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Relationship between the topological indices and cyclin-dependent kinase-1 (CDK-1/cyclin B)

inhibitory activity of 6-phenyl�5H�pyrrolo�2,3-b�pyrazines (aloisines) was investigated. Three

topological indices – the Wiener Index, a distance-based topological descriptor, the Zagreb

group parameter, an adjacency based topological descriptor, and the eccentric connectivity in-

dex, an adjacency-cum-distance based topological descriptor were used in the study. A data set

comprising 51 analogues of aloisine was selected for the present study. Values of the Wiener

index, the Zagreb group parameter and the eccentric connectivity index for each of the 51 ana-

logues included in the data set were computed using an in-house computer program. Resultant

data was analyzed and suitable models were developed after identification of active ranges. A

biological activity was then assigned to each compound using these models, which was then

compared with the reported CDK-1 inhibitory activity. Accuracy of prediction using these mo-

dels was found to vary from a minimum of � 82 % to a maximum of 84 %.
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INTRODUCTION

Ways of the action of drugs in the organism as well as

the relationships between the action and structure of

drugs were the subject of consideration of many au-

thors.1 Crum-Brown and Frazer were the first to inexora-

bly claim that the physiological action of a drug mole-

cule is a function of its chemical structure.2 Structure-

activity relationships (SARs) are models that attempt to

relate certain structural aspects of molecules to their

physicochemical/biological/toxicological properties.3 The

main problem in this area, however, was the develop-

ment of easily calculable parameters encoding sufficient

structural information useful in the prediction of proper-

ties. Molecular topology has been shown to be an excel-

lent tool for a quick and accurate prediction of physico-

chemical and biological properties.4–9 The last three de-

cades of the twentieth century witnessed many important

developments in the formulation of concepts for the cha-

racterization of molecular structure using mathematical

invariants.10–11 Many of these contributions originated

from applications of graph theoretical and topological

concepts to chemical structure. A graph G = �V, E� con-

sists of an ordered pair, where V represents a nonempty

set of vertices and E symbolizes a set of edges.12 When

V represents the set of atoms in a molecule and E repre-

sents the set of bonds in the molecule, graph G becomes

a molecular graph.

Mathematical characterization of graphs, including

molecular graphs, can be accomplished using graph in-

variants. A graph invariant is a graph theoretical prop-

erty that has the same value for isomorphic graphs.12–13
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A graph invariant may be a polynomial, a sequence of

numbers or a single number. A single real number char-

acterizing a molecular graph is usually called a topologi-

cal index (TI). A particular TI quantifies certain aspects

of molecular structure and is sensitive to chemically in-

teresting features such as size, shape, symmetry, branch-

ing, cyclicity, heterogeneity of atomic neighbourhoods,

branching patterns, etc.13 Their advantage over the »tra-

ditional« molecular descriptors used in the so-called

Hansch Analysis14 or the descriptors derived from the

quantum chemical approaches is that they are easily

available and can be easily computed for the existing or

for virtual structures. Although a number of topological

indices have been reported, only a few have been suc-

cessfully employed in SAR studies. Hosoya’s index,15–16

Randic’s molecular connectivity index, �,17–18 the higher-

order connectivity indices, n�, for the paths of length n

defined by Kier and Hall,4 Balaban’s index, J,19–22 Wie-

ner’s index,23–24 Zagreb group parameters, M1 and M2,
25

eccentric connectivity index26–28 are some of the topo-

logical indices used in SAR studies.

Cyclin-dependent kinases (CDKs) are Ser/Thr pro-

tein kinases that become active when they associate with

their respective cyclin subunits. Cyclins are so called be-

cause of their characteristic pattern of appearance and

disappearance during the cell division cell cycle.29 Pro-

tein kinases catalyze the phosphorylation of serine,

threonine and tyrosine residues of proteins, using ATP or

GTP as the phosphate donor. Protein phosphorylation is

considered to be one of the main post-translational me-

chanisms used by cells to finely tune their metabolic and

regulatory pathways.30 Protein kinases and their counter-

parts, protein phosphatases, appear to be involved in

most diseases. Screening for potent and selective inhibi-

tors has therefore intensified over the past few years.31

CDKs were originally studied for their cell cycle func-

tions. The orderly cell cycle progression is ensured by

activation and deactivation through CDK phosphorylati-

on of various tumour suppressor proteins (e.g., the reti-

noblastoma protein), transcription factors (e.g., E2F/DP1)

