THE SURJECTIVITY AND THE CONTINUITY OF DEFINABLE FUNCTIONS IN SOME DEFINABLY COMPLETE LOCALLY O-MINIMAL EXPANSIONS AND THE GROTHENDIECK RING OF ALMOST O-MINIMAL STRUCTURES

Mourad Berraho

Abstract

In this paper, we first show that in a definably complete locally o-minimal expansion of an ordered abelian group $(M,<,+, 0, \ldots)$ and for a definable subset $X \subseteq M^{n}$ which is closed and bounded in the last coordinate such that the set $\pi_{n-1}(X)$ is open, the mapping π_{n-1} is surjective from X to M^{n-1}, where π_{n-1} denotes the coordinate projection onto the first $n-1$ coordinates. Afterwards, we state some of its consequences. Also we show that the Grothendieck ring of an almost o-minimal expansion of an ordered divisible abelian group which is not o-minimal is null. Finally, we study the continuity of the derivative of a given definable function in some ordered structures.

1. Introduction

A locally o-minimal structure $\mathcal{M}=(M,<, \ldots)$ was first introduced in [10] as a local counterpart of an o-minimal structure. The coordinate projection π_{n-1} onto the first $n-1$ coordinates is a surjective map from M^{n} to the set M^{n-1}. The natural question is that if this map remains surjective from a subset $X \subseteq M^{n}$ to the set M^{n-1}. In this paper, we give a positive answer to this question for a subset which is closed and bounded in the last coordinate such that the set $\pi_{n-1}(X)$ is open and that the subset X is definable in a definably complete locally o-minimal expansion of an ordered abelian group $\mathcal{M}=(M,<, \ldots)$ to deduce the unboundedness of such subset (see Corollary 3.4 below).

The Grothendieck ring of a model-theoretical structure is built up as a quotient of the definable sets by definable bijections (see below).

[^0]In [1] and [11] the following explicit calculations of Grothendieck rings (denoted by K_{0}) of fields are made: $K_{0}\left(\mathbb{R},<, L_{\text {ring }}\right)$ is isomorphic to \mathbb{Z}, but $K_{0}\left(\mathbb{Q}_{p}, L_{\text {ring }}\right)$ is trivial, where p is a prime number, \mathbb{Q}_{p} is the p-adic number field and $L_{\text {ring }}$ is the language $(+,-, ., 0,1)$.

By [8], the Grothendieck ring of a structure $\mathcal{M}, K_{0}(\mathcal{M})$ is nontrivial if and only if there is no definable set $A \subseteq M, a \in A$ and an injective definable map from A onto $A \backslash\{a\}$.

In Section 4, we prove the triviality of the Grothendieck ring for an almost o-minimal expansion of an ordered divisible abelian group which is not o-minimal. Finally, we prove that if a definable function in a definably complete locally o-minimal expansion of a densely linearly ordered abelian group $\mathcal{M}=(M,<,+, 0, \ldots)$ on an open interval satisfies the intermediate value property, then this function is continuous on this whole interval to deduce that a definable derivable function in an o-minimal expansion of an ordered field is of class \mathcal{C}^{1}.

2. Preliminaries

"Definable" will always mean "definable with parameters".
We recall that a densely linearly ordered set without endpoints $\mathcal{M}=$ $(M,<, \ldots)$ is o-minimal if every definable subset X of M is a finite union of points and open intervals.

Definition 2.1. A densely linearly ordered structure without endpoints $\mathcal{M}=(M,<, \ldots)$ is locally o-minimal if for every definable subset X of M and for every point $a \in M$ there exists an open interval I containing the point a such that $X \cap I$ is a finite union of points and open intervals. It is called almost o-minimal if any bounded definable set in M is a finite union of points and open intervals.

Example 2.2. Every o-minimal structure is locally and almost o-minimal.
Definition 2.3. An expansion of a densely linearly ordered set without endpoints $\mathcal{M}=(M,<, \ldots)$ is definably complete if any definable subset X of M has the supremum and infimum in $M \cup\{ \pm \infty\}$.

Example 2.4. Every expansion of $(\mathbb{R},<)$ is definably complete.
It is well known thanks to [9, Corollary 1.5] that the definable completeness is equivalent to M being definably connected, and also with the validity of the intermediate value theorem for one variable definable continuous functions.

