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The Szeged index is a molecular structure descriptor equal to the sum of products nu(e | G) ⋅
n
n
(e | G) over all edges e = (uv) of the molecular graph G, where nu(e | G) is the number of ver-

tices whose distance to vertex u is smaller than the distance to vertex v, and where nv(e | G) is

defined analogously. We now examine the edge version of the Szeged index: the sum of prod-

ucts mu(e | G) ⋅ mv(e | G) over all edges e = (uv) of the molecular graph G, where mu(e | G) is

the number of edges whose distance to vertex u is smaller than the distance to vertex v, and

where mv(e | G) is defined analogously. The basic properties of this novel structure descriptor

are established. Most of these are analogous to the properties of the ordinary Szeged index, but

some remarkable differences are also recognized.
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INTRODUCTION

In Harold Wiener’s seminal paper1 a method is proposed

for computing the structure-descriptor W (that nowadays

is known under the name Wiener index). Wiener’s

method can be expressed by means of the formula

W(G) = n e n eu
e

( (| |G) G);⋅∑ n
G acyclic. (1)

The meaning of the symbols used in Eq. (1) is explained

in due detail a few lines below.

Formula (1) may be viewed as the first theorem in

the theory of the Wiener index (and probably as the first

theorem for any molecular structure descriptor). Although

Wiener’s paper1 was much quoted, his result (1) remain-

ed unnoticed for many years and seems to be first time

explicitly stated (and proved) in the book.2

Formula (1) is valid for acyclic (molecular) graphs.

One obvious question is what would happen if one would

apply it to cyclic graphs. Research along these lines led

to the concept of Szeged index.3

We now provide the necessary definitions.

Let G be a (molecular) graph2,4 possessing n verti-

ces and m edges. If e is an edge of G, connecting the ver-

tices u and v, then we write e = (uv). If G is a connected

graph and x and y are two of its vertices, then the dis-

tance d(x,y) = d(x,y | G) between the vertices x and y is

equal to the length of the shortest path that connects them

in G. The Wiener index W(G) of a connected graph G is

equal to the sum of distances between all pairs of ver-

tices of G.

Let e = (u,v) be an edge of the graph G. The number

of vertices of G whose distance to the vertex u is smaller

than the distance to the vertex v is denoted by nu(e) =

nu(e | G). Analogously, nv(e) = nv(e | G) is the number of

vertices of G whose distance to the vertex v is smaller

than the distance to the vertex u. Note that vertices

equidistant to u and v are not counted.
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By this, the meaning of all symbols occurring in Eq.

(1) has been clarified. In Eq. (1) the summation goes

over all edges of the graph G.

As already mentioned, Eq. (1) is valid only for trees

(= connected acyclic graphs). A proper generalization of

this equation was to conceive a new quantity,3 denoted

here by Szv = Szv(G):

Sz
n
(G) = n e n eu

e

( (| |G) G);⋅∑ n
G any graph (2)

so that, by definition, Eq. (2) holds for all graphs. The

new molecular structure descriptor was eventually nam-

ed5 the Szeged index (and denoted by Sz), but for rea-

sons explained below we refer to it as the vertex-Szeged

index. It could be shown3,5–8 that Szv possesses mathe-

matically non-trivial and chemically interesting properties;

details of the theory and applications of the vertex-Sze-

ged index can be found in the review9 and book.10

Motivated by the success of the Szeged index, Kha-

dikar proposed a seemingly similar molecular structure

descriptor,11 that in what follows we call the edge-PI index.

In analogy with Eq. (2), the edge-PI index is defined as

PIe = PIe(G) = [ ]m e m eu
e

( (| |G) + G)
n∑ (3)

where the quantities mu(e | G) and mv(e | G) are the edge-

variants of the numbers nu(e | G) and nv(e | G). More

precisely: if e' = (st) is an edge and x a vertex of the

(connected) graph G, then the distance between e' and x

is equal to min {d(s,x), d(t,x)}. Then for e = (uv) being

an edge of the graph G, mu(e) = mu(e | G) is the number

of edges of G whose distance to the vertex u is smaller

than the distance to the vertex v. Analogously, mv(e) =

mv(e | G) is the number of edges of G whose distance to

the vertex v is smaller than the distance to the vertex u.