and many other proteins important for DNA replication

and cell division. CDKs are themselves tightly regulated

through association with tumour suppressor proteins

such as p16INK4a, p21WAF1 and p27KIP1, by subcellular

localization or by post-translational modification. In nor-

mal cells, progression from one phase of the cycle to the

next can be initiated only after passage through check-

points, where correct completion of the preceding steps,

e.g., faithful DNA replication at the end of S phase, is

verified. If the steps have not been properly executed,

the cell undergoes apoptosis (programmed cell death).

Tumour cells possess faulty checkpoints and can prolif-

erate despite a compromised genome. Mechanisms by

which transformed cells can override checkpoints are of-

ten closely related to the CDK function.32 For this rea-

son, restoration of cell cycle control through pharmaco-

logical inhibition of CDKs was actively pursued over

the last decade as a new strategy for cancer treatment.33

More recently, however, it has become clear that CDKs

are involved in many other cellular processes, including

regulation of transcription, differentiation, cell death,

neuronal functions and neurodegeneration, transcription

and exocytosis.29, 34–38

Inhibition of cyclin-dependent kinases (CDK) as re-

gulating enzymes within the cell cycle resulted in anti-

proliferative effects and made them an interesting target

for the development of novel small-sized cytostatics for

combined cytostatic therapies.39–41 From the various

subtypes of CDKs, the most important explored targets

in cancer therapy have been CDK-1, -2, and -4.42 All

these enzymes were inhibited by nonselective flavopiri-

dol, which is presently undergoing phase II clinical tri-

als.43 The present CDK inhibitors are either nonselective

or show inhibition profiles toward various CDK sub-

types such as CDK-1, -2, and -5 and CDK-4 and -6.42

Despite intense efforts, no specific CDK inhibitor has

been discovered to date.43

In the present study, the relationship of the Wiener

index, a distance-based topological descriptor, the Zag-

reb group parameter, an adjacency-based topological

descriptor, and the eccentric connectivity index, an adja-

cency-cum-distance based topological descriptor with

CDK-1 inhibitory activity of 6-phenyl�5H�pyrrolo�2,3-

b�pyrazines (aloisines) has been investigated and suit-

able models have been developed for prediction of bio-

logical activity.

METHODS

Calculations of Topological Indices

The Wiener index,44–49 a well-known distance-based topo-

logical index, is defined as the sum of the distances be-

tween all pairs of vertices in a hydrogen-suppressed molec-

ular graph:

W = 1 / 2 P
i

n

ij

�
��

�
�

	



�

1

(1)

where Pij is the length of the path that contains the least

number of edges between vertex i and vertex j in graph

G and n is the maximum possible number of i and j.

The Zagreb group parameter M1 proposed by Gut-

man et al.50–51 is defined as the sum of squares of the de-

gree over all vertices and is represented by the following

equation:

M1 = � 
Vi

i

n
2

1�
� (2)

where Vi is the degree of vertex i in a hydrogen-suppres-

sed molecular structure. The vertex degree Vi for a ver-
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tex i is given as the sum of entries in a row i of the adja-

cency matrix.

The eccentric connectivity index52 denoted by �c is

defined as the summation of the product of eccentricity

and the degree of each vertex in the hydrogen suppres-

sed molecular graph having n vertices:

�c = � 
E Vi i

i

n

�
�

�
1

(3)

where Vi is the degree of vertex i, Ei is the eccentricity

of vertex i and n is the number of vertices in graph G.

The eccentricity Ei of a vertex i in a graph G is the path

length from vertex i to vertex j that is farthest from i (Ei

= max d(ij); j�G); the eccentric connectivity index takes

into account the eccentricity as well as valency of the

vertices in a hydrogen-suppressed graph.

