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THE SURJECTIVITY AND THE CONTINUITY OF
DEFINABLE FUNCTIONS IN SOME DEFINABLY
COMPLETE LOCALLY O-MINIMAL EXPANSIONS AND
THE GROTHENDIECK RING OF ALMOST O-MINIMAL
STRUCTURES

MOURAD BERRAHO

ABSTRACT. In this paper, we first show that in a definably complete
locally o-minimal expansion of an ordered abelian group (M, <,+,0,...)
and for a definable subset X C M™ which is closed and bounded in the
last coordinate such that the set m,—1(X) is open, the mapping my,_1 is
surjective from X to M™~1, where m,_1 denotes the coordinate projection
onto the first n — 1 coordinates. Afterwards, we state some of its conse-
quences. Also we show that the Grothendieck ring of an almost o-minimal
expansion of an ordered divisible abelian group which is not o-minimal is
null. Finally, we study the continuity of the derivative of a given definable
function in some ordered structures.

1. INTRODUCTION

A locally o-minimal structure M = (M, <, ...) was first introduced in [10]
as a local counterpart of an o-minimal structure. The coordinate projection
Tp—1 onto the first n — 1 coordinates is a surjective map from M™ to the set
M™=1. The natural question is that if this map remains surjective from a
subset X C M™ to the set M™ 1. In this paper, we give a positive answer to
this question for a subset which is closed and bounded in the last coordinate
such that the set m,_1(X) is open and that the subset X is definable in a
definably complete locally o-minimal expansion of an ordered abelian group
M= (M,<, ...) to deduce the unboundedness of such subset (see Corollary
3.4 below).

The Grothendieck ring of a model-theoretical structure is built up as a
quotient of the definable sets by definable bijections (see below).
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In [1] and [11] the following explicit calculations of Grothendieck rings
(denoted by Kj) of fields are made: Ko(R, <, Lying) is isomorphic to Z, but
Ko(Qp, Lying) is trivial, where p is a prime number, Q, is the p-adic number
field and L4 is the language (+,—,.,0,1).

By [8], the Grothendieck ring of a structure M, Ky(M) is nontrivial if
and only if there is no definable set A C M, a € A and an injective definable
map from A onto A\ {a}.

In Section 4, we prove the triviality of the Grothendieck ring for an al-
most o-minimal expansion of an ordered divisible abelian group which is not
o-minimal. Finally, we prove that if a definable function in a definably com-
plete locally o-minimal expansion of a densely linearly ordered abelian group
M = (M, <,+,0,...) on an open interval satisfies the intermediate value prop-
erty, then this function is continuous on this whole interval to deduce that a
definable derivable function in an o-minimal expansion of an ordered field is
of class C!.

2. PRELIMINARIES

“Definable” will always mean “definable with parameters”.

We recall that a densely linearly ordered set without endpoints M =
(M, <,...) is o-minimal if every definable subset X of M is a finite union of
points and open intervals.

DEFINITION 2.1. A densely linearly ordered structure without endpoints
M= (M,<,...) is locally o-minimal if for every definable subset X of M and
for every point a € M there exists an open interval I containing the point
a such that X N1 is a finite union of points and open intervals. It is called
almost o-minimal if any bounded definable set in M is a finite union of points
and open intervals.

EXAMPLE 2.2. Every o-minimal structure is locally and almost o-minimal.

DEFINITION 2.3. An expansion of a densely linearly ordered set without
endpoints M = (M, <, ...) is definably complete if any definable subset X of
M has the supremum and infimum in M U {too}.

EXAMPLE 2.4. Every expansion of (R, <) is definably complete.

It is well known thanks to [9, Corollary 1.5] that the definable complete-
ness is equivalent to M being definably connected, and also with the validity
of the intermediate value theorem for one variable definable continuous func-
tions.

