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TRIANGULAR DIOPHANTINE TUPLES FROM {1, 2}

Alan Filipin and László Szalay

Abstract. In this paper, we prove that there does not exist a set of
four positive integers {1, 2, c, d} such that a product of any two of them
increased by 1 is a triangular number

1. Introduction

Long time ago, Diophantus of Alexandria noted that the product of any
two distinct elements of the set { 1

16 ,
33
16 ,

17
4 ,

105
16 } increased by 1 is a square

of a rational number. Later, especially in the recent years, many generaliza-
tions and variations of his original problem were also studied. The following
definition describes a more general situation.

Definition 1.1. Let m ≥ 2 be an integer, and let R denote a commutative
ring with unity. Further let n ∈ R be a non-zero element, and let {a1, . . . , am}
be a set of m distinct non-zero elements from R such that aiaj +n is a square
in R for 1 ≤ i < j ≤ m. The set {a1, . . . , am} is called Diophantine m-tuple
with the property D(n) or simply a D(n)-m-tuple in R.

One of the questions of interest is how large these sets can be. The most
studied and most well known case is when R = Z and n = 1. In this case,
recently, the folklore conjecture of non-existence of quintuple was proved by
He, Togbé, and Ziegler in [4]. Beside searching for such sets in different rings,
there are also some other generalizations like asking aiaj +n to be some other
perfect power instead of square. The whole history of the problem, with recent
results and up-to-date references can be found on the webpage [3].

In this paper, we introduce one other variation, when instead of squares we
want aiaj +n to be triangular numbers, i.e. numbers of the form △k = k(k+1)

2 ,
k ∈ N. To the best of our knowledge this modification has not yet been
studied. Thus we introduce the following definition.
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Definition 1.2. A set {a1, . . . , am} of m distinct positive integers is
called Triangular Diophantine m-tuple if aiaj + 1 is a triangular number for
1 ≤ i < j ≤ m.

The natural question asks the cardinality of such Triangular Diophantine
tuples. However, in this paper, for the beginning, we start with a Triangular
pair {1, 2} of the smallest two elements possible, and prove the following
theorem.

Theorem 1.3. There does not exist Triangular Diophantine quadruple of
the form {1, 2, c, d}.

It states that the pair {1, 2} cannot be extended to a quadruple, but
we can easily see that there exist infinitely many triples {1, 2, c}. One of
the motivations for proving this result was the paper of Dujella and Pethő
[2], where they considered the extension of the D(1)-pair {1, 3} in the ring Z.
This is similar because the pair {1, 3} has the smallest integers possible. They
showed that {1, 3} can be extended to quadruples, but not to a quintuple.
More precisely, they proved that the triple of the form {1, 3, c} can be extended
uniquely to a quadruple.

In the proof of Theorem 1.3, we use the same strategy that appears in their
paper, of course with some modifications we need. For example, at some places
we use integer points on elliptic curves. Firstly, we find all possible values of
c that will extend our Triangular Diophantine pair {1, 2} to a triple. Then
we transform the problem of extending the triple {1, 2, c} to solving a system
of simultaneous Pell-like equations. After that we search for the intersection
of binary recurrence sequences, which can be solved (for large indices) by
combining congruences and Baker’s theory on linear forms in logarithms of
algebraic numbers. Finally, we need a kind of Baker-Davenport reduction
based on continued fractions to prove Theorem 1.3.

We made a computer search for finding Triangular Diophantine quadru-
ples {a, b, c, d} in the range 1 ≤ a ≤ 30, a < b ≤ 302, b < c ≤ 303, c < d ≤ 304.
Triples appear relatively often, the smallest one is {1, 2, 27} (this set is under
consideration in the present paper), the last one is {30, 624, 10101}. But we
found even a quadruple, namely {14, 31, 135, 3510}. The quadruples seem to
have a sparser occurrence than in case of the classical diophantine quadruples.
Because of the similarity we would expect that there is a finite upper bound
on the cardinality of Triangular Diophantine sets. Probably this bound is 4.
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2. System of Pell-like equations

Let {1, 2, c} be a Triangular Diophantine triple with an integer c ≥ 3.
First we find the set of possible values of c. Clearly, the conditions

c+ 1 = x(x+ 1)
2 ,

2c+ 1 = y(y + 1)
2

hold for some integers x ≥ 3 and y ≥ 5. The equations above are equivalent
to

8c+ 9 = X2
c ,

16c+ 9 = Y 2
c ,

where Xc = 2x + 1 ≥ 7 and Yc = 2y + 1 ≥ 11 are odd integers. Combining
them leads to the Pell-like equation

(2.1) Y 2
c − 2X2

c = −9.

