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SOLUTIONS OF THE MARKOFF EQUATION IN
TRIBONACCI NUMBERS

Hayder R. Hashim

Abstract. In this paper, we determine all of the positive integer
solutions of the so-called Markoff equation x2 + y2 + z2 = 3xyz in the
sequence of Tribonacci numbers {Tn}, i.e. (x, y, z) = (Ti, Tj , Tk) such that
i, j, k ≥ 2.

1. Introduction

The Markoff equation is a well known Diophantine equation that has the
form
(1.1) x2 + y2 + z2 = 3xyz,
where x, y, z ∈ N such that z ≥ y ≥ x, and a solution (x, y, z) of this equation
is called a Markoff triple whose components are Markoff numbers. Indeed,
this equation was deeply studied by Markoff in 1879 − 1880 [12, 13] in which
he proved that there are infinitely many Markoff triples that can be obtained
by the base solution (1, 1, 1) with the triples (y, z, 3yz−x) and (x, z, 3xz−y).
These numbers firstly appeared to describe the minimal values of indefinite
quadratic forms with which he showed that these forms are in one-to-one
correspondence with the Markoff triples.

Several authors have generalized and studied the solutions of this equation
in many ways over integer, natural, or complex numbers or over some finite
fields, e.g. by Baer and Rosenberger [1], Baragar and Umeda [2], González-
Jiménez [4], Hu and Li [7], Hurwitz [8], Jin and Schmidt [9], Rosenberger [14],
and the references given there.

Recently, many studies have been devoted to investigating the solutions,
that are numbers in some binary recurrence sequences, of the Markoff equation
and some of its generalizations. For instance, in 2018 Luca and Srinivasan [11]
determine all of the Markoff triples whose components are Fibonacci numbers,
i.e. x = Fi, y = Fj and z = Fk. In 2020, Kafle, Srinivasan and Togbé [10]
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found the Markoff triples containing components of Pell numbers. In the same
year, Tengely [18] found all of the triples with Fibonacci terms of the so called
Markoff-Rosenberger equation. In my recent result with Tengely [5], we stud-
ied the solutions, that are presenting Fibonacci numbers, of another general-
ization called the Jin-Schmidt equation. Furthermore, Szalay, Tengely and I
[6] gave general results regarding the Markoff-Rosenberger triples (Gi, Gj , Gk)
with generalized Lucas number components. Then, we applied these results
to find the Markoff-Rosenberger triples containing only Jacobsthal numbers
or balancing numbers. Such results can be found in a recent survey written
by Srinivasan in [16]. Indeed, all of these results deal with the determination
of the solutions of the Markoff equation and some of its generalizations in cer-
tain binary recurrence sequences. Therefore, we introduce here a technique
for determining the solutions of the Markoff equation (1.1) containing terms of
a certain ternary sequence presented by the Tribonacci sequence whose terms
are given by

(1.2) T0 = 0, T1 = T2 = 1, Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

This means we investigate all of the Markoff triples (x, y, z) = (Ti, Tj , Tk)
satisfying equation (1.1) with i, j, k ≥ 2. Since T1 = T2 = 1, we assumed the
indices of the components are greater than or equal to 2.

2. Auxiliary results

In order to present our main result, we present here some auxiliary results
concerning the Tribonacci sequence {Tn}. We first introduce the characteris-
tics polynomial of this sequence as follows (see e.g. [3])

x3 − x2 − x− 1 = 0,

with the roots

α = 1 + δ+ + δ−

3 , β = 2 − δ+ − δ−

6 + i

√
3(δ+ − δ−)

6 and γ = β,

where δ± = 3
√

19 ± 3
√

33. It follows that α ∈ (1.83, 1.84) and |β| = |γ| =
α−1/2 ∈ (0.73, 0.74).

Moreover, due the result of Spickerman [15] the Binet’s formula for this
sequence is defined as follows

(2.1) Tn = aαn + bβn + cγn for n ≥ 0,

where

a = ((α− β)(α− γ))−1, b = ((β − α)(β − γ))−1 and c = b

such that
a ∈ (0.18, 0.19) and |b| = |c| ∈ (0.35, 0.36).
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Furthermore, it is also know that the following inequality is satisfied for all
n ≥ 1

(2.2) αn−2 ≤ Tn ≤ αn−1.

