exhibit ‘non-synchronization’ of marginal calibration. This inspired us to improve
the model through a combination.
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Figure 6. The marginal calibration plot during the empirical period.
Source: compiled by authors with the help of R software.

Table 5. Average width of forecasting intervals in the empirical period.

Interval and ranking EGARCH EGARCH-X realGARCH NP realNP
50% interval 2.1610 2.6525 1.5810 1.6778 1.6380
50% interval ranking 4 5 1 3 2
90% interval 4.9199 5.3761 4.3737 5.0320 4.8993
90% interval ranking 3 5 1 4 2

Source: calculated by authors via R software.

Gneiting et al. (2007) noted that the distribution prediction be sharper after model
calibration. The average widths of the 50% and 90% confidence intervals were used
to examine the sharpness; the smaller the interval width, the better the sharpness.
Table 5 presents the results, which indicate that for both 50% and 90% intervals,
real GARCH is the best, and the performance of realNP and NP is relatively good.

4.3. Model combinations and economic evaluation

As shown above, the marginal calibrations of different models are inconsistent, espe-
cially for the nonparametric models, which are different from the parametric models.
Following Yao et al. (2020), this study considers three linear dynamic combination
strategies: equal weight combination (EW), logarithmic score combination (SW), and
CRPS combination (CW). Such combinations are all ‘single-period’ weighting, that is,
the weight is calculated based on the forecast effect of one period only.

Next, an economic evaluation on the models is performed, as in Yao et al. (2020).
First, based on the return distribution, this study derives two point forecasts of
returns: mean and median, then compares the point forecasts with the realized values
of return to calculate the direction accuracy (DA), furthermore the PT test of Pesaran
and Timmermann (1992) is conducted to verify whether the returns are predictable.
Second, a simple simulated trading strategy is examined based on the direction fore-
cast under the short-selling situation, in which a virtual investor can sell short if the
forecast for the next period of return is positive. In that case, the trading strategy
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Table 6. Empirical direction accuracy and excess profitability of forecasts (unit: %).

Mean Median
Model DA Rate") Rate? DA Rate") Rate®
EGARCH 49.32 4.60 4.88 52.05 5.64** 5.92
EGARCH-X 49.04 —1.70 —1.56 51.64 2.18 246
realGARCH 48.63 —1.76 —1.46 51.78 0.99 1.28
NP 56.56 0.29 0.58 56.56 0.29 0.58
realNP 56.56 0.29 0.58 56.56 0.29 0.58
EW 54.92 —1.40 —1.11 56.14 1.20 1.49
SW 59.42%** 19.971%%* 20.14 56.97* 6.64%** 6.92
cw 58.20%** 7.71%%* 7.98 56.42 2.03* 232

Notes: (1) *, ", and ™" represent significant results at the 10%, 5%, and 1% confidence levels respectively. (2) The
ideal MTR in the short-selling case is 103.34%, and the ideal MTR in the non-short-selling case is 51.82%.
Source: calculated by authors via R software.

issues a buy signal; otherwise, it is a sell signal. Further, the ratio of the strategy
mean transaction return (MTR) to the ideal MTR, that is RateV), is calculated as in
Yao et al. (2020), and the EP test of Anatolyev and Gerko (2005) is conducted to test
excess profitability. Finally, according to the actual situation of China’s stock market,
the ratio of the strategy MTR to the ideal MTR is examined under the non-short-sell-
ing situation, that is Rate®, as in Yao et al. (2020). Table 6 shows the DA and eco-
nomic evaluation results of individual models and combined models. From Table 6,
all individual models and the EW model do not have significant predictability and
excess profitability, except EGARCH. However, the combined models: SW and CW,
behave differently. In the median case, the CW model shows excess profitability at
the 10% significance level. The SW model performs best, whether for mean forecast
or median forecast, and it shows direction predictability and significant excess profit-
ability in the short-selling situation. For non-short-selling, no suitable test for excess
profitability is employed; however, Rate!® > Ratel!) always holds. Therefore, we con-
clude that in the non-short-selling situation, the excess profitability of SW and CW
should also be significant.