Note that edges equidistant to u and v are not counted.

For the theory and applications of the edge-PI index see

the papers12–14 and the references quoted therein.

Quite recently the vertex-version of the PI index was

also considered,15 defined as

PI
n

= PI
n
(G) = [ ]n e n eu

e

( (| |G) + G)
n∑ . (4)

There is an evident symmetry between Eqs. (3) and

(4), namely Eq. (3) may be viewed as the edge-version,

whereas Eq. (4) as the vertex-version of the PI index. Fol-

lowing an analogous reasoning, we may understand Eq.

(2) as the vertex-version of the Szeged index, and then

its edge-version is readily conceived:

Sze(G) = m e m eu
e

( (| |G) + G)
n∑ . (5)

The purpose of this work is to examine this edge-

Szeged index and establish its main properties.

THE EDGE-SZEGED INDEX OF TREES

Recalling the well known relation3

Sz
n
(T) = W(T) (6)

that holds for any tree T, and the fact that a tree with n

vertices has n–1 edges, it is easy to find the expression

for the edge-Szeged index of a tree, analogous to Eq.

(6). Indeed, because for any edge e = (uv), mu(e | T) =

nu(e | T) – 1 and mv(e | T) = nv(e | T) – 1, we have

Sze(T) =
e

∑ [nu(e | T) – 1] [nv(e | T) – 1] =

Szv(T) –
e

∑ [nu(e | T) + nv(e | T) – 1] .

In the case of trees (and, in general, of any n-vertex

bipartite graph),3 nu(e | T) + nv(e | T) = n, and therefore

Sze(T) = Szv(T) – n(n – 1) + (n – 1)

which, in view of Eq. (6), finally yields

Sze(T) = W(T) – (n – 1)2 . (7)

Formula (7) can be written also in the form

Sze(T) = W(T) – W(Sn) (8)

where Sn denotes the n-vertex star2,4 (whose Wiener in-

dex is known16 to be equal to (n–1)2). From (8) it imme-

diately follows that the edge-Szeged index of the star is

equal to zero.

In fact, if G is any simple connected graph (with at

least two vertices), then Sze(G) = 0 if and only if G is a

star. To see this, observe that the product nu(e) ⋅ nv(e), oc-

curring on the right-hand side of Eq. (5), is either positive

or equal to zero. It is equal to zero only if either nu(e) = 0

or nv(e) = 0, which only happens if e is a pendent edge

(an edge, one of whose vertices has degree 1). Therefore,

Sze(G) = 0 if only if all edges of the graph G are pendent,

which in the case of connected graphs implies that all

vertices of G, except one, are of degree 1. Evidently, the

star is the only graph satisfying such a requirement.

By the above analysis we established a noteworthy

property of the edge-Szeged index: it represents certain

structural features of the internal edges (i. e., of the

non-pendent edges) of a (molecular) graph, whereas

pendent edges make no contribution to Sze. This seems

to be a significant difference in the structure-dependency

of the vertex- and edge-versions of the Szeged index.

SOME FURTHER EXAMPLES

Directly from the definition (5), we calculate expressions

for edge-Szeged index of the the n-vertex complete graph

(Kn), the complete bipartite graph (Ka,b) on a + b verti-
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ces, and the n-vertex cycle (Cn). For comparative rea-

sons we report also the respective expressions6 for the

vertex-Szeged index.

Sze(Kn) =
1

2
1 3n n( )− ; Szv(Kn) =

1

2
1n n( )− (9)

Sze(Ka,b) = ab (a – 1) (b – 1) ; Szv(Ka,b) = (ab)2.

In particular, if n = a + b is even, then

Sze(Kn/2,n/2) =
1

16
n2 (n – 2)2 ;

Szv(Kn/2,n/2) =
1

16
n4 (10)

whereas if n = a + b is odd, then

Sze(K(n–1)/2,(n+1)/2) =
1

16
(n – 1)2 (n + 1) (n – 3) ;

Szv(K(n–1)/2,(n+1)/2) =
1

16
(n2 – 1)2 . (11)

If n is even, then

Sze(Cn) =
n

n
−


 


2

2

2

; Szv(Cn) =
n

n
2

2

 


 .