MODEL DEVELOPMENT

A data set30 comprising 51 analogues of 6-phenyl�5H�-
pyrrolo�2,3-b�pyrazines (aloisines) was selected for the

present study. The basic structure for these analogues is

depicted in Scheme 1 and various substituents are listed

in Table I. The data set includes both active and inactive

compounds.

The values of the Wiener index were computed for

each analogue using an in-house computer program. For

the selection and evaluation of range specific features,

exclusive activity ranges were discovered from the fre-

quency distribution of the response level. Resultant data

was analyzed and a suitable model was developed after

identification of active ranges by maximization of the

moving average with respect to active compounds.53

Each analogue was then assigned a biological activity,

which was compared with the reported CDK-1 inhibi-

tory activity. CDK-1 inhibitory activity was reported qu-

antitatively as IC50 values at different concentrations.

The analogues possessing IC50 values of < 2 �mol dm–3

were considered to be active and analogues possessing

IC50 values of � 2 �mol dm–3 were considered to be inac-

tive for the purpose of the present study. The degree of pre-

diction, expressed in percents, of a particular range was de-

rived from the ratio of the number of compounds predicted

correctly to the total number of compounds present in that

range. The overall degree of prediction was derived from

the ratio of the total number of compounds predicted cor-

rectly to that of the total number of compounds present in

both the active and inactive ranges.

The aforementioned procedure was similarly adop-

ted for the Zagreb group parameter M1 and the eccentric

connectivity index, �c. The results are summarized in

Tables I to IV.

RESULTS AND DISCUSSION

Efficient discovery and creation of novel drug molecules

depend on the ability to explore and quantify the rela-

tionships between the molecular structure and function,

notably the biological activity. The inherent problem in

the development of a suitable correlation between chem-
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Scheme 1.

TABLE I. Relationship of the Wiener index, W, the Zagreb group parameter, M1, and the eccentric connectivity index, �c, with CDK-1 inhibi-
tory activity(a)

Compd.

No.
R2 R3 R5 R7 Ar W M1 �c

CDK-1 inhibitory activity

Predicted Reported

W M1 �c

1. H H H H 2-furyl 293 76 177 � � � �
2. H H H H 2-thienyl 293 76 177 � � � �
3. H H H H 3-thienyl 293 76 177 � � � �
4. H H H H 2-pyridyl 361 80 211 � � � �
5. H H H H Phenyl 361 80 211 � � � �
6. H H H H 1-naphthyl 667 106 309 � + � �
7. –C4H4– H H Phenyl 697 106 339 � + + �
8. H H H H Phenyl 435 86 244 � � � �
9. H H H H 1-(4-chlorophenyl)-

cyclopropyl

686 110 329 � � � �

10. H H H H 2-methoxyphenyl 501 90 239 � � � �

(cont.)
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11. H H H H 2-hydroxyphenyl 423 86 224 � � � �
12. H H H H 3-methoxyphenyl 519 90 264 � � � �

13. H H H H 3-hydroxyphenyl 432 86 226 � � � �
14. H H H H 4-methoxyphenyl 537 90 289 � � � �
15. H H H H 4-hydroxyphenyl 441 86 249 � � � +

16. H H H H 3,5-dimethoxyphenyl 697 100 296 � � � �
17. H H H H 3,4,5-trimethoxyphenyl 905 110 353 + � + �
18. H H H H 4-flourophenyl 441 86 249 � � � �
19. H H H H 4-chlorophenyl 441 86 249 � � � +

20. H H H H 3,5-dichlorophenyl 507 92 241 � � � �
21. H H H H 4-bromophenyl 441 86 249 � � � �
22. H H H H 4-triflouromethylphenyl 735 104 327 � + � �
23. H H H H 4-cyanophenyl 537 90 289 � � � �
24. H H H H 4-methylphenyl 441 86 249 � � � �
25. H H H H 4-(2-dioxolyl)-phenyl 866 110 396 + � � �
26. H H H H 4-dimethylaminophenyl 635 96 308 � � � �
27. H H H CH3 4-methoxyphenyl 606 96 304 � � � +

