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THE SURJECTIVITY AND THE CONTINUITY OF
DEFINABLE FUNCTIONS IN SOME DEFINABLY

COMPLETE LOCALLY O-MINIMAL EXPANSIONS AND
THE GROTHENDIECK RING OF ALMOST O-MINIMAL

STRUCTURES

Mourad Berraho

Abstract. In this paper, we first show that in a definably complete
locally o-minimal expansion of an ordered abelian group (M, <, +, 0, ...)
and for a definable subset X ⊆ Mn which is closed and bounded in the
last coordinate such that the set πn−1(X) is open, the mapping πn−1 is
surjective from X to Mn−1, where πn−1 denotes the coordinate projection
onto the first n − 1 coordinates. Afterwards, we state some of its conse-
quences. Also we show that the Grothendieck ring of an almost o-minimal
expansion of an ordered divisible abelian group which is not o-minimal is
null. Finally, we study the continuity of the derivative of a given definable
function in some ordered structures.

1. Introduction

A locally o-minimal structure M = (M,<, ...) was first introduced in [10]
as a local counterpart of an o-minimal structure. The coordinate projection
πn−1 onto the first n− 1 coordinates is a surjective map from Mn to the set
Mn−1. The natural question is that if this map remains surjective from a
subset X ⊆ Mn to the set Mn−1. In this paper, we give a positive answer to
this question for a subset which is closed and bounded in the last coordinate
such that the set πn−1(X) is open and that the subset X is definable in a
definably complete locally o-minimal expansion of an ordered abelian group
M = (M,<, ...) to deduce the unboundedness of such subset (see Corollary
3.4 below).

The Grothendieck ring of a model-theoretical structure is built up as a
quotient of the definable sets by definable bijections (see below).
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In [1] and [11] the following explicit calculations of Grothendieck rings
(denoted by K0) of fields are made: K0(R, <, Lring) is isomorphic to Z, but
K0(Qp, Lring) is trivial, where p is a prime number, Qp is the p-adic number
field and Lring is the language (+,−, ., 0, 1).

By [8], the Grothendieck ring of a structure M, K0(M) is nontrivial if
and only if there is no definable set A ⊆ M , a ∈ A and an injective definable
map from A onto A \ {a}.

In Section 4, we prove the triviality of the Grothendieck ring for an al-
most o-minimal expansion of an ordered divisible abelian group which is not
o-minimal. Finally, we prove that if a definable function in a definably com-
plete locally o-minimal expansion of a densely linearly ordered abelian group
M = (M,<,+, 0, ...) on an open interval satisfies the intermediate value prop-
erty, then this function is continuous on this whole interval to deduce that a
definable derivable function in an o-minimal expansion of an ordered field is
of class C1.

2. Preliminaries

“Definable” will always mean “definable with parameters”.
We recall that a densely linearly ordered set without endpoints M =

(M,<, ...) is o-minimal if every definable subset X of M is a finite union of
points and open intervals.

Definition 2.1. A densely linearly ordered structure without endpoints
M = (M,<, ...) is locally o-minimal if for every definable subset X of M and
for every point a ∈ M there exists an open interval I containing the point
a such that X ∩ I is a finite union of points and open intervals. It is called
almost o-minimal if any bounded definable set in M is a finite union of points
and open intervals.

Example 2.2. Every o-minimal structure is locally and almost o-minimal.

Definition 2.3. An expansion of a densely linearly ordered set without
endpoints M = (M,<, ...) is definably complete if any definable subset X of
M has the supremum and infimum in M ∪ {±∞}.

Example 2.4. Every expansion of (R, <) is definably complete.

It is well known thanks to [9, Corollary 1.5] that the definable complete-
ness is equivalent to M being definably connected, and also with the validity
of the intermediate value theorem for one variable definable continuous func-
tions.