The solutions of (2.1) provide the possible values of c as

(2.2) c = ck = 9
64

(
(3 + 2

√
2)(17 + 12

√
2)k + (3 − 2

√
2)(17 − 12

√
2)k − 6

)
,

where k ≥ 1 is an integer. The first few terms are ck = 0, 27, 945, 32130 . . . . It
is easy to see that ck is divisible by 9, which allows us to define C = Ck = ck/9.
This sequence begins with Ck = 0, 3, 105, 10710, . . . .

Assume that c is the smallest integer such that {1, 2, c, d} is a Triangular
Diophantine quadruple. Obviously d > c is a term of the sequence (2.2).
Hence there exist positive odd integers X, Y , and Z such that

8d+ 9 = X2,

16d+ 9 = Y 2,

8Cd+ 1 = Z2,

where the last equation is the consequence of 8 ·9Cd+9 = (3Z)2. Eliminating
d, we obtain the system of simultaneous Pell-like equations

(2.3) Z2 − CX2 = 1 − 9C,

(2.4) 2Z2 − CY 2 = 2 − 9C.

First we handle the smallest case, when C = 3 (which is derived from
c = 27).
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Lemma 2.1. The Triangular Diophantine triple {1, 2, 27} cannot be ex-
tended to a quadruple.

Proof. It is sufficient to show that the system (2.3)-(2.4) has no solution
for C = 3, except the trivial one X = Y = 3, Z = 1, which leads to the
extension with d = 0. A user friendly procedure for solving automatically
simultaneous Pell-like equations with relatively small coefficients is detailed
in [7]. Since the algorithm of [7] was implemented in Magma (thanks to
A. Bérczes), we only ran the file, and it resulted no solutions.

An important consequence of Lemma 2.1 is c ≥ 945, d ≥ 32130, and
C ≥ 105. In the sequel, we assume these conditions.

From the theory of Pell and Pell-like equations we know how the (positive)
solutions to the individual equation (2.3), and (2.4) are generated, knowing
the fundamental solutions of the equations Z2 −CX2 = 1 and Z2 −2CY 2 = 1.
The fundamental solutions of these associated Pell equations are respectively
given by (T, 4) and (S, 2), where S and T are positive integers satisfying
8C + 1 = S2 and 16C + 1 = T 2. To prove that these are really fundamental,
i.e. smallest positive solutions, we have to see that 1 +C, 1 + 2C, 1 + 4C, or
1 + 9C cannot be square (except in the special cases C = 0 and C = 3.)

For the proof we use the fact that 8C+ 1 and 16C+ 1 are squares. Then,
for instance, if C + 1 is also a square, we get that

(8C + 1)(16C + 1)(C + 1) = 128C3 + 152C2 + 25C + 1

should also be a square. Multiplying this by 1282 and putting C = x/128, it
yields the elliptic curve

y2 = x3 + 152x2 + 3200x+ 16384.

Using Magma we find the following positive integral solutions in x:

12, 40, 112, 208, 384, 952, 992, 3372, 2661328.

The only one divisible by 128 is x = 384, which gives C = 3, a contradiction.
A similar treatment for (8C+1)(16+1)(2C+1), (8C+1)(16+1)(4C+1),

and (8C+1)(16+1)(9C+1), respectively shows that the fundamental solutions
are really (T, 4), and (S, 2).