28. H H H CH3 4-hydroxyphenyl 502 92 262 � � � +

29. H H H H 3,4-dimethoxyphenyl 793 106 336 + + + +

30. H H H CH3 4-chlorophenyl 502 92 262 � � � +

31. H H H CH3 4-dimethylaminosulfa-

moylphenyl

1274 124 465 � � � +

32. H H H (CH2)2CH3 4-methoxyphenyl 799 104 340 + + + +

33. H H H (CH2)2CH3 4-hydroxyphenyl 676 100 294 � � � �
34. H H H CH2�CH=CH2 4-methoxyphenyl 799 104 340 + + + +

35. H H H (CH2)2CH2Cl 4-methoxyphenyl 925 108 378 + + + +

36. H H H CH(CH3)2 4-methoxyphenyl 782 106 338 + + + +

37. H H H CH(CH3)2 4-chlorophenyl 660 102 292 � + � +

38. H H H (CH2)3CH3 4-methoxyphenyl 925 108 378 + + + +

39. H H H (CH2)3CH3 4-hydroxyphenyl 791 104 328 + + � +

40. H H H (CH2)3CH3 4-chlorophenyl 791 104 328 + + � +

41. H H H (CH2)6CH3 4-methoxyphenyl 1433 120 521 � � � �
42. H H H CH2�C3H5 4-methoxyphenyl 906 116 379 + � + +

43. H H H CH2�C3H5 4-hydroxyphenyl 773 112 329 � � � �
44. H H H CH2�C6H5 H 1006 118 380 � � � �
45. H H H CH2�C6H5 4-chlorophenyl 1150 124 426 � � � �
46. H H H CH2�C6H11 4-methoxyphenyl 1317 128 481 � � � �
47. H H H CH2�C6H11 4-chlorophenyl 1150 124 426 � � � �
48. H H CH3 H H 415 86 222 � � � �
49. H H H CH3 1-(4-chlorophenyl)-

cyclopropyl

765 116 344 � � + �

50.(b) 537 90 289 – – � –

51.(b) 361 80 211 � � � �
(a) + , active compound; – , inactive compound; � , compound in the transitional range where activity could not be specifically assigned.
(b) Structures shown in Schemes 2 & 3.

TABLE I. (cont.)

N
N

H

OCH3

Scheme 2.

N

H

Scheme 3.



ical structures and biological activity can be attributed to

the non-quantitative nature of chemical structures. Graph

theory was successfully employed through the transla-

tion of chemical structures into characteristic numerical

descriptors by resorting to graph invariants.54–55

Potential applications of CDK inhibitors are being

evaluated against cancers, neurodegenerative disorders

such as Alzheimer’s disease, proliferation of protozoan

parasites, and viral infections (HIV, cytomegalovirus and

herpes virus).42 Observation of CDK deregulations in

various pathological situations suggests that CDK inhib-

itors may have therapeutic value.

In the present study, the relationship of the Wiener

index, the Zagreb group parameter and the eccentric

connectivity index with the CDK-1 inhibitory activity of

aloisine analogues has been investigated.

Retrofit analysis of the data in Tables I and II revealed

the following information regarding the Wiener index:

– A total of 42 out of 51 compounds were classified

correctly in both active and inactive ranges. The overall

accuracy of prediction was found to be 82.35 %, with re-

spect to CDK-1 inhibitory activity.

– The active range had a Wiener index value of 782–

925. Nine out of 11 analogues in the active range exhib-

ited CDK-1 inhibitory activity.
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TABLE II. Relationship between the CDK-1 inhibitory activity and the Wiener index (W)

Nature of range in

the proposed model

Index value Number of analogues

in the range

Number of analogues

predicted correctly

Accuracy Av. IC50
(a)

% �mol dm–3

Lower inactive

Active

Upper inactive

� 782

782–925

� 925

34

11

06

28

09

05

82.35

81.81

83.33

29.1(35.2)

10.5(0.76)

10.8(12.8)

(a) Values in the brackets indicate average IC50 values of correctly predicted analogues of a particular range.