5. Robustness test

The robustness test was performed from 4 January 2010 to 30 June 2021. The out-of-
sample prediction interval was from 2 January 2018 to 30 June 2021. The robustness
test includes the models’ parameter estimations—especially the parameter estimation
of the realNP model—the statistical distribution forecasting evaluation of the five
individual models, and the model combination and economic evaluation.

The parameters of the five individual models were estimated using data from 4
January 2010 to 30 June 2021, and the results are shown in Table 7. A comparison
between Table 2 and Table 7 shows a small difference between the two. Except for o
and 0 of real GARCH, other parameter estimates have the same signs. Regarding sig-
nificance, ¢ and 0 of real GARCH changed from insignificant in Table 2 to significant
in Table 7. The significance of y of EGARCH-X changed from 1% significance in
Table 2 to 5% significance in Table 7. Furthermore, we can draw several conclusions
similar to the empirical period, such as EGARCH-X with intraday information fits
better than EGARCH; realNP with intraday information fits better than NP; and
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Table 7. Parameter estimation and fitting of full-sample in the robustness test period.

Model

Parameter EGARCH EGARCH-X realGARCH NP realNP

0 0.0224 0.0181 0.0055

o —0.9085*** —0.9061*** —0.9170%**

0 0.9221%** 0.9226*** 0.9235%**

[0} 0.0034 0.1399*** 0.15571%** 0.9827 0.9766
o —0.0111 —0.0317 0.3103%** 0.6506
B 0.9910%** 0.6943*** 0.6684***

Y 0.1334%** 0.1122%*

A 0.95371%** 0.9556*** 0.9438***

v 4.4634%** 4.5712%** 4.6276***

I 0.2788%**

£ —0.4707%**

¢ 0.9793%**

ol 0.5295%**

m —0.1005%**

n, 0.1237 ***

h 0.5214 0.2701
LogL —4248.20 —4212.05 —6407.13 —4308.36 —4250.45

Note: ** and *** represent significant at the 5% and 1% levels, respectively.
Source: calculated by authors via R software.

Table 8. Score and ranking of five competitive models in the robustness test period.

Model Bayesian Winner ~ Winner ranking  Average Log-score  Log-score ranking ~ CRPS  CRPS ranking
EGARCH 130 4 1.5071 2 0.6256 2
EGARCH-X 98 5 —1.5200 3 0.6415 4
real GARCH 145 3 —1.4915 1 0.6214 1
NP 163 2 —1.7317 5 0.6450 5
realNP 312 1 —1.7016 4 0.6395 3

Source: calculated by authors via R software.

intraday information improves the goodness-of-fit. In realNP, intraday information
explains 1 — o =34.94% of the current day’s return and contributes (1 — ) -
(1 —a)=(1-0.9766) - (1 —0.6506) = 0.82% to the one-step-ahead return distribu-
tion, which is also consistent with the conclusion of the empirical period.

Considering the generality of the score evaluation and its relation with the model
combination, the robustness test of the statistical forecast evaluation is only con-
ducted from the score evaluation. Table 8 shows the score evaluation results of the
daily return distribution forecast from 2018 to 2021. Comparing Table 4 and Table 8,
for the Bayesian winner, the nonparametric models perform worse than the paramet-
ric models during the empirical period; however, in the robustness test period, the
nonparametric models are significantly better than the parametric models. Regarding
average log score and CRPS, the nonparametric models are, overall, inferior to the
parametric models during the robustness test period, which differs from the results in
the empirical period. The above-mentioned ‘non robustness’ confirms the necessity of
joint modelling of parametric and nonparametric models. However, some commonal-
ities also exist. Overall, it real GARCH is considered as relatively optimal. Regardless
of the kind of evaluation, realNP is always better than NP.

Similar to Section 4.3, the model combination and economic evaluation are investi-
gated in the robustness test period, and the relevant results are shown in Table 9.
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Table 9. Direction accuracy & excess profitability of forecasts for robustness test (unit: %).