Hence, we conclude that the (positive) solutions of (2.3) and (2.4) are
given by

Z +X
√
C = (Z0 +X0

√
C)(T + 4

√
C)m, m ≥ 0,

Z
√

2 + Y
√
C = (Z1

√
2 + Y1

√
C)(S + 2

√
2C)n, n ≥ 0

with suitable integers Z0, X0, Z1, Y1. Thus, we have Z = Vm,

V0 = Z0, V1 = TZ0 + 4CX0, Vm+2 = 2TVm+1 − Vm,
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where (Z0, X0) is a fundamental solution of (2.3). Similarly, the positive
solutions of (2.4) are described by Z = Wn,

W0 = Z1, W1 = SZ1 + 2CY1, Wn+2 = 2SWn+1 −Wn,

where (Z1, Y1) is a fundamental solution of (2.4). By [5, Theorem 108a] we
have the estimates

0 < X2
0 ≤ 8(9C − 1)

T − 1 ,

Z2
0 ≤ (T − 1)(9C − 1)

2 ,

0 < Y 2
1 ≤ 4(9C − 2)

S − 1 ,

Z2
1 ≤ (S − 1)(9C − 2)

4
for the fundamental solutions of (2.3) and (2.4). Furthermore, C ≥ 105 entails

0 < X0 < 4.29471 4
√
C,

|Z0| <
√

18 ·
√
C

√
C < 1.3254C,

0 < Y1 < 3.63 4
√
C,

|Z1| < 2.52269 ·
√
C

√
C < 0.7881C.

So we need to solve finitely many Diophantine equations of the form Vm =
Wn. Of course, we are interested in only the solutions providing extension of a
triple to a quadruple. In particular, X, Y and Z should be odd, which implies
that Z0, X0, Z1, and Y1 all are odd. Finally, in this section, we establish the
congruences

V2m ≡ V0 (mod 8C),
V2m+1 ≡ V1 (mod 4C),
W2n ≡ W0 (mod 4C),

W2n+1 ≡ W1 (mod 4C),
V 2

m ≡ Z2
0 (mod 8C),

W 2
2n ≡ W 2

0 ≡ Z2
1 (mod 8C),

W 2
2n+1 ≡ W 2

1 (mod 8C).
These are easy to prove, here we present only the proof of the first congruence
as follows. We will use the fact that if a binary recurrence relation Gs =
AGs−1 +BGs−2 holds for s ≥ 2, then for every second term we have

Gs = (A2 + 2B)Gs−2 −B2Gs−4, s ≥ 4.
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In our case, Vm = (64C + 2)Vm−2 − Vm−4 follows. Since V0 = Z0, and

V2 = 2T (TZ0 + 4CX0) − Z0 = (32C + 1)Z0 + 8CTX0 ≡ Z0 (mod 8C),

we see
V2m ≡ (64C + 2)Z0 − Z0 ≡ Z0 = V0 (mod 8C).

3. Finding fundamental solutions

In this section, we find all possible values for fundamental solutions
(Z0, X0), and (Z1, Y1) that yield possible extensions of the Triangular Dio-
phantine triple {1, 2, c} to a quadruple. Recall that C ≥ 105.

1◦ Case V2m = W2n.
We have Z0 ≡ Z1 (mod 4C). From the estimates for |Z0| and |Z1|, we

can conclude Z0 = Z1. Moreover,

V 2
2m ≡ W 2

2n ≡ Z2
0 (mod 8C),

together with 8Cd+ 1 = Z2 implies Z2
0 ≡ 1 (mod 8C). Hence there exists an

integer d0 such that

d0 = Z2
0 − 1
8C .

The upper bound on |Z0| implies d0 < c. Furthermore, we have

8d0 + 9 = X2
0 ,

16d0 + 9 = Y 2
1 ,

8Cd0 + 1 = Z2
0 .

It means that {a, b, d0, c} is a Triangular Diophantine quadruple. But by the
minimality of c we conclude d0 = 0. Thus Z0 = Z1 = ±1.

2◦ Case V2m+1 = W2n.
Now Z1 ≡ TZ0 (mod 4C). If Z0 = ±1, then from 4C − T > 3.6C and

from the bound on |Z1| we obtain Z1 = ±T . But then Y1 is not an integer.
Thus |Z0| > 1, which implies X0 > 3. If X0 = 5, then we get Z0 = ±T , which
implies Z1 = ±1 and Y1 = 3.