Definition 2.5. Let M = (M,<, ...) be an expansion of a densely linearly
ordered set without endpoints. A subset X of Mn+1 is called bounded in the
last coordinate if there exists a bounded open interval I such that X ⊆ Mn ×I.
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Definition 2.6. An expansion of a densely linearly ordered group without
endpoints M = (M,<, ...) has definable bounded multiplication compatible to
+ if there exist an element 1 ∈ M and a map · : M ×M → M such that

1. The tuple (M,<, 0, 1,+, ·) is an ordered field.
2. For any bounded open interval I, the restriction ·|I × I of the product

· to I × I is definable in M .

3. Surjectivity of the coordinate projection in a definably
complete locally o-minimal expansion without endpoints of a

densely linearly ordered abelian group

In this section, we consider a definably complete locally o-minimal expan-
sion of a densely linearly ordered abelian group M = (M,<,+, 0, ...).

Let πn−1 : Mn → Mn−1 denotes the projection onto the first n − 1
coordinates and let X ⊆ Mn be a definable subset.

Lemma 3.1. Consider a definably complete locally o-minimal expansion
of a densely linearly ordered abelian group M = (M,<,+, 0, ...). Let X be a
definable subset of Mn which is not closed. Take a point a ∈ X̄\X. There
exist a small positive ϵ and a definable continuous map γ :]0, ϵ[→ X such that
limt→0+ γ(t) = a.

Proof. By [5, Corollary 3.2], we know that this lemma holds true for a
DCULOAS structure; by following that proof literally, we only use Lemma 3.1
(definable choice), Proposition 2.2(7) and Lemma 2.3 of [5]. By [5, Lemma
3.1], Lemma 3.1 holds true in a definably complete expansion of a densely lin-
early ordered abelian group. According to [4], Proposition 2.2(7) and Lemma
2.3 of [5] hold true for all definably complete locally o-minimal structures
satisfying the property (a). Finally, any definably complete locally o-minimal
structure satisfies the property (a) by [6, Theorem 2.5].

Theorem 3.2. Let X ⊆ Mn be a definable subset in a definably complete
locally o-minimal expansion of a densely linearly ordered abelian group M =
(M,<,+, 0, ...) which is closed and bounded in the last coordinate such that
the set πn−1(X) is open. Then the mapping πn−1 is surjective from X to
Mn−1.

Proof. Assume for contradiction that we can take a point x in the
frontier of πn−1(X). By Lemma 3.1, there exists a continuous curve γ :
(0, ϵ) → πn−1(X) definable in M such that limt→0+ γ(t) = x. Define
fu : (0, ϵ) → π−1(X) (π−1 denotes the projection onto the last coordinate) by
fu(t) = sup{y ∈ M ; (γ(t), y) ∈ X}. The set {(t, y) ∈]0, ϵ[×M ; (γ(t), y) ∈ X}
is definable because X is definable. Therefore, as X is bounded in the last
coordinate, the function fu is definable in M. We may assume that fu is con-
tinuous and monotone by the monotonicity theorem ([6, Theorem 5.1]) and
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by taking a sufficiently small ϵ > 0 if necessary. The limit y = limt→0+ fu(t)
exists because the definable function fu is bounded and monotone. We have
(x, y) ∈ X because X is closed in Mn, so x ∈ πn−1(X), a contradiction.
So πn−1(X) is closed in Mn−1. By [9, Corollary 1.5], Mn−1 is a definably
connected set, and we deduce that πn−1(X) = Mn−1.

Remark 3.3. Theorem 3.2 still holds if we replace the assumption that
πn−1(X) is open with that for all x ∈ X, there exists an open box B in Mn

containing the point x such that B ∩ X is the graph of a continuous map
defined on πn−1(B) (i.e. X is locally the graph of a continuous map). In fact,
let a be in πn−1(X) and fix b such that (a, b) is in X. By assumption, there is
an open box B such that (a, b) is in B and B∩X is the graph of a continuous
map defined on πn−1(B). In particular, πn−1(B) is in πn−1(X), and contains
a, and πn−1(X) is also open (as πn−1(B) is an open box). So every point in
πn−1(X) is contained in an open set that is contained in πn−1(X), so πn−1(X)
is open.

Corollary 3.4. If X ⊆ Mn is a definable subset as in Theorem 3.2,
then X is unbounded.