Note that the above inequality can be proven easily using induction.

3. Main result

Theorem 3.1. If x = Ti, y = Tj and z = Tk with i, j, k ≥ 2, then the set
of solutions of equation (1.1) is completely given by

(x, y, z) ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)}.

Remark 3.2. In order to prove Theorem 3.1 by detemining the complete
set of the solutions (x, y, z) = (Ti, Tj , Tk) of equation (1.1), we start the pro-
cedure by studying the set of solutions of this equation under the assumption
k ≥ j ≥ i ≥ 2. Then, we permute the components of each triple of solution
to obtain the complete set of solutions of the Markoff equation.

Proof of Theorem 3.1. The main technique for studying the solutions
(Ti, Tj , Tk) of equation (1.1) under the assumption k ≥ j ≥ i ≥ 2 is summa-
rized in the following steps:

• Determining an upper bound for i. Substituting (x, y, z) = (Ti, Tj , Tk)
in equation (1.1) gives that

T 2
i + T 2

j + T 2
k = 3TiTjTk,

which can be further written as

Tk − 3TiTj = −
T 2

i + T 2
j

Tk
.

Inserting the corresponding Binets’s formulas defined in (2.1) in the
terms of the left hand side of the above equation gives that

aαk − 3a2αi+j = −
T 2

i + T 2
j

Tk
− bβk − cγk + 3(abαiβj

+ acαiγj + abαjβi + b2βi+j + bcβiγj

+ acαjγi + bcβjγi + c2γi+j).

The absolute values of both sides of the above equation leads to the
inequality∣∣aαk − 3a2αi+j

∣∣ ≤

∣∣∣∣∣T 2
i + T 2

j

Tk

∣∣∣∣∣+
∣∣bβk + cγk

∣∣+ |3(abαiβj

+ acαiγj + abαjβi + b2βi+j + bcβiγj

+ acαjγi + bcβjγi + c2γi+j)|.
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Based on the assumption that 2 ≤ i ≤ j ≤ k (or −k ≤ −j) and
inequality (2.2), we get that

(3.1)

∣∣∣∣∣T 2
i + T 2

j

Tk

∣∣∣∣∣ ≤

∣∣∣∣∣2T 2
j

Tk

∣∣∣∣∣ ≤
∣∣2α2j−k

∣∣ ≤ 2αj .

By using the facts that |β| = |γ| = α−1/2 and |b| = |c| with the
assumption of −k ≤ −j < j, we obtain that

(3.2)
∣∣bβk + cγk

∣∣ ≤ (|b| + |c|)α−k/2 ≤ (|b| + |c|)α−j/2 < 2 |c|αj ,

and similarly we get that

|3(abαiβj + acαiγj + abαjβi + b2βi+j + bcβiγj + acαjγi

+ bcβjγi + c2γi+j)| < 12(|ac| +
∣∣b2∣∣)αj .

(3.3)

Based on the inequities (3.1)-(3.3) and the facts that a ∈ (0.18, 0.19)
and |b| = |c| ∈ (0.35, 0.36), we have that∣∣aαk − 3a2αi+j

∣∣ <(2 + 2(0.36) + 12[(0.19)(0.36)
+ (0.36)2])αj < 5.096αj .

Multiplying the above inequality by 1
aαi+j , we get that

(3.4)
∣∣αk−i−j − 3a

∣∣ < 5.096
aαi

<
5.096
0.18αi

< 28.4α−i as a > 0.18.

Suppose that
B = min

I∈Z

∣∣αI − 3a
∣∣ .

Lemma 3.3. For all α ∈ (1.83, 1.84) and a ∈ (0.18, 0.19), we have
B > 0.007.

Proof. We first consider the case where I = 0. Here, we have
that

|1 − 3a| > 0.43.