Assume X0 ≥ 7. Then we have

0 < 4CX0 − T |Z0| = 16C2X2
0 − T 2Z2

0
4CX0 + T |Z0|

= 16C(9C − 1) − Z2
0

4CX0 + T |Z0|
<

144C2

53.2982C
< 2.7018C.

First, if Z0 > 0, then

−2.7018C < TZ0 − 4CX0 < 0,
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together with the estimates for |Z1|, gives Z1 = TZ0 − 4CX0. Hence we have
Z2 = W 2

2n ≡ Z2
1 (mod 8C), which means (via 8Cd + 1 = Z2) again Z2

1 ≡ 1
(mod 8C), i.e. there exists an integer d0 with

d0 = Z2
1 − 1
8C .

So d0 < c, and

8d0 + 9 = Z2
1 − 1
C

+ 9 = (TZ0 − 4CX0)2 − 1 + 9C
C

= (4Z0 − TX0)2,

16d0 + 9 = 2Z2
1 − 2 + 9C

C
= Y 2

1 ,

8Cd0 + 1 = Z2
1 .

Consequently, {1, 2, d0, c} is a Triangular Diophantine quadruple. Again d0 =
0 follows, and then Z1 = −1.

Secondly, if Z0 < 0, in the same way, from

0 < TZ0 + 4CX0 < 2.7018C,

we conclude Z1 = TZ0 + 4CX0. Defining

d0 = Z2
1 − 1
8C < c,

we observe

8d0 + 9c = (4Z0 + TX0)2,

16d0 + 9 = Y 2
1 ,

8Cd0 + 1 = Z2
1 ,

i.e. {1, 2, d0, c} is quadruple, which again means d0 = 0 and Z1 = 1.
In conclusion, Z1 = ±1. Multiplying Z1 ≡ TZ0 (mod 4C) by T leads

to Z0 ≡ ±T (mod 4C). Consequently, (by the estimate of |Z0|) Z0 = ±T .
Then, X0 = 5, which contradicts X0 ≥ 7.

Hence, in the case V2m+1 = W2n the only possible fundamental solutions
are Z0 = ±T , X0 = 5, Z1 = ±1, Y1 = 3.

3◦ Case V2m = W2n+1.
It is analogous to case 2◦. Here we have

Z0 ≡ SZ1 (mod 2C) and Z0 ≡ SZ1 ± 2CY1 (mod 4C).

If Z1 = ±1, then by 2C − S > 1.7238C, and by the bound on |Z1| we
get Z0 = ±S. But then X0 is not an integer. Hence, |Z1| > 1, which yields
Y1 > 3. If Y1 = 5, then Z1 = ±S, and then Z0 = ±1 and X0 = 3.
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Suppose now Y1 ≥ 7. Clearly,

0 < 2CY1 − S|Z1| = 4C2Y 2
1 − S2Z2

1
2CY1 + S|Z1|

= 4C(9C − 2) − Z2
1

2CY1 + S|Z1|
<

36C2

26.6491C
< 1.3509C.

First, if Z1 > 0, then
−1.3509C < SZ1 − 2CY1 < 0,

together with the estimate for |Z0| (and also from congruence modulo 4C)
shows Z0 = SZ1 − 2CY1. A solution implies Z2 = V 2

2m ≡ Z2
0 (mod 8C), and

then (again by 8Cd+ 1 = Z2) Z2
0 ≡ 1 (mod 8C). So there exists an integer

d0 = Z2
0 − 1
8C .

We have d0 < c, and then

8d0 + 9 = Z2
0 − 1
C

+ 9 = Z2
0 − 1 + 9C

C
= X2

0 ,

16d0 + 9 = 2(SZ1 − 2CY1)2 − 2 + 9C
C

= (4Z1 − SY1)2,

8Cd0 + 1 = Z2
0 .

Consequently, {1, 2, d0, c} is a Triangular Diophantine quadruple. So d0 = 0
and Z0 = −1 follow from the minimality of c.

If Z1 < 0, then in exactly the same way, by 0 < SZ1 + 2CY1 < 1.3509C,
we conclude Z0 = SZ1 + 2CY1. Putting

d0 = Z2
0 − 1
8C < c,

it yields
8d0 + 9 = X2

0 ,

16d0 + 9 = (4Z1 + SY1)2,

8Cd0 + 1 = Z2
0 .