Proof. Assume that X is closed and bounded, so X is bounded in the
last coordinate. By Theorem 3.2, we deduce that πn−1(X) = Mn−1. If X
is bounded, then by [9, Lemma 1.7], the set Mn−1 is bounded, which is a
contradiction.

4. The Grothendieck ring of an almost o-minimal expansion of
an ordered divisible abelian group

We begin this section by recalling the notion of the Grothendieck ring of
a given structure.

Definition 4.1. Let M = (M,<, ...) be a structure. The notation
Defn(M) denotes the family of all definable subsets of Mn. The Grothendieck
group of a structure M is the abelian group K0(M) generated by symbols [X],
where X ∈ Defn(M) with the relations [X] = [Y ] if X and Y are definably
isomorphic, and [U ∪ V ] = [U ] + [V ] where U, V ∈ Defn(M), and U ∩ V = ∅.
The ring structure is defined by [X][Y ] = [X ×Y ], where X ×Y is the Carte-
sian product of definable sets. The ring K0(M) with this multiplication is
called Grothendieck ring of the structure M.

Proposition 4.2. Consider an almost o-minimal expansion M of an
ordered divisible abelian group whose underlying set is M , and assume that
this expansion is not o-minimal. Then the Grothendieck ring of this expansion
is the zero ring {0}.

Proof. Let M be such a structure. By [3, Lemma 2.31] there exists an
unbounded discrete M-definable set D. Without loss of generality, we may



DEFINABLY COMPLETE LOCALLY O-MINIMAL EXPANSIONS 5

assume that D ∩ [0,∞) is an infinite set, so D′ := D ∩ [0,∞) is an infinite
discrete definable set. By [3, Lemma 2.18], the definable set D′ is closed.

By [3, Corollary 4.6], the structure M is definably complete.
As the structure M is definably complete, the set D′ admits an infimum

in M which we denote by m. Take a sufficiently bounded open interval I
containing the point m. The set I ∩ D′ is finite, so m ∈ D′, otherwise if
m /∈ D′, there exists the smallest element n ∈ I ∩ D′ with m ̸= n. Since
m = inf D′,m < n. There are no elements of G′ between m and n because
m and n are contained in the open interval I. It contradicts the fact that
m is the infimum of D′. The successor map sD′ : D′ \ {m} → D′ defined in
[2, Definition 3] is a definable bijection. The Grothendieck ring is the zero
ring by [8].

Problem 4.1. Let M be the structure as in Proposition 4.2. By [3, The-
orem 2.13], there exists an o-minimal expansion R of the ordered group having
the same underlying set M such that any definable set in R is definable in M.
By [7, Theorem 1], the Grothendieck ring of the structure R is isomorphic to
the ring Z[T ]/(T 2 + T ) because there is no definable bijection in R between
a bounded interval and an unbounded one, and this structure is the reduct
of the structure M whose Grothendieck ring is null by Proposition 4.2. The
Grothendieck ring of the structure R is contained in that of the structure M.
Here the open question rises: Under what additional conditions do we have
this inclusion?

5. The continuity of the derivative of a definable function in
some ordered expansions of a given field

We know by [9, Corollary 1.5] that a continuous definable function in a
definably complete structure satisfies the intermediate value property. For-
tunately the converse of the intermediate value property in a a definably
complete locally o-minimal expansion of a densely linearly ordered abelian
group holds true, which is the aim of the following proposition.

Proposition 5.1. Let M = (M,<, ...) be a definably complete locally
o-minimal expansion of a densely linearly ordered abelian group M = (M,<
,+, 0, ...), I be an open interval of M , and f : I → M be a definable function.
Suppose that for all a, b ∈ I, and all y between f(a) and f(b), there exists
x ∈ [a, b] such that f(x) = y (i.e, f satisfies the intermediate value property).
Then f is continuous on I.