DEFINITION 2.5. Let M = (M, <, ...) be an expansion of a densely linearly
ordered set without endpoints. A subset X of M™+1 s called bounded in the
last coordinate if there exists a bounded open interval I such that X C M™ x 1.
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DEFINITION 2.6. An expansion of a densely linearly ordered group without
endpoints M = (M, <, ...) has definable bounded multiplication compatible to
+ if there exist an element 1 € M and a map - : M x M — M such that

1. The tuple (M,<,0,1,+,-) is an ordered field.
2. For any bounded open interval I, the restriction -|I x I of the product
- to I x I is definable in M.

3. SURJECTIVITY OF THE COORDINATE PROJECTION IN A DEFINABLY
COMPLETE LOCALLY O-MINIMAL EXPANSION WITHOUT ENDPOINTS OF A
DENSELY LINEARLY ORDERED ABELIAN GROUP

In this section, we consider a definably complete locally o-minimal expan-
sion of a densely linearly ordered abelian group M = (M, <,+,0,...).

Let mp—1 : M™ — Mm™ ! denotes the projection onto the first n — 1
coordinates and let X C M™ be a definable subset.

LEMMA 3.1. Consider a definably complete locally o-minimal expansion
of a densely linearly ordered abelian group M = (M, <,+,0,...). Let X be a
definable subset of M™ which is not closed. Take a point a € )_(\X, There
exist a small positive € and a definable continuous map =y :]0,e[— X such that

lim;_,o+ 7(t) = a.

PrROOF. By [5, Corollary 3.2], we know that this lemma holds true for a
DCULOAS structure; by following that proof literally, we only use Lemma 3.1
(definable choice), Proposition 2.2(7) and Lemma 2.3 of [5]. By [5, Lemma
3.1], Lemma 3.1 holds true in a definably complete expansion of a densely lin-
early ordered abelian group. According to [4], Proposition 2.2(7) and Lemma
2.3 of [5] hold true for all definably complete locally o-minimal structures
satisfying the property (a). Finally, any definably complete locally o-minimal
structure satisfies the property (a) by [6, Theorem 2.5]. d

THEOREM 3.2. Let X C M™ be a definable subset in a definably complete
locally o-minimal expansion of a densely linearly ordered abelian group M =
(M, <,+,0,...) which is closed and bounded in the last coordinate such that
the set mp_1(X) is open. Then the mapping m,_1 is surjective from X to
ML

PROOF. Assume for contradiction that we can take a point z in the
frontier of m,_1(X). By Lemma 3.1, there exists a continuous curve = :
(0,¢) — mp_1(X) definable in M such that lim; ,q+y(t) = z. Define
fu 1 (0,€) = m_1(X) (m_1 denotes the projection onto the last coordinate) by
fu(t) = sup{y € M;(v(t),y) € X}. The set {(t,y) €]0,e[xM;(y(t),y) € X}
is definable because X is definable. Therefore, as X is bounded in the last
coordinate, the function f,, is definable in M. We may assume that f, is con-
tinuous and monotone by the monotonicity theorem ([6, Theorem 5.1]) and
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by taking a sufficiently small € > 0 if necessary. The limit y = lim; ,o+ fu(t)
exists because the definable function f, is bounded and monotone. We have
(z,y) € X because X is closed in M™, so z € m,_1(X), a contradiction.
So 7,_1(X) is closed in M™~1. By [9, Corollary 1.5], M™~! is a definably
connected set, and we deduce that 7, _;(X) = M""1. d

REMARK 3.3. Theorem 3.2 still holds if we replace the assumption that
mn—1(X) is open with that for all © € X, there exists an open box B in M™
containing the point x such that B N X is the graph of a continuous map
defined on 7,_1(B) (i.e. X is locally the graph of a continuous map). In fact,
let a be in 7,1 (X) and fix b such that (a,b) is in X. By assumption, there is
an open box B such that (a,b) is in B and BN X is the graph of a continuous
map defined on 7,_1(B). In particular, 7,1 (B) is in 7,_1(X), and contains
a, and m,_1(X) is also open (as m,_1(B) is an open box). So every point in
mn—1(X) is contained in an open set that is contained in m,_1(X), so m,_1(X)
is open.