Thus {1, 2, d0, c} is quadruple, d0 = 0, and Z0 = 1.
As a summary, we have Z0 = ±1. Multiplying Z0 ≡ SZ1 (mod 2C) by

S, we get Z1 ≡ ±S (mod 2C), which implies (by the upper bound on |Z1|)
Z1 = ±S. Thus Y1 = 5, a contradiction with Y1 ≥ 7.

Hence the only possible fundamental solutions are Z1 = ±S, Y1 = 5,
Z0 = ±1, X0 = 3. But it would imply

±1 ≡ ±1 + 2C (mod 4C),
a contradiction. So there is no solution in the case V2m = W2n+1.

4◦ Case V2m+1 = W2n+1.
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Observe that TZ0±4CX0 ≡ SZ1±2CY1 (mod 4C). Here we need slightly
better estimates than before. First we show that (except in the case C = 3)
we cannot have X0 = 7 or Y1 = 7. In order to prove it we have to show
that 40C + 1, and 20C + 1 are not square. After the proof of Lemma 2.1 we
faced similar problem, so we just refer the changes: the corresponding elliptic
equations are (8C+1)(16C+1)(40C+1) = y2 and (8C+1)(16C+1)(20C+1) =
y2, respectively.

Now, with the same considerations as before, if X0 ≥ 9 and Y1 ≥ 9, then
we have

0 < 4CX0 − T |Z0| < 2.0589C,
0 < 2CY1 − S|Z1| < 1.0295C.

These estimates, together with
TZ0 ± 4CX0 ≡ SZ1 ± 2CY1 (mod 4C)

imply the following four possibilities:
• TZ0 − 4CX0 = SZ1 − 2CY1 if Z0, Z1 > 0,
• TZ0 + 4CX0 = SZ1 + 2CY1 if Z0, Z1 < 0,
• TZ0 − 4CX0 = SZ1 + 2CY1 if Z0 > 0, Z1 < 0,
• TZ0 + 4CX0 = SZ1 − 2CY1 if Z0 < 0, Z1 < 0.
In the first case, we define

Z ′ = TZ0 − 4CX0 = SZ1 − 2CY1.

From Z = V2m+1, 8Cd+ 1 = Z2 and Z ′2 ≡ V 2
1 ≡ V 2

2m+1 (mod 8C) we know
that there exists an integer d0 such that

d0 = Z ′2 − 1
8C < c.

By

8d0 + 9 = (TZ0 − 4CX0)2 − 1 + 9C
C

= (4Z0 − TX0)2,

16d0 + 9 = 2(SZ1 − 2CY1)2 − 2 + 9C
C

= (4Z1 − SY1)2,

8Cd0 + 1 = Z ′2

the Diophantine quadruple {1, 2, d0, c} is Triangular, and the minimality of c
implies d0 = 0 and Z ′ = ±1. But this is not possible. Indeed C ≥ 105, and

16C(9C − 1) − Z2
0 > 142C2,

4CX0 + T |Z0| < 35.5C 4
√
C

imply 4CX0 − T |Z0| > 4
√
C

√
C.

The other three cases can be investigated in exactly the same way. Hence,
we are left with possibilities X0 = 3, X0 = 5, Y1 = 3 and Y1 = 5. However,
as we will show below, these are not possible .
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Assume X0 = 3, Z0 = ±1, Y1 = 3 and Z1 = ±1, with four options for the
signs. But

±T + 12C ≡ ±S + 6C (mod 4C),
±T ≡ ±S + 2C (mod 4C)

leads to a contradiction since T + S < 0.7C is valid for C ≥ 105.
Suppose now X0 = 3, Z0 = ±1, Y1 = 5 and Z1 = ±S (again four

variations with signs). The congruences

±T + 12C ≡ ±1 + 10C (mod 4C),
±T ≡ ±1 + 2C (mod 4C),

are contradictory because T + 1 ≤ 0.5C holds for C ≥ 105.
Similarly, if X0 = 5, Z0 = ±T , Y1 = 3 and Z1 = ±1, then

±1 + 20C ≡ ±S + 6C (mod 4C),
±1 ≡ ±S + 2C (mod 4C),

a contradiction via S + 1 < 0.3C for C ≥ 105.
Finally, if X0 = 5, Z0 = ±T , Y1 = 5 and Z1 = ±S, we have

±1 + 20C ≡ ±1 + 10C (mod 4C),
±1 ≡ ±1 + 2C (mod 4C),

which is obviously not possible. Hence, we conclude that we have no solution
if V2m+1 = W2n+1.