Definition 2.5. Let $\mathcal{M}=(M,<, \ldots)$ be an expansion of a densely linearly ordered set without endpoints. A subset X of M^{n+1} is called bounded in the last coordinate if there exists a bounded open interval I such that $X \subseteq M^{n} \times I$.

Definition 2.6. An expansion of a densely linearly ordered group without endpoints $\mathcal{M}=(M,<, \ldots)$ has definable bounded multiplication compatible to + if there exist an element $1 \in M$ and a map $\cdot: M \times M \rightarrow M$ such that

1. The tuple $(M,<, 0,1,+, \cdot)$ is an ordered field.
2. For any bounded open interval I, the restriction $\cdot \mid I \times I$ of the product - to $I \times I$ is definable in M.

3. Surjectivity of the coordinate projection in a definably

COMPLETE LOCALLY O-MINIMAL EXPANSION WITHOUT ENDPOINTS OF A DENSELY LINEARLY ORDERED ABELIAN GROUP

In this section, we consider a definably complete locally o-minimal expansion of a densely linearly ordered abelian group $\mathcal{M}=(M,<,+, 0, \ldots)$.

Let $\pi_{n-1}: M^{n} \rightarrow M^{n-1}$ denotes the projection onto the first $n-1$ coordinates and let $X \subseteq M^{n}$ be a definable subset.

Lemma 3.1. Consider a definably complete locally o-minimal expansion of a densely linearly ordered abelian group $\mathcal{M}=(M,<,+, 0, \ldots)$. Let X be a definable subset of M^{n} which is not closed. Take a point $a \in \bar{X} \backslash X$. There exist a small positive ϵ and a definable continuous map $\gamma:] 0, \epsilon[\rightarrow X$ such that $\lim _{t \rightarrow 0^{+}} \gamma(t)=a$.

Proof. By [5, Corollary 3.2], we know that this lemma holds true for a DCULOAS structure; by following that proof literally, we only use Lemma 3.1 (definable choice), Proposition $2.2(7)$ and Lemma 2.3 of [5]. By [5, Lemma 3.1], Lemma 3.1 holds true in a definably complete expansion of a densely linearly ordered abelian group. According to [4], Proposition 2.2(7) and Lemma 2.3 of [5] hold true for all definably complete locally o-minimal structures satisfying the property (a). Finally, any definably complete locally o-minimal structure satisfies the property (a) by [6, Theorem 2.5].

Theorem 3.2. Let $X \subseteq M^{n}$ be a definable subset in a definably complete locally o-minimal expansion of a densely linearly ordered abelian group $\mathcal{M}=$ $(M,<,+, 0, \ldots)$ which is closed and bounded in the last coordinate such that the set $\pi_{n-1}(X)$ is open. Then the mapping π_{n-1} is surjective from X to M^{n-1}.

Proof. Assume for contradiction that we can take a point x in the frontier of $\pi_{n-1}(X)$. By Lemma 3.1, there exists a continuous curve γ : $(0, \epsilon) \rightarrow \pi_{n-1}(X)$ definable in \mathcal{M} such that $\lim _{t \rightarrow 0^{+}} \gamma(t)=x$. Define $f_{u}:(0, \epsilon) \rightarrow \pi_{-1}(X)\left(\pi_{-1}\right.$ denotes the projection onto the last coordinate) by $f_{u}(t)=\sup \{y \in M ;(\gamma(t), y) \in X\}$. The set $\{(t, y) \in] 0, \epsilon[\times M ;(\gamma(t), y) \in X\}$ is definable because X is definable. Therefore, as X is bounded in the last coordinate, the function f_{u} is definable in \mathcal{M}. We may assume that f_{u} is continuous and monotone by the monotonicity theorem ([6, Theorem 5.1]) and
by taking a sufficiently small $\epsilon>0$ if necessary. The limit $y=\lim _{t \rightarrow 0^{+}} f_{u}(t)$ exists because the definable function f_{u} is bounded and monotone. We have $(x, y) \in X$ because X is closed in M^{n}, so $x \in \pi_{n-1}(X)$, a contradiction. So $\pi_{n-1}(X)$ is closed in M^{n-1}. By [9, Corollary 1.5], M^{n-1} is a definably connected set, and we deduce that $\pi_{n-1}(X)=M^{n-1}$.