COROLLARY 3.4. If X C M"™ is a definable subset as in Theorem 3.2,
then X is unbounded.

PROOF. Assume that X is closed and bounded, so X is bounded in the
last coordinate. By Theorem 3.2, we deduce that m,_1(X) = M1 If X
is bounded, then by [9, Lemma 1.7], the set M™~! is bounded, which is a
contradiction. O

4. THE GROTHENDIECK RING OF AN ALMOST O-MINIMAL EXPANSION OF
AN ORDERED DIVISIBLE ABELIAN GROUP

We begin this section by recalling the notion of the Grothendieck ring of
a given structure.

DEFINITION 4.1. Let M = (M,<,...) be a structure. The notation
Defn(M) denotes the family of all definable subsets of M™. The Grothendieck
group of a structure M is the abelian group Ko(M) generated by symbols [X],
where X € Defn(M) with the relations [X] = [Y] if X and Y are definably
isomorphic, and [UUV| = [U]+ [V] where U,V € Defn(M), and UNV = .
The ring structure is defined by [X][Y] = [X x Y], where X xY is the Carte-
sian product of definable sets. The ring Ko(M) with this multiplication is
called Grothendieck ring of the structure M.

PropPoOSITION 4.2. Consider an almost o-minimal expansion M of an
ordered divisible abelian group whose underlying set is M, and assume that
this expansion is not o-minimal. Then the Grothendieck ring of this expansion
is the zero ring {0}.

PROOF. Let M be such a structure. By [3, Lemma 2.31] there exists an
unbounded discrete M-definable set D. Without loss of generality, we may
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assume that D N [0,00) is an infinite set, so D’ := D N [0,00) is an infinite
discrete definable set. By [3, Lemma 2.18], the definable set D’ is closed.

By [3, Corollary 4.6], the structure M is definably complete.

As the structure M is definably complete, the set D’ admits an infimum
in M which we denote by m. Take a sufficiently bounded open interval
containing the point m. The set I N D’ is finite, so m € D’, otherwise if
m ¢ D', there exists the smallest element n € T N D' with m # n. Since
m = inf D', m < n. There are no elements of G’ between m and n because
m and n are contained in the open interval I. It contradicts the fact that
m is the infimum of D’. The successor map sps : D'\ {m} — D’ defined in
[2, Definition 3] is a definable bijection. The Grothendieck ring is the zero
ring by [8]. 0

PROBLEM 4.1. Let M be the structure as in Proposition 4.2. By [3, The-
orem 2.13], there exists an o-minimal expansion R of the ordered group having
the same underlying set M such that any definable set in R is definable in M.
By [7, Theorem 1], the Grothendieck ring of the structure R is isomorphic to
the ring Z[T]/(T? 4+ T) because there is no definable bijection in R between
a bounded interval and an unbounded one, and this structure is the reduct
of the structure M whose Grothendieck ring is null by Proposition 4.2. The
Grothendieck ring of the structure R is contained in that of the structure M.
Here the open question rises: Under what additional conditions do we have
this inclusion?

5. THE CONTINUITY OF THE DERIVATIVE OF A DEFINABLE FUNCTION IN
SOME ORDERED EXPANSIONS OF A GIVEN FIELD

We know by [9, Corollary 1.5] that a continuous definable function in a
definably complete structure satisfies the intermediate value property. For-
tunately the converse of the intermediate value property in a a definably
complete locally o-minimal expansion of a densely linearly ordered abelian
group holds true, which is the aim of the following proposition.

PROPOSITION 5.1. Let M = (M,<,...) be a definably complete locally
o-minimal expansion of a densely linearly ordered abelian group M = (M, <
,+,0,...), I be an open interval of M, and f : I — M be a definable function.
Suppose that for all a,b € I, and all y between f(a) and f(b), there exists
x € [a,b] such that f(x) =y (i.e, [ satisfies the intermediate value property).
Then f is continuous on I.