The main result of this section is recorded in

Lemma 3.1. The cases providing possible extensions of the Triangular
Diophantine triple {1, 2, c} to a quadruple are

• V2m = W2n, Z0 = Z1 = ±1, X0 = Y1 = 3;
• V2m+1 = W2n, Z0 = ±T , X0 = 5, Z1 = ±1, Y1 = 3.

4. Linear forms in logarithms

As far as possible we handle the two cases of Lemma 3.1 together. Assume
that Vm = Wn holds with m,n ̸= 0. From the recurrence relation Vm+2 =
2TVm+1 − Vm and from the initial values V0 and V1 we conclude

Vm = 1
2((Z0 +X0

√
C)(T + 4

√
C)m + (Z0 −X0

√
C)(T − 4

√
C)m),

and similarly

Wn = 1
4((2Z1 + Y1

√
2C)(S + 2

√
2C)n + (2Z1 − Y1

√
2C)(S − 2

√
2C)n).
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Now the equality Vm = Wn implies

(Z0 +X0
√
C)(T + 4

√
C)m + (Z0 −X0

√
C)(T − 4

√
C)m

=
(
Z1 + Y1

√
2C

2

)
(S + 2

√
2C)n +

(
Z1 − Y1

√
2C

2

)
(S − 2

√
2C)n.

Defining

P = (Z0 +X0
√
C)(T + 4

√
C)m and Q =

(
Z1 + Y1

√
2C

2

)
(S + 2

√
2C)n

the equation Vm = Wn implies

P − (9C − 1)P−1 = Q−
(

9C
2 − 1

)
Q−1.

Clearly, we have P,Q > 1, and

P −Q = (9C − 1)P−1 −
(

9C
2 − 1

)
Q−1 > (9C − 1)(P−1 −Q−1)

= (9C − 1)(Q− P )P−1Q−1,

which proves P > Q. Furthermore,
P −Q < (9C − 1)P−1,

and then
P −Q

P
< (9C − 1)P−2

follows. From m ≥ 1 and C ≥ 105 we get

P ≥ (5
√
C − T )(T + 4

√
C) > 0.9988

√
C · 8

√
C > 7.99C,

consequently
P−1 <

1
7.99C .

Hence,
(9C − 1)P−2 <

9C − 1
(7.99C)2 < 0.0014.

Now

0 < log P
Q

= − log
(

1 − P −Q

P

)
< (9C − 1)P−2 + (9C − 1)2P−4

= (1 + (9C − 1)P−2)(9C − 1)P−2 < 1.0014(9C − 1)P−2

= 1.0014(9C − 1) · (T + 4
√
C)−2m

(Z0 +X0
√
C)2

<
1.0014(9C − 1)
(0.9988

√
C)2

(T + 4
√
C)−2m

< 9.035(T + 4
√
C)−2m.

Thus we have proved the following lemma.
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Lemma 4.1. Let Vm = Wn, with m,n ̸= 0. Then

0 < m log(T + 4
√
C) − n log(S + 2

√
2C) + log Z0 +X0

√
C

Z1 + 0.5Y1
√

2C
< 9.035(T + 4

√
C)−2m.

5. Connection between indices and their lower bound

The next step is to find connection between indices m and n if Vm = Wn,
m,n ̸= 0. We will see that the indices are not far from each other. We have

Vm ≥ (2T − 1)m−1V1 and Wn < (2S)n−1W1.

Considering the possible cases, if Z0 = Z1 = ±1, X0 = Y1 = 3, then obviously
m < n follows from

(2T − 1)m−1(12C ± T ) < (2S)n−1(6C ± S).

In case of Z0 = ±T , X0 = 5, Z1 = ±1, Y1 = 3 we see

(2T − 1)m−1(20C − 16C − 1) < (2S)n−1(6C + S),

i.e. for C ≥ 105 we conclude

3.99(2T − 1)m−1 < 6.28(2S)n−1.