Remark 3.3. Theorem 3.2 still holds if we replace the assumption that $\pi_{n-1}(X)$ is open with that for all $x \in X$, there exists an open box B in M^{n} containing the point x such that $B \cap X$ is the graph of a continuous map defined on $\pi_{n-1}(B)$ (i.e. X is locally the graph of a continuous map). In fact, let a be in $\pi_{n-1}(X)$ and fix b such that (a, b) is in X. By assumption, there is an open box B such that (a, b) is in B and $B \cap X$ is the graph of a continuous map defined on $\pi_{n-1}(B)$. In particular, $\pi_{n-1}(B)$ is in $\pi_{n-1}(X)$, and contains a, and $\pi_{n-1}(X)$ is also open (as $\pi_{n-1}(B)$ is an open box). So every point in $\pi_{n-1}(X)$ is contained in an open set that is contained in $\pi_{n-1}(X)$, so $\pi_{n-1}(X)$ is open.

Corollary 3.4. If $X \subseteq M^{n}$ is a definable subset as in Theorem 3.2, then X is unbounded.

Proof. Assume that X is closed and bounded, so X is bounded in the last coordinate. By Theorem 3.2, we deduce that $\pi_{n-1}(X)=M^{n-1}$. If X is bounded, then by [9, Lemma 1.7], the set M^{n-1} is bounded, which is a contradiction.

4. The Grothendieck ring of an almost o-minimal expansion of AN ORDERED DIVISIBLE ABELIAN GROUP

We begin this section by recalling the notion of the Grothendieck ring of a given structure.

Definition 4.1. Let $\mathcal{M}=(M,<, \ldots)$ be a structure. The notation $\operatorname{Defn}(\mathcal{M})$ denotes the family of all definable subsets of M^{n}. The Grothendieck group of a structure \mathcal{M} is the abelian group $K_{0}(\mathcal{M})$ generated by symbols $[X]$, where $X \in \operatorname{Defn}(\mathcal{M})$ with the relations $[X]=[Y]$ if X and Y are definably isomorphic, and $[U \cup V]=[U]+[V]$ where $U, V \in \operatorname{Defn}(\mathcal{M})$, and $U \cap V=\emptyset$. The ring structure is defined by $[X][Y]=[X \times Y]$, where $X \times Y$ is the Cartesian product of definable sets. The ring $K_{0}(\mathcal{M})$ with this multiplication is called Grothendieck ring of the structure \mathcal{M}.

Proposition 4.2. Consider an almost o-minimal expansion \mathcal{M} of an ordered divisible abelian group whose underlying set is M, and assume that this expansion is not o-minimal. Then the Grothendieck ring of this expansion is the zero ring $\{0\}$.

Proof. Let \mathcal{M} be such a structure. By [3, Lemma 2.31] there exists an unbounded discrete \mathcal{M}-definable set D. Without loss of generality, we may
assume that $D \cap[0, \infty)$ is an infinite set, so $D^{\prime}:=D \cap[0, \infty)$ is an infinite discrete definable set. By [3, Lemma 2.18], the definable set D^{\prime} is closed.

By [3, Corollary 4.6], the structure \mathcal{M} is definably complete.
As the structure \mathcal{M} is definably complete, the set D^{\prime} admits an infimum in M which we denote by m. Take a sufficiently bounded open interval I containing the point m. The set $I \cap D^{\prime}$ is finite, so $m \in D^{\prime}$, otherwise if $m \notin D^{\prime}$, there exists the smallest element $n \in I \cap D^{\prime}$ with $m \neq n$. Since $m=\inf D^{\prime}, m<n$. There are no elements of G^{\prime} between m and n because m and n are contained in the open interval I. It contradicts the fact that m is the infimum of D^{\prime}. The successor map $s_{D^{\prime}}: D^{\prime} \backslash\{m\} \rightarrow D^{\prime}$ defined in [2, Definition 3] is a definable bijection. The Grothendieck ring is the zero ring by [8].

Problem 4.1. Let \mathcal{M} be the structure as in Proposition 4.2. By [3, Theorem 2.13], there exists an o-minimal expansion \mathcal{R} of the ordered group having the same underlying set M such that any definable set in \mathcal{R} is definable in \mathcal{M}. By [7, Theorem 1], the Grothendieck ring of the structure \mathcal{R} is isomorphic to the ring $\mathbb{Z}[T] /\left(T^{2}+T\right)$ because there is no definable bijection in \mathcal{R} between a bounded interval and an unbounded one, and this structure is the reduct of the structure \mathcal{M} whose Grothendieck ring is null by Proposition 4.2. The Grothendieck ring of the structure \mathcal{R} is contained in that of the structure \mathcal{M}. Here the open question rises: Under what additional conditions do we have this inclusion?