If n is odd, then

Sze(Cn) =
n

n
−


 


1

2

2

; Szv(Cn) =
n

n
−


 


1

2

2

.

It has been shown7 that among n-vertex graphs,

the complete bipartite graph Kn/2,n/2 (if n is even) or

K(n–1)/2,(n+1)/2 (if n is odd) has the greatest vertex-Szeged

index. By comparing the formulas (9), (10), and (11) we

see that this cannot be the case with the edge-Szeged in-

dex, since Sze(Kn) is greater than the edge-Szeged index

of any n-vertex complete bipartite graph.

At this point we put forward the following:

Conjecture. The complete graph Kn has the greatest

edge-Szeged index among all n-vertex graphs.

EDGE-SZEGED INDEX OF BENZENOID

SYSTEMS

The vertex-Szeged index of benzenoid systems can be

computed by considering its elementary (or orthogonal)14

cuts. An elementary cut is a line segment that starts at

the center of a peripheral edge of a benzenoid system B,

goes orthogonal to it and ends at the first next peripheral

edge of B. Details on elementary cuts can be found else-

where.8,14,17–20 In what follows we denote an elementary

cut by C and the number of edges that its intersects by

|C |.

The formula for the vertex-Szeged index of a benze-

noid system B reads:8

Szv(B) =
C

∑ |C |n1(C) ⋅ n2(C) (12)

where n1(C) and n2(C) are numbers of vertices lying on

the two sides of the elementary cut C, and where the

summation goes over all elementary cuts of B. Note

that8 n1(C) + n2(C) = n for all elementary cuts.

By means of a reasoning that is fully analogous to

what was used8 for the derivation of formula (12), we

obtain

Sze(B) =
C

∑ |C | m1(C) ⋅m2(C) (13)

where now m1(C) and m2(C) count the edges on the two

sides of C. A minor difference between Eqs. (12) and

(13) is that the sum m1(C) + m2(C) is not independent of

the cut C. Indeed, m1(C) + m2(C) + |C | = m, because the

edges of B either lie on one or on the other side of the

elementary cut C, or are intersected by C.

Eq. (13) makes the calculation of the edge-Szeged

index of benzenoid systems rather easy. Instead of illu-

strating this by some simple examples, we state the ge-

neral expression for the relation between the edge- and

vertex-Szeged indices of a catacondensed benzenoid sy-

stem possessing h hexagons:

Sze =

1

16
25 5 1 60 21 40 8 42 3Sz h h h C Cv

C C

− + + − + +






∑ ∑( )( ) ( ) | | | | .

(14)

Formula (14) may serve as a convincing illustration of

the fact that the vertex- and the edge-Szeged indices of

polycyclic molecular graphs have quite different struc-

ture-dependence, and thus reflect different structural fea-

tures of the underlying molecules. This observation may

be a motivation for applying Sze (in addition to Szv)
10 in

molecular-structure-descriptor-based QSPR/QSAR studies.

As a final remark we mention that formula (13), as

well as formula (12), is applicable not only to benzenoid

systems, but also to phenylenes21,22 and other related

polycyclic molecular graphs.
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SA@ETAK

Ina~ica Szegedskog indeksa zasnovana na bridovima grafa

Ivan Gutman i Ali Reza Ashrafi

Szegedski indeks je molekulski strukturni deskriptor jednak zbroju produkata nu(e | G) ⋅ nv(e | G) preko

svih bridova e = (uv) molekulskog grafa G, gdje je nu(e | G) broj vrhova ~ije je rastojanje od vrha u manje nego

rastojanje od vrha v, i gdje je nv(e | G) definiran analogno. U ovom radu istra`ujemo ina~icu Szegedskog indek-

sa zasnovanu na bridovima grafa: zbroj produkata mu(e | G) ⋅mv(e | G) preko svih bridova e = (uv) molekulskog

grafa G, gdje je mu(e | G) broj bridova ~ije je rastojanje od vrha u manje nego rastojanje od vrha v, i gdje je

mv(e | G) definiran analogno. Ustanovljena su osnovna svojstva ovog novog strukturnog deskriptora. Mnoga od

njih su analogna onima obi~nog Szegedskog indeksa, ali postoje i zna~ajne razlike.
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