Proof. We demonstrate this proposition by contraposition. By Theorem
2.3 of [6], there exists a mutually disjoint definable partition I = Xd ∪ Xc ∪
X+ ∪X− satisfying the following conditions:

(1) the definable set Xd is discrete and closed;
(2) the definable set Xc is open and f is locally constant on Xc;
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(3) the definable set X+ is open and f is locally strictly increasing and
continuous on X+;

(4) the definable set X− is open and f is locally strictly decreasing and
continuous on X−.

Let c be a point at which f is discontinuous. We have c ∈ Xd. Take
a, b ∈ I sufficiently close to c such that a < c < b. By local o-minimality, the
interval [a, c) is contained exactly in one of Xc, X+ and Xd. It is the same
for the interval (c, b]. By definable completeness and uniform monotonicity
of the functions f |[a,c) and f |(c,b], the left/right limits f−(c) := limx→c− f(x),
f+(c) := limx→c+ f(x) exist in M ∪ {±∞} . Since f is discontinuous at c, we
have three cases.

Case 1. f−(c) = f(c) and f+(c) ̸= f(c).
We consider the case in which f(c) < f+(c). The proof is similar when

f+(c) < f(c). We take y between f(c) and f+(c). Since f(c) < f+(c) and
(M,<) is a densely linearly ordered set without endpoints, we can take such
y (even when f+(c) = +∞). When f+(c) = +∞, the restriction of f to
(c, b] is strictly decreasing and continuous by the assumption. If we retake b
sufficiently close to c, f(b) > y. We have y /∈ f((c, b]) and y < f(b) in this
case. When f+(c) ∈ M , the function given by

g(x) =
{
f(x) if (c < x ≤ b)
f+(c) if x = c

is continuous. Take α, β in M so that α < f+(c) < β and y < α. It is
possible because (M,<) is a densely linearly ordered set without endpoints.
If we retake b sufficiently close to c, we have g([c, b]) ⊆ (α, β) because g is
continuous at c. In particular, f((c, b]) does not contain the point y and
y < f(b).

In both cases, we have y /∈ f((c, b]) and y < f(b).
Take α

′ , β′ in M so that α′
< f(c) < β

′ and y > β
′ . Because the

restriction of f to [a, c] is continuous at c, if we retake the point a closer to
c, we have f([a, c]) ⊆ (α′

, β
′). It implies that f([a, c]) does not contain the

point y and y > f(a). Consequently, we get y /∈ f([a, b]) and f(a) < y < f(b).
Case 2. f+(c) = f(c) and f−(c) ̸= f(c). Similar to Case 1.
Case 3. f+(c) ̸= f(c) and f−(c) ̸= f(c).
a) Either f(c) < f+(c). When f+(c) ∈ M , take y ∈ M such that f(c) <

y < f+(c). The function g : [c, b] → M given by

g(x) =
{
f(x) if (c < x ≤ b)
f+(c) if x = c

is continuous. Take α, β in M so that α < f+(c) < β and y < α. If we retake
b sufficiently close to c, we have g([c, b]) ⊆ (α, β) because g is continuous
at c. In particular, f((c, b]) does not contain the point y and y < f(b).
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Set a = c. We have f([a, b]) = f(c) ∪ f((c, b]). We get y ̸∈ f([a, b]) and
f(a) = f(c) < y < f(b).

When f+(c) = +∞. Let f(c) < y and y > 0, the restriction of f to (c, b]
is strictly decreasing and continuous. If we retake b sufficiently close to c,
y < f(b). If y ∈ f((c, b]), y = f(d) where c < d < b. As f is strictly decreasing,
f(b) < f(d) = y, which is a contradiction. Set a = c, f([a, b]) = f(c)∪f((c, b]).
We get y ̸∈ f([a, b]).

b) Or f(c) > f+(c). When f+(c) ∈ M , the proof is similar to Case
3(a). When f+(c) = −∞, let y < 0 < f(c). If we retake b sufficiently close
to c, f(b) < y < f(c). The restriction of f to (c, b] is strictly increasing and
continuous, if y ∈ f((c, b]), y = f(d) where c < d < b, we have y = f(d) < f(b)
which is absurd. Set a = c, f([a, b]) = f(c) ∪ f((c, b]). We get y ̸∈ f([a, b]).