Mean Median
Model DA RateV Rate? DA Rate( Rate?
EGARCH 50.83 5.05 6.12 51.30 1.89 3.00
EGARCH-X 52.00 7.49% 8.54 51.65 3.94" 5.02
real GARCH 51.06 5.03 6.11 50.83 —3.03 —1.87
NP 4835 —1.14 0.21 51.56 1.20 2.26
realNP 48.55 —1.04 0.25 51.65 1.34 242
EW 50.71 9.06** 10.09 51.77 2.23 3.34
SW 51.06 7.47* 8.52 51.42 1.21 232
cw 52.00 12.21%%% 13.20 51.77 2577 3.67

Notes: (1) *, ™, and ™™~ represent significant results at the 10%, 5%, and 1% confidence levels, respectively. (2) The
ideal MTR in the short-selling case is 85.06%, and the ideal MTR in the non-short-selling case is 43.02%.
Source: calculated by authors via R software.

From Table 9, all individual models and combined models have no significant direc-
tion predictability, but the DA of combined models is generally better than that of
individual models, which is consistent with the results during the empirical period
reflected in Table 6. During the robustness test period, SW, the best-performing com-
bination during the empirical period, exhibits excess profitability only in the mean
case, at the 10% level, but it is not as good as EW. Further, CW exhibits significant
excess profitability, both in the mean and median cases. In addition, the excess profit
in the non-short-selling situation all exceeds the short-selling situation, which is con-
sistent with the conclusion in the empirical period, meaning the non-short-selling
rule may have a protective effect on investors.

6. Conclusions

The daily return distribution forecast with intraday trading information is examined,
using the Shanghai Composite Index in China’s stock market as the research object.
The intraday information is reflected by the 5-minute closing price and is integrated
into the daily return model using two methods: realized volatility and intraday scale
calibrated return. From both parametric and nonparametric perspectives, the quanti-
tative impact of intraday high-frequency information on daily returns is studied
through model comparison.

The full sample fitting results show that, (1) the intraday high-frequency informa-
tion improves the goodness-of-fit. (2) A comparison of the NP and realNP models
shows that the intraday return can only contribute about a 30% description of the
daily distribution, and it can only provide less than 1% of the information for the
one-step-ahead distribution forecast. This is attributed to the scale calibrated intraday
return that is closely related to the daily return and it reflects that our scale calibra-
tion of intraday returns is good.

The statistical evaluation of out-of-sample forecasting shows that, (1) high-fre-
quency information helps to improve the forecasting effect. (2) Under different evalu-
ation criteria, the model ranking is different. Overall, the real GARCH model is
relatively the best. The inconsistency in the performance of parametric and nonpara-
metric models implies the necessity for combinatorial modelling.
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The implementation of three model combination strategies: EW, SW, and CW, as
well as economic evaluation reveal that individual models often do not have signifi-
cant predictability and excess profitability; however, the combined models behave dif-
ferently, that is, the three combinations sometimes demonstrate directional
predictability and excess profitability. SW and CW perform best in the empirical and
robustness test periods, respectively. The excess profit in the non-short-selling situ-
ation is always more than that in a short-selling situation, which implies that the
non-short-selling rule has a protective effect on investors.

This study only researches China’s stock market; however, it can provide referen-
ces to the forecast modelling of the stock market in other countries, mainly in the
scale calibration, model comparison, and model combination methods. This study still
has some shortcomings, for instance, (1) there are many ways to measure realized
volatility, but this study only uses the most traditional one, and does not make other
attempts and comparisons, such as the generalized realized measures proposed by
Jiang et al. (2018) and Jiang and Gu (2019). (2) The difference in the processing
mechanism the deduced intraday scale calibration effect cannot be compared with
that of Hallam and Olmo (2014a, 2014b). (3) The modelling of realNP lacks rigorous
mathematical proof, and (4) no suitable method is selected to conduct a statistical
test on the excess profitability of the non-short-selling situation.
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