5. The continuity of the derivative of a definable function in SOME ORDERED EXPANSIONS OF A GIVEN FIELD

We know by [9, Corollary 1.5] that a continuous definable function in a definably complete structure satisfies the intermediate value property. Fortunately the converse of the intermediate value property in a a definably complete locally o-minimal expansion of a densely linearly ordered abelian group holds true, which is the aim of the following proposition.

Proposition 5.1. Let $\mathcal{M}=(M,<, \ldots)$ be a definably complete locally o-minimal expansion of a densely linearly ordered abelian group $\mathcal{M}=(M,<$ $,+, 0, \ldots), I$ be an open interval of M, and $f: I \rightarrow M$ be a definable function. Suppose that for all $a, b \in I$, and all y between $f(a)$ and $f(b)$, there exists $x \in[a, b]$ such that $f(x)=y$ (i.e, f satisfies the intermediate value property). Then f is continuous on I.

Proof. We demonstrate this proposition by contraposition. By Theorem 2.3 of [6], there exists a mutually disjoint definable partition $I=X_{d} \cup X_{c} \cup$ $X_{+} \cup X_{-}$satisfying the following conditions:
(1) the definable set X_{d} is discrete and closed;
(2) the definable set X_{c} is open and f is locally constant on X_{c};
(3) the definable set X_{+}is open and f is locally strictly increasing and continuous on X_{+};
(4) the definable set X_{-}is open and f is locally strictly decreasing and continuous on X_{-}.
Let c be a point at which f is discontinuous. We have $c \in X_{d}$. Take $a, b \in I$ sufficiently close to c such that $a<c<b$. By local o-minimality, the interval $[a, c)$ is contained exactly in one of X_{c}, X_{+}and X_{d}. It is the same for the interval $(c, b]$. By definable completeness and uniform monotonicity of the functions $\left.f\right|_{[a, c)}$ and $\left.f\right|_{(c, b]}$, the left/right limits $f_{-}(c):=\lim _{x \rightarrow c-} f(x)$, $f_{+}(c):=\lim _{x \rightarrow c+} f(x)$ exist in $M \cup\{ \pm \infty\}$. Since f is discontinuous at c, we have three cases.

Case 1. $f_{-}(c)=f(c)$ and $f_{+}(c) \neq f(c)$.
We consider the case in which $f(c)<f_{+}(c)$. The proof is similar when $f_{+}(c)<f(c)$. We take y between $f(c)$ and $f_{+}(c)$. Since $f(c)<f_{+}(c)$ and $(M,<)$ is a densely linearly ordered set without endpoints, we can take such y (even when $\left.f_{+}(c)=+\infty\right)$. When $f_{+}(c)=+\infty$, the restriction of f to $(c, b]$ is strictly decreasing and continuous by the assumption. If we retake b sufficiently close to $c, f(b)>y$. We have $y \notin f((c, b])$ and $y<f(b)$ in this case. When $f_{+}(c) \in M$, the function given by

$$
g(x)= \begin{cases}f(x) & \text { if }(c<x \leq b) \\ f_{+}(c) & \text { if } x=c\end{cases}
$$

is continuous. Take α, β in M so that $\alpha<f_{+}(c)<\beta$ and $y<\alpha$. It is possible because $(M,<)$ is a densely linearly ordered set without endpoints. If we retake b sufficiently close to c, we have $g([c, b]) \subseteq(\alpha, \beta)$ because g is continuous at c. In particular, $f((c, b])$ does not contain the point y and $y<f(b)$.

In both cases, we have $y \notin f((c, b])$ and $y<f(b)$.
Take $\alpha^{\prime}, \beta^{\prime}$ in M so that $\alpha^{\prime}<f(c)<\beta^{\prime}$ and $y>\beta^{\prime}$. Because the restriction of f to $[a, c]$ is continuous at c, if we retake the point a closer to c, we have $f([a, c]) \subseteq\left(\alpha^{\prime}, \beta^{\prime}\right)$. It implies that $f([a, c])$ does not contain the point y and $y>f(a)$. Consequently, we get $y \notin f([a, b])$ and $f(a)<y<f(b)$.