On the other hand, if I < 0 then αI ≤ α−1 < 0.547. This implies that
−αI > −0.547. Therefore,

min
I<0

∣∣αI − 3a
∣∣ > min |3a− 0.547| > 0.007.

Similarly, if I > 0 then

min
I>0

∣∣αI − 3a
∣∣ ≥ min |α− 3a| > 1.26.

Thus, we conclude that B ≥ 0.007.



SOLUTIONS OF THE MARKOFF EQUATION IN TRIBONACCI NUMBERS 75

Therefore, inequality (3.4) gives that

αi <
28.4
B

<
28.4
0.007 < 4057.2,

which implies that

i <
ln(4057.2)

ln(α) <
ln(4057.2)
ln(1.83) < 13.75.

Hence, i ≤ 13.
• Determining an upper bound for k − j. Starting with inequality (3.4),

we get that∣∣∣∣αk−i−j
∣∣− |3a|

∣∣ ≤
∣∣αk−i−j − 3a

∣∣ < 28.4α−i <
28.4
α2

<
28.4
1.832 < 8.5 with i ≥ 2.

This implies that∣∣αk−i−j
∣∣ < 8.5 + 3(0.19) = 9.07.

Hence,

k − j <
ln(9.07)

ln(α) + i <
ln(9.07)
ln(1.83) + 13 < 16.7.

Thus, k ≤ j + 16.
• Eliminating the values of i. Here, we eliminate every value of i with

2 ≤ i ≤ 13 with which the Markoff equation (1.1) is not satisfied in
case of (x, y, z) = (Ti, Tj , Tk) where k ≥ j ≥ i ≥ 2. In other words, we
solve the following Diophantine equation in y and z

(3.5) T 2
i + y2 + z2 − 3Tiyz = 0,

with 2 ≤ i ≤ 13. Indeed, this can be done using the SageMath software
[17] with an algorithm implemented as solve_diophantine(). Note
that equation (1.1) has no solution of the form (Ti, Tj , Tk) if there is no
i with which equation (3.5) is solvable. It follows that equation (3.5)
is solvable for y and z only in case of i ∈ {2, 3, 6}.

• Determining the corresponding values of j and k. For each i ∈ {2, 3, 6},
we present here a technique for determining the corresponding values
of j and k for which equation (1.1) is solvable in (x, y, z) = (Ti, Tj , Tk)
with 2 ≤ i ≤ j ≤ k. Indeed, we present the procedure of this technique
in details in case of i = 2, and the other cases will be handled similarly.
So, let us start with i = 2. Thus, equation (1.1) becomes as

(3.6) T 2
j + T 2

k − 3TjTk + 1 = 0,

with k ∈ {j, j + 1, . . . , j + 16} and j ≥ 2. Therefore,
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– If k = j, then from equation (3.6) leads to Tj = 1 where j ≥
2. Hence, j = 2 = k. Therefore, (x, y, z) = (Ti, Tj , Tk) =
(T2, T2, T2) = (1, 1, 1) is a solution for equation (1.1).

– If k = j + 1, then from equation (3.6) we obtain that

(3.7) T 2
j + T 2

j+1 − 3TjTj+1 + 1 = 0,

where j ≥ 2. Here, we claim that the above equation holds only
with j = 2. In fact, it is clear that equation (3.7) holds with
j = 2. So, (x, y, z) = (T2, T2, T3) = (1, 1, 2) is a solution of
equation (1.1). It remains to prove that equation (3.7) is not
satisfied with j ≥ 3. Here, our technique mainly depends on the
substitution of the Tribonacci sequence formula defined in (1.2)
in the left of equation (3.7) (this could be done several times) in
order to show that

T 2
j + T 2

j+1 − 3TjTj+1 + 1 < 0,

where j ≥ 3. Starting with the left hand side of the above
inequality, we have that

T 2
j + T 2

j+1 − 3TjTj+1 + 1

= T 2
j + (Tj + Tj−1 + Tj−2)2 − 3Tj(Tj + Tj−1 + Tj−2) + 1

= −T 2
j + T 2

j−1 + T 2
j−2 − Tj−1Tj − Tj−2Tj + 2Tj−2Tj−1 + 1

= −T 2
j + T 2

j−1 − Tj−1Tj + Tj−2Tj−1 − Tj−2Tj−3 + 1

= −T 2
j − Tj−1Tj−3 − Tj−2Tj−3 + 1

< 0 for all j ≥ 3.