c) Or f(c) < f−(c). When f−(c) ∈ M , then take y ∈ M such that
f(c) < y < f−(c). The function g : [b, c] → M given by

g(x) =
{
f(x) if (b ≤ x < c)
f−(c) if x = c

is continuous. Take α, β in M so that α < f−(c) < β and y < α. If we retake
b sufficiently close to c, we have g([b, c]) ⊆ (α, β) because g is continuous
at c. In particular, f([b, c)) does not contain the point y and y < f(b).
Set a = c. We have f([b, a]) = f(c) ∪ f([b, c)). We get y ̸∈ f([b, a]) and
f(a) = f(c) < y < f(b).

When f(c) < f−(c) = +∞. If we retake b sufficiently close to c, f(c) < y
with y > 0. We have f(b) > y. The restriction of f to [b, c) is strictly
increasing and continuous, if y ∈ f([b, c)), y = f(d) where b < d < c, we have
f(b) < y = f(d) which is absurd. Set a = c, f([b, a]) = f(c) ∪ f([b, c)). We
get y ̸∈ f([b, a]).

d) Or f(c) > f−(c). When f−(c) ∈ M , the proof is similar to Case 3(c).
When f−(c) = −∞, if we retake b sufficiently close to c, f(c) > y and f(b) <
y < 0. The restriction of f to [b, c) is strictly decreasing and continuous. If
y ∈ f([b, c)), y = f(d) where b < d < c, we have y = f(d) < f(b), which is
absurd. Set a = c, f([b, a]) = f(c) ∪ f([b, c)). We get y ̸∈ f([b, a]).

Corollary 5.2. Let R = (R,<,+, ·,−, ...) be an o-minimal expansion
of an ordered field R, I be an open interval in R, and f : I → R be a definable
derivable function. Then this function is of class C1 on I.

Proof. Darboux’s theorem for definable functions holds true. In fact,
we can prove it by following the classical proof in real analysis of Darboux’s
theorem, as the Corollary (Max-min theorem) in [9] holds true for a definably
complete structure. Therefore, f ′ satisfies all assumptions of Proposition 5.1,
and by applying this proposition, we get that the function f

′ is continuous
on the interval I, so f is of class C1 on I.
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We end this paper by concluding that the converse of [6, Lemma 3.7]
holds true under the local o-minimality assumption.

Corollary 5.3. Consider a locally o-minimal expansion R = (R, <,
+, 0, ...) of the ordered group of reals having definable bounded multiplication
compatible to +. Let I be a closed and bounded interval and f : I → R be a
definable function. Then f is a C1 function if and only if its derivative is a
definable function.

Proof. If f is a C1 function, then by [6, Lemma 3.7], its derivative f ′

is a definable function. Conversely, if f ′ is a definable function on a closed
bounded interval I, by Darboux’s theorem, f ′(I) is an interval and therefore f ′

satisfies the intermediate value property. By Proposition 5.1, f ′ is continuous
on I.
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Surjektivnost i neprekidnost definabilnih funkcija u nekim definabilnim
potpunim lokalno o-minimalnim proširenjima i Grothendieckovom

prstenu gotovo o-minimalnih struktura

Mourad Berraho

Sažetak. U ovom članku najprije pokazujemo da u de-
finabilnom potpunom lokalno o-minimalnom proširenju uredene
abelove grupe (M, <, +, 0, ...) i za definabilni podskup X ⊆ Mn

koji je zatvoren i ograničen u zadnjoj koordinati tako da je skup
πn−1(X) otvoren, preslikavanje πn−1 je surjekcija sa X u Mn−1,
gdje πn−1 označava koordinatnu projekciju na prvih n − 1 koor-
dinata. Nakon toga navodimo neke posljedice. Takoder pokazu-
jemo da Grothendieckov prsten gotovo o-minimalnog proširenja
uredene djeljive abelove grupe koja nije o-minimalna je nul-prsten.
Konačno, proučavamo neprekidnost derivacije dane definabilne
funkcije u nekim uredenim strukturama.
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