The last inequality appears in the case V2m+1 = W2n, i.e. we have

3.99(2T − 1)2m < 6.28(2S)2n−1,

which is obviously impossible if 2m > 2n − 1. Thus, V2m+1 = W2n yields
2m+ 1 < 2n.

Hence Vm = Wn always implies n > m. To get upper bound on n in
terms of m we use the inequality of linear form in logarithms. Consider the
“worst” case providing

n log(S + 2
√

2C) < m log(T + 4
√
C) + log Z0 +X0

√
C

Z1 + 0.5Y1
√

2C

< m log(T + 4
√
C) + log 5

√
C + T

1 + 1.5
√

2C
< m log(T + 4

√
C) + 1.44532.

Thus

n < m · log(T+4
√
C)

log(S+2
√

2C)
+ 1.44532

log(S+2
√

2C)
< m · log(8.0012

√
C)

log(4
√

2 ·
√
C)

+ 0.356004

< 1.085404m+ 0.356004 < 1.44108m.

Summarizing the estimates, we have proved the following statement.

Lemma 5.1. Let Vm = Wn with m,n ̸= 0. Then m < n < 1.44108m.
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The useful congruence statements

V2m ≡ (32m2C + 1)Z0 + 8mTCX0 (mod 64C2),
V2m+1 ≡ (32m(m+ 1)C + 1)TZ0 + 4(2m+ 1)CX0 (mod 64C2),
W2n ≡ (16n2C + 1)Z1 + 4nSCY1 (mod 64C2),

W2n+1 ≡ (16n(n+ 1)C + 1)SZ1 + 2(2n+ 1)CY1 (mod 64C2)

can be proved easily by induction.
If V2m = W2n, then we get

±(32m2C + 1) + 24TCm ≡ ±(16n2C + 1) + 12SCn (mod 64C2).

Divide it by 4C to find

(5.1) ±8m2 + 6mT ≡ ±4n2 + 3nS (mod 16C).

If we assume m ≤ 0.5
√
C, then we see that this congruence actually becomes

equation. Indeed, we have

8m2 < 8 · 0.25C = 2C,

6mT < 6 · 0.5
√
C ·

√
16C + 1 < 3

√
C · 4.0012

√
C = 12.0036C,

4n2 < 4 · (1.44108m)2 <8 .307m2 < 2.08C,
3nS < 6mT < 12.0036C.

We can also see that both sides of (5.1) are positive. Indeed,

8m2 < 8m · 0.5
√
C = 4m

√
C < mT < 6mT,

4n2 < 4n · 1.44108m < 5.77n · 0.5
√
C < 3nS.

Hence, we arrived at

±8m2 + 6mT = ±4n2 + 3nS.

The left hand side is obviously larger in case of the ‘+’ sign. If we consider
‘−’ case, then

6mT − 8m2 = (6T − 8m)m > 20m
√
C.

On the other hand

3nS − 4n2 < 3nS < 8.4904n
√
C

holds. The last two inequalities imply n > 2.355m, a contradiction. Conse-
quently, we may assume m > 0.5

√
C, and in our case (V2m = W2n) it becomes

2m >
√
C.

Let us now consider the second case V2m+1 = W2n. Then the correspond-
ing congruences modulo 64C2 give us

±(32m(m+1)+1)T 2 +20(2m+1)C ≡ ±(16n2C+1)+12nSC (mod 64C2).
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Using T 2 = 16C + 1 we straightforwardly have
±(32m(m+ 1)C + 16C) + 20(2m+ 1)C ≡ ±16n2C + 12nSC (mod 64C2),
and finally dividing it by 4C leads to

±4(2m(m+ 1) + 1) + 5(2m+ 1) ≡ ±4n2 + 3nS (mod 16C).

Now, if we assume n ≤ 0.79
√
C, the last congruence becomes

±4(2m(m+ 1) + 1) + 5(2m+ 1) = ±4n2 + 3nS.