(3.8)

This is a contradiction for equation (3.7) and hence proves our
claim.

– If k = j + 2, then from equation (3.6) we get that

(3.9) T 2
j + T 2

j+2 − 3TjTj+2 + 1 = 0.

First, if j = 2, then the above equation leads to T 2
2 + T 2

4 −
3T2T4 + 1 = 6, which is clearly a contradiction. Following the
same approach described in (3.8), one can easily prove that T 2

j +
T 2

j+2 − 3TjTj+2 + 1 > 0 for all j ≥ 3. Indeed, this can be done
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as follows:
T 2

j + T 2
j+2 − 3TjTj+2 + 1

= T 2
j + (Tj+1 + Tj + Tj−1)2 − 3Tj(Tj + Tj−1 + Tj−2) + 1

= −T 2
j + T 2

j−1 + T 2
j+1 − Tj−1Tj − TjTj+1 + 2Tj−1Tj+1 + 1

= −T 2
j + 3T 2

j−1 + T 2
j+1 + Tj−1Tj − TjTj+1 + 2Tj−1Tj−2 + 1

= T 2
j−2 + 4T 2

j−1 + 3Tj−1Tj − TjTj+1 + 2Tj−2(2Tj−1 + Tj) + 1

= 3T 2
j−1 + 2Tj−1Tj + TjTj−2 + 2Tj−1Tj−2

− TjTj−3 − Tj−1Tj−3 − Tj−2Tj−3 + 1
> 0 for all j ≥ 3.

(3.10)

Therefore, equation (3.9) does not hold for all of the values of
j ≥ 2.

– If k ∈ {j + 3, j + 4, . . . , j + 16} with j ≥ 2. Here, we show that
equation (3.6) does not hold by a contradiction. From equation
(3.6), we have that

T 2
j + 1 = 3TjTk − T 2

k = Tk(3Tj − Tk),

which mean that Tk < 3Tj and hence k ≤ j + 2. This is a
contradiction since k ≥ j + 3.

Now, it remains to deal with the other cases where i = 3 or 6 in which
the equation (1.1) becomes

(3.11) T 2
j + T 2

k − 6TjTk + 4 = 0

or

(3.12) T 2
j + T 2

k − 39TjTk + 169 = 0,

with j ≥ 3 or j ≥ 6 (and k ∈ {j, j + 1, . . . , j + 16}), respectively. In
fact, one can follow exactly the same approach described above in case
of i = 2 to show that there is no solution (3, j, k) with 3 ≤ j ≤ k or
(6, j, k) with 6 ≤ j ≤ k for which equation (3.11) or (3.12) is satisfied.
Therefore, we omit the details of computations.

• Permuting the components of the solutions. The obtained solutions
(i.e. (x, y, z) = (Ti, Tj , Tk) = (1, 1, 1) and (1, 1, 2)) represent solutions
of the Markoff equation (1.1) under the assumption that 2 = i ≤ j ≤ k.
As noted in Remark 3.2, we have to permute the components of these
solutions to obtain the other distinct solutions of the Markoff equation
without this assumption. It follows that the complete set of solutions
of the Markoff equation is presented by

(x, y, z) ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)}.

Hence, Theorem 3.1 is completely proved.
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Rješenja Markovljeve jednadžbe u Tribonaccijevim brojevima

Hayder R. Hashim

Sažetak. U ovom članku odredujemo sva rješenja u prirod-
nim brojevima Markovljeve jednadžbe x2 +y2 +z2 = 3xyz u nizu
Tribonaccijevih brojeva {Tn}, tj. (x, y, z) = (Ti, Tj , Tk) tako da
je i, j, k ≥ 2.
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