PROOF. We demonstrate this proposition by contraposition. By Theorem
2.3 of [6], there exists a mutually disjoint definable partition I = X4 U X, U
X U X_ satisfying the following conditions:
(1) the definable set X is discrete and closed;
(2) the definable set X, is open and f is locally constant on X,;
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(3) the definable set X is open and f is locally strictly increasing and
continuous on X ;

(4) the definable set X_ is open and f is locally strictly decreasing and
continuous on X_.

Let ¢ be a point at which f is discontinuous. We have ¢ € X,;. Take
a,b € I sufficiently close to ¢ such that a < ¢ < b. By local o-minimality, the
interval [a,c) is contained exactly in one of X., X and Xg4. It is the same
for the interval (c,b]. By definable completeness and uniform monotonicity
of the functions f|(, ¢y and f|..p, the left/right limits f_(c) := lim, . f(),
fr(c) :==limy ey f(z) exist in M U{£o0} . Since f is discontinuous at ¢, we
have three cases.

Case 1. f_(c) = f(c) and f(c) # f(c).

We consider the case in which f(¢) < fi(c¢). The proof is similar when
fr(c) < f(e). We take y between f(c) and fi(c). Since f(¢) < fy(c) and
(M, <) is a densely linearly ordered set without endpoints, we can take such

y (even when fy(c) = 400). When fi(c) = 400, the restriction of f to
(c, b] is strictly decreasing and continuous by the assumption. If we retake b
sufficiently close to ¢, f(b) > y. We have y ¢ f((c,b]) and y < f(b) in this
case. When f, (c) € M, the function given by

o) — flz) if(c<az<b)
9() {f+(c) ifr=c

is continuous. Take «,8 in M so that @ < fy(c) < S and y < a. It is
possible because (M, <) is a densely linearly ordered set without endpoints.
If we retake b sufficiently close to ¢, we have g([¢,b]) C («, 8) because g is
continuous at ¢. In particular, f((c,b]) does not contain the point y and
y < f(b).

In both cases, we have y ¢ f((c,b]) and y < f(b).

Take ', 8 in M so that o' < f(¢) < 8 and y > 3. Because the
restriction of f to [a, ¢ 1s continuous at ¢, if we retake the point a closer to
¢, we have f([a,c]) C (o',8"). It implies that f([a,c]) does not contain the
point y and y > f(a). Consequently, we get y ¢ f([a,b]) and f(a) <y < f(b).

Case 2. fy(c) = f(c) and f_(c) # f(c). Similar to Case 1.

Case 3. f,(c) # £(c) and f_(c) % f(0)

a) Either f(c) < f1(c). When fy(c) € M, take y € M such that f(c) <
y < fi(c). The function g : [¢c,b] = M given by

flz if(e<xz<b
MORE CACN )
file) fz=c
is continuous. Take «, 8 in M so that o < fy(c) < 8 and y < . If we retake

b sufficiently close to ¢, we have g([c,b]) C («, ) because g is continuous
at ¢. In particular, f((c,b]) does not contain the point y and y < f(b).
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Set a = ¢. We have f([a,b]) = f(c) U f((c,b]). We get y & f([a,b]) and
fla) = f(e) <y < f(b).

When f;(¢) = +00. Let f(c¢) < y and y > 0, the restriction of f to (c, b
is strictly decreasing and continuous. If we retake b sufficiently close to c,
y < f(b). Ify € f((c,b]), y = f(d) where ¢ < d < b. As f is strictly decreasing,
f(b) < f(d) =y, which is a contradiction. Set a = ¢, f([a,b]) = f(c)Uf((c,b]).
We get y & f([a, b]).

b) Or f(c) > fi(c). When fi(c) € M, the proof is similar to Case
3(a). When fi(c) = —o0, let y < 0 < f(c). If we retake b sufficiently close
to ¢, f(b) <y < f(c). The restriction of f to (c,b] is strictly increasing and
continuous, if y € f((¢,b]), y = f(d) where ¢ < d < b, we have y = f(d) < f(b)
which is absurd. Set a = ¢, f([a,b]) = f(c) U f((c,b]). We get y & f([a, b]).