Case 2. $f_{+}(c)=f(c)$ and $f_{-}(c) \neq f(c)$. Similar to Case 1.
Case 3. $f_{+}(c) \neq f(c)$ and $f_{-}(c) \neq f(c)$.
a) Either $f(c)<f_{+}(c)$. When $f_{+}(c) \in M$, take $y \in M$ such that $f(c)<$ $y<f_{+}(c)$. The function $g:[c, b] \rightarrow M$ given by

$$
g(x)= \begin{cases}f(x) & \text { if }(c<x \leq b) \\ f_{+}(c) & \text { if } x=c\end{cases}
$$

is continuous. Take α, β in M so that $\alpha<f_{+}(c)<\beta$ and $y<\alpha$. If we retake b sufficiently close to c, we have $g([c, b]) \subseteq(\alpha, \beta)$ because g is continuous at c. In particular, $f((c, b])$ does not contain the point y and $y<f(b)$.

Set $a=c$. We have $f([a, b])=f(c) \cup f((c, b])$. We get $y \notin f([a, b])$ and $f(a)=f(c)<y<f(b)$.

When $f_{+}(c)=+\infty$. Let $f(c)<y$ and $y>0$, the restriction of f to $(c, b]$ is strictly decreasing and continuous. If we retake b sufficiently close to c, $y<f(b)$. If $y \in f((c, b]), y=f(d)$ where $c<d<b$. As f is strictly decreasing, $f(b)<f(d)=y$, which is a contradiction. Set $a=c, f([a, b])=f(c) \cup f((c, b])$. We get $y \notin f([a, b])$.
b) Or $f(c)>f_{+}(c)$. When $f_{+}(c) \in M$, the proof is similar to Case 3(a). When $f_{+}(c)=-\infty$, let $y<0<f(c)$. If we retake b sufficiently close to $c, f(b)<y<f(c)$. The restriction of f to $(c, b]$ is strictly increasing and continuous, if $y \in f((c, b]), y=f(d)$ where $c<d<b$, we have $y=f(d)<f(b)$ which is absurd. Set $a=c, f([a, b])=f(c) \cup f((c, b])$. We get $y \notin f([a, b])$.
c) Or $f(c)<f_{-}(c)$. When $f_{-}(c) \in M$, then take $y \in M$ such that $f(c)<y<f_{-}(c)$. The function $g:[b, c] \rightarrow M$ given by

$$
g(x)= \begin{cases}f(x) & \text { if }(b \leq x<c) \\ f_{-}(c) & \text { if } x=c\end{cases}
$$

is continuous. Take α, β in M so that $\alpha<f_{-}(c)<\beta$ and $y<\alpha$. If we retake b sufficiently close to c, we have $g([b, c]) \subseteq(\alpha, \beta)$ because g is continuous at c. In particular, $f([b, c))$ does not contain the point y and $y<f(b)$. Set $a=c$. We have $f([b, a])=f(c) \cup f([b, c))$. We get $y \notin f([b, a])$ and $f(a)=f(c)<y<f(b)$.

When $f(c)<f_{-}(c)=+\infty$. If we retake b sufficiently close to $c, f(c)<y$ with $y>0$. We have $f(b)>y$. The restriction of f to $[b, c)$ is strictly increasing and continuous, if $y \in f([b, c)), y=f(d)$ where $b<d<c$, we have $f(b)<y=f(d)$ which is absurd. Set $a=c, f([b, a])=f(c) \cup f([b, c))$. We get $y \notin f([b, a])$.
d) Or $f(c)>f_{-}(c)$. When $f_{-}(c) \in M$, the proof is similar to Case 3(c). When $f_{-}(c)=-\infty$, if we retake b sufficiently close to $c, f(c)>y$ and $f(b)<$ $y<0$. The restriction of f to $[b, c)$ is strictly decreasing and continuous. If $y \in f([b, c)), y=f(d)$ where $b<d<c$, we have $y=f(d)<f(b)$, which is absurd. Set $a=c, f([b, a])=f(c) \cup f([b, c))$. We get $y \notin f([b, a])$.

Corollary 5.2. Let $\mathcal{R}=(R,<,+, \cdot,-, \ldots)$ be an o-minimal expansion of an ordered field R, I be an open interval in R, and $f: I \rightarrow R$ be a definable derivable function. Then this function is of class \mathcal{C}^{1} on I.

Proof. Darboux's theorem for definable functions holds true. In fact, we can prove it by following the classical proof in real analysis of Darboux's theorem, as the Corollary (Max-min theorem) in [9] holds true for a definably complete structure. Therefore, f^{\prime} satisfies all assumptions of Proposition 5.1, and by applying this proposition, we get that the function f^{\prime} is continuous on the interval I, so f is of class \mathcal{C}^{1} on I.