TABLE III. Relationship between the CDK-1 inhibitory activity and the Zagreb group parameter (M1)

Nature of range in

the proposed model

Index value Number of analogues

in the range

Number of analogues

predicted correctly

Accuracy Av. IC50
(a)

% �mol dm–3

Lower inactive

Transitional

Active

Upper inactive

� 90

92–100

102–108

� 108

20

07

12

12

18

NA

09

10

90

NA

75

83.33

21.6(23.8)

35.12(NA)

17.64(0.63)

23.2(27.7)

(a) Values in the brackets indicate average IC50 values of correctly predicted analogues of a particular range.

TABLE IV. Relationship between the CDK-1 inhibitory activity and the eccentric connectivity index (�c)

Nature of range in

the proposed model

Index value Number of analogues

in the range

Number of analogues

predicted correctly

Accuracy Av. IC50
(a)

% �mol dm–3

Lower inactive

Transitional

Active

Upper inactive

� 249

262–329

336–379

� 379

17

17

10

07

15

NA

07

06

88.23

NA

70

85.71

26.6(30)

24.2(NA)

23.15(0.93)

10.4(12)

(a) Values in the brackets indicate average IC50 values of correctly predicted analogues of a particular range.
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Figure 1. Average IC50 values of correctly predicted analogues of
various ranges (LI, lower inactive; T, transitional; A, active; UI, up-
per inactive). W = Wiener index, M1 = Zagreb group parameter,
�c = eccentric connectivity index.



– The average IC50 value was found to be 0.76

�mol dm–3 for correctly predicted compounds, indicat-

ing the presence of highly active compounds in the ac-

tive range.

Retrofit analysis of the data in Tables I and III reveals

the following information regarding the Zagreb group

parameter:

– Biological activity was assigned to a total of 44 ana-

logues in both active and inactive ranges, out of which 37

analogues were correctly predicted, resulting in 84 % ac-

curacy with respect to CDK-1 inhibitory activity.

– The presence of a transitional range indicated a

gradual change from the lower inactive to the active

range. A total of 7 analogues were present in the transi-

tional range.

– The active range had a Zagreb group parameter

value of 102–108. Nine out of 12 analogues in the active

range exhibited CDK-1 inhibitory activity.

– The average IC50 value was found to be 0.63

�mol dm–3 for correctly predicted compounds, indicat-

ing the presence of highly active compounds in the ac-

tive range.

Retrofit analysis of the data in Tables I and IV reveals

the following information regarding the eccentric con-

nectivity index:

– Biological activity was assigned to a total of 34

analogues in both active and inactive ranges, out of

which 28 analogues were correctly predicted resulting in

82.35 % accuracy with respect to CDK-1 inhibitory ac-

tivity.

– The presence of a transitional range indicated a

gradual change from the lower inactive to the active

range. A total of 17 analogues were present in the transi-

tional range.

– The active range had an eccentric connectivity in-

dex value of 336–379. Seven out of 10 analogues in the

active range exhibited CDK-1 inhibitory activity.

– The average IC50 value was found to be 0.93

�mol dm–3 for correctly predicted compounds, indicat-

ing the presence of highly active compounds in the ac-

tive range.

Models based on all the three topological descriptors,

i.e., the Wiener index, a distance-based topological des-

criptor, the Zagreb group parameter, an adjacency-based

topological descriptor and the eccentric connectivity in-

dex, an adjacency-cum-distance based topological des-

criptor exhibited high degree of predictability ranging

from � 82 % to 84 % with regard to CDK-1 inhibitory

activity. Prediction involving the Zagreb group parame-

ter was better compared to the Wiener index and the ec-

centric connectivity index. High degree of predictability

of the proposed models can provide valuable lead struc-

tures for the development of potent CDK-1 inhibitors.
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SA@ETAK

Primjene teorije grafova: topologijski modeli za predvi|anje CDK-1
inhibicijske aktivnosti aloizina

Viney Lather i Anil K. Madan

Istra`ivan je odnos izme|u topologijskih indeksa i CDK-1 inhibicijske aktivnosti 5-fenil�5H�pirolo�2,3-b�-
pirazina (aloizina). Upotrebljena su tri topologijska indeksa: Wienerov indeks, zagreba~ki indeks i ekscentri~ni

indeks povezanosti, koji su izra~unani za 51 aloizin. Dobiveni modeli predvi|aju inhibijsku aktivnosti aloizina

s to~no{}u od 82–84 %.
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