¢) Or f(c) < f-(c). When f_(c) € M, then take y € M such that
f(c) <y < f-(c). The function g : [b,c] — M given by

2) = fle) fb<z<e)
9(@) {f_(c) ife=c

is continuous. Take «, 8 in M so that o < f_(¢) < § and y < «. If we retake
b sufficiently close to ¢, we have g([b,c]) C («,3) because g is continuous
at ¢. In particular, f([b,c)) does not contain the point y and y < f(b).
Set a = ¢. We have f([b,a]) = f(c) U f([b,c)). We get y & f([b,a]) and
F(@) = f(c) <y < f(b).

When f(c) < f_(¢) = 4o0. If we retake b sufficiently close to ¢, f(c) <y
with y > 0. We have f(b) > y. The restriction of f to [b,¢) is strictly
increasing and continuous, if y € f([b,¢)), y = f(d) where b < d < ¢, we have
f(b) <y = f(d) which is absurd. Set a = ¢, f([b,a]) = f(c) U f([b,c)). We
get y & (b, a]).

d) Or f(c) > f-(c). When f_(c) € M, the proof is similar to Case 3(c).
When f_(c) = —o0, if we retake b sufficiently close to ¢, f(c) >y and f(b) <
y < 0. The restriction of f to [b,¢) is strictly decreasing and continuous. If
y € f([b,c)), y = f(d) where b < d < ¢, we have y = f(d) < f(b), which is
absurd. Set a = ¢, f([b,a]) = f(c)U f([b,c)). We get y & f([b,a]). |

COROLLARY 5.2. Let R = (R,<,+,+,—,...) be an o-minimal expansion
of an ordered field R, I be an open interval in R, and f : I — R be a definable
derivable function. Then this function is of class C* on I.

PrRoOOF. Darboux’s theorem for definable functions holds true. In fact,
we can prove it by following the classical proof in real analysis of Darboux’s
theorem, as the Corollary (Max-min theorem) in [9] holds true for a definably
complete structure. Therefore, f " satisfies all assumptions of Proposition 5.1,
and by applying this proposition, we get that the function f/ is continuous
on the interval I, so f is of class C! on I. |
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We end this paper by concluding that the converse of [6, Lemma 3.7
holds true under the local o-minimality assumption.

COROLLARY 5.3. Consider a locally o-minimal expansion R = (R, <,
+,0,...) of the ordered group of reals having definable bounded multiplication
compatible to +. Let I be a closed and bounded interval and f : I — R be a
definable function. Then f is a C* function if and only if its derivative is a
definable function.

PROOF. If f is a C' function, then by [6, Lemma 3.7], its derivative f’
is a definable function. Conversely, if f/ is a definable function on a closed
bounded interval I, by Darboux’s theorem, f ' (I) is an interval and therefore f/

satisfies the intermediate value property. By Proposition 5.1, f " is continuous
on [. 0
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Surjektivnost i neprekidnost definabilnih funkcija u nekim definabilnim
potpunim lokalno o-minimalnim prosirenjima i Grothendieckovom
prstenu gotovo o-minimalnih struktura

Mourad Berraho

SAZETAK. U ovom d¢lanku najprije pokazujemo da u de-
finabilnom potpunom lokalno o-minimalnom prosirenju uredene
abelove grupe (M, <,+,0,...) i za definabilni podskup X C M"
koji je zatvoren i ogranicen u zadnjoj koordinati tako da je skup
mn—1(X) otvoren, preslikavanje m,—1 je surjekcija sa X u M
gdje m,—1 oznacava koordinatnu projekciju na prvih n — 1 koor-
dinata. Nakon toga navodimo neke posljedice. Takoder pokazu-
jemo da Grothendieckov prsten gotovo o-minimalnog prosirenja
uredene djeljive abelove grupe koja nije o-minimalna je nul-prsten.
Konac¢no, proucavamo neprekidnost derivacije dane definabilne
funkcije u nekim uredenim strukturama.
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