We end this paper by concluding that the converse of [6, Lemma 3.7] holds true under the local o-minimality assumption.

Corollary 5.3. Consider a locally o-minimal expansion $\mathcal{R}=(\mathbb{R},<$, $+, 0, \ldots)$ of the ordered group of reals having definable bounded multiplication compatible to + . Let I be a closed and bounded interval and $f: I \rightarrow \mathbb{R}$ be a definable function. Then f is a \mathcal{C}^{1} function if and only if its derivative is a definable function.

Proof. If f is a \mathcal{C}^{1} function, then by [6, Lemma 3.7], its derivative f^{\prime} is a definable function. Conversely, if f^{\prime} is a definable function on a closed bounded interval I, by Darboux's theorem, $f^{\prime}(I)$ is an interval and therefore f^{\prime} satisfies the intermediate value property. By Proposition 5.1, f^{\prime} is continuous on I.

Acknowledgements.

The author thanks the referee for all his valuable comments and suggestions and also for his precious remarks which significantly improved the paper.

References

[1] R. Cluckers and D. Haskell, Grothendieck rings of \mathbb{Z}-valued fields, Bull. Symbolic Logic 7 (2001), 262-269.
[2] A. Fornasiero and P. Hieronymi, A fundamental dichotomy for definably complete expansions of ordered fields, J. Symb. Logic 80 (2015), 1091-1115.
[3] M. Fujita, Almost o-minimal structures and \mathfrak{X}-structures, Ann. Pure Appl. Logic 173 (2022), no.9, Paper No. 103144.
[4] M. Fujita, Locally o-minimal structures with tame topological properties, J. Symb. Logic 88 (2023), 219-241.
[5] M. Fujita, Functions definable in definably complete uniformly locally o-minimal structure of the second kind, preprint, arXiv:2010.02420.
[6] M. Fujita, T. Kawakami and W. Komine, Tameness of definably complete locally o-minimal structures and definable bounded multiplication, MLQ Math. Log. Q. 68 (2022), 496-515.
[7] M. Kageyama and M. Fujita, Grothendieck rings of o-minimal expansions of ordered abelian groups, J. Algebra 299 (2006), 8-20.
[8] J. Krajíček and T. Scanlon, Combinatorics with definable sets: Euler characteristics and Grothendieck rings, Bull. Symbolic Logic 6 (2000), 311-330.
[9] C. Miller, Expansions of dense linear orders with the intermediate value property, J. Symbolic Logic 66 (2001), 1783-1790.
[10] C. Toffalori and K. Vozoris, Notes on local o-minimality, MLQ Math. Log. Q. 55 (2009), 617-632.
[11] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc. Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998.

Surjektivnost i neprekidnost definabilnih funkcija u nekim definabilnim potpunim lokalno o-minimalnim proširenjima i Grothendieckovom prstenu gotovo o-minimalnih struktura

Mourad Berraho

SAžetak. U ovom članku najprije pokazujemo da u definabilnom potpunom lokalno o-minimalnom proširenju uređene abelove grupe $(M,<,+, 0, \ldots)$ i za definabilni podskup $X \subseteq M^{n}$ koji je zatvoren i ograničen u zadnjoj koordinati tako da je skup $\pi_{n-1}(X)$ otvoren, preslikavanje π_{n-1} je surjekcija sa X u M^{n-1}, gdje π_{n-1} označava koordinatnu projekciju na prvih $n-1$ koordinata. Nakon toga navodimo neke posljedice. Također pokazujemo da Grothendieckov prsten gotovo o-minimalnog proširenja uređene djeljive abelove grupe koja nije o-minimalna je nul-prsten. Konačno, proučavamo neprekidnost derivacije dane definabilne funkcije u nekim uređenim strukturama.

[^1]
[^0]: 2020 Mathematics Subject Classification. 03C64.
 Key words and phrases. Coordinate projection, Grothendieck rings, definably complete locally o-minimal expansion of a densely linearly ordered abelian group.

[^1]: Mourad Berraho
 Department of Mathematics
 Ibn Tofail University
 Faculty of Sciences, Kenitra, Morocco
 E-mail: b.mourad87@hotmail.com; mourad.berraho@uit.ac.ma
 Received: 7.6.2022.
 Revised: 21.7.2022.; 9.9.2022.
 Accepted: 11.9.2022.