Then the assumption n ≤ 0.79
√
C would imply that the right hand side is

always larger, so we derive n > 0.79
√
C, and then

1.44108(2m+ 1) > 2n > 2 · 0.79
√
C = 1.58

√
C,

which shows 2m+ 1 >
√
C. Thus we obtain the following conclusion.

Lemma 5.2. Let Vm = Wn, m,n ̸= 0. Then m >
√
C.

6. Proof of Theorem 1.3

For the linear form in logarithms of Lemma 4.1 we will use the following
theorem of Baker-Wűstholz [1]:

Theorem 6.1. Let Λ ̸= 0 be linear form in logarithms of ℓ algebraic
numbers α1, . . . , αℓ with rational integer coefficients b1, . . . , bℓ. Then

log Λ ≥ −18(ℓ+ 1)!ℓℓ+1(32d)ℓ+2h′(α1) · · ·h′(αℓ) log(2ℓd) logB,
where B = max{|b1|, . . . , |bℓ|}, d is the degree of the number field generated
by α1, . . . , αℓ. Here

h′(α) = max
{
h(α), | logα|

d
,

1
d

}
and h(α) denotes the standard Weil logarithmic height of α.

We apply this theorem to the linear form from Lemma 4.1 with ℓ = 3,
d = 4, and B = n, moreover with

α1 = T + 4
√
C, α2 = S + 2

√
2C, α3 = Z0 +X0

√
C

Z1 + 0.5Y1
√

2C
.

By the condition C ≥ 105 we have

h′(α1) = 1
2 log(T + 4

√
C) < 0.4735 logC,

h′(α2) = 1
2 log(S + 2

√
2C) < 0.4363 logC.

Obviously, all conjugates of α3 are Z0±X0
√

C

Z1±0.5Y1
√

2C
.
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Let ε, δ ∈ {1,−1}. Thus the minimal polynomial of α3 over Q is∏
ε,δ

(
X − Z0 + ε ·X0

√
C

Z1 + δ · 0.5Y1
√

2C

)
.

So when computing h′(α3) we have

h′(α3) = 1
4 log

(
ad

∏
max{α′, 1}

)
,

where ad is the leading coefficient of the minimal polynomial in Z[X] and the
product goes over all conjugates of α3. It is enough to get an upper bound
on h′(α3) without computing it exactly. Notice that, among the conjugates
of α3, 5

√
C−T

1.5
√

2C±1 are less than 1. It means that we have

h′(α3) ≤ 1
4 log

(
(9C − 2)2 · 2(T + 5

√
C)2

(9C − 2)

)
< 0.89133 logC.

From Lemma 4.1 we also conclude
log(9.035(T + 4

√
C)−2m) < log(T + 4

√
C)−2m+1 < 0.9469(−2m+ 1) logC,

which together with Baker-Wűstholz theorem implies
0.9469(2m− 1) logC < 3.822 · 1015 · 0.4735 · 0.4363 · 0.89133 · (log3 C) · logn.
Using n < 1.44108m we conclude

2m− 1 < 7.4325 · 1014 log(1.44108m) log2(m2),
where we have used the bound C < m2. It finally yields

m < 1.5024 · 1020,

and then C < 2.2573 · 1040 and k ≤ 27. Hence, we have just proved the
following.

Proposition 6.2. Let k > 27 be an integer. Then the Triangular Dio-
phantine triple of the form {1, 2, ck} cannot be extended to a quadruple with
a larger element.

To finish the proof of Theorem 1.3, we applied a version of Baker-
Davenport reduction (see [2, Lemma 5]) to the linear form from Lemma 4.1,
which is already well known method in proving similar results. We have im-
plemented it in GP-Pari, and in all cases, after one step of reduction, we got
m ≤ 5 which is small enough to get a contradiction (and then no extension
to a quadruple except the trivial one with d = 0), because we have already
proved that m ≥

√
C ≥

√
105 > 10 if m,n ̸= 0.
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Trokutasti Diofantovi skupovi koji sadrže par {1, 2}

Alan Filipin i László Szalay

Sažetak. U ovom řadu smo dokazali kako ne postoji
četveročlani skup prirodnih brojeva {1, 2, c, d} tako da je produkt
bilo koja dva njegova elementa uvećan za 1 jednak nekom troku-
tastom broju.
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