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A NOTE ON LOWER BOUNDS FOR RANKS USING PELL
EQUATIONS

P. G. Walsh

Abstract. In this short note, we examine the ranks of a subfamily
of curves from a previous paper derived from the existence of solutions to
certain Pell equations. We exhibit an abundance of curves of moderately
large rank, and using certain well known results from Diophantine analysis,
we prove under mild conditions that these curves have rank at least three
provided that the constant coefficient of the cubic polynomial defining the
curve is sufficiently large.

1. Introduction

In a previous paper [5], it was shown that an elliptic curve taking the
form

y2 = x(x+ a)(x+ b) +m2,

with a, b distinct non-zero integers, and any sufficiently large integer m, has
rank at least 2. This result was motivated by the main result in the seminal
paper [1] of Brown and Myers, which considered the particular case a = 1, b =
−1. Related to their paper is a recent paper by Hatley and Stack [2], in which
they study the subfamily of curves in [1] with m2 replaced by m6. This latter
modification can be a profitable one from the point of view of increasing the
rank of the curve. In particular, if a and b defining the curve above give rise
to a certain Pell equation which is solvable, one can show the following, which
constitutes the main result of this paper.

Theorem 1.1. Let a and b be distinct coprime integers for which the Pell
equation

X2 − (a+ b)Y 2 = −ab
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is solvable, and let (X,Y ) = (n,m) be an integer solution. Assume further
that the polynomials Fa,b(x,m), Ga,b(x,m) and Ha,b(x,m) in the proof below
are irreducible in Q[x,m]. Then for m sufficiently large, the rank of the curve

E : y2 = x(x+ a)(x+ b) +m6 (1.2)

is at least 3.

The polynomials Fa,b(x,m), Ga,b(x,m) and Ha,b(x,m) are irreducible
as polynomials in Q[x,m, a, b], and our ongoing computations indicate that
they are irreducible in Q[x,m] for all distinct positive integers a and b. The
polynomial Fa,b(x,m) is given explicitly in the proof of Theorem 1.1, however
Ga,b(x,m) and Ha,b(x,m) are sufficiently long that we refer the reader to [6]
to access them.

At this point we exhibit a few relatively small examples in order to give
the reader a sense of how useful this construction can be for finding curves
with rank of moderate size, although we make absolutely no claims in the
direction of breaking any records.

Example 1.2. Let (a, b) = (1, 2). The Pell equation X2 − 3Y 2 = −2 has
the solution (X,Y ) = (1, 1), which we write as α = 1 +

√
3, giving m = 1,

and in this case, the curve defined in Theorem 1.1 has rank 1. However, as
we multiply α by powers of the fundamental unit ϵ3 = 2 +

√
3 to get more so-

lutions to the above Pell equation, things change in our favour in quite a hurry.

k = 0, αϵk3 = 1 +
√

3, E : y2 = x3 + 3x2 + 2x+ 1, r = 1.
k = 1, αϵk3 = 5 + 3

√
3, E : y2 = x3 + 3x2 + 2x+ 36, r = 4.

k = 2, αϵk3 = 19 + 11
√

3, E : y2 = x3 + 3x2 + 2x+ 116, r = 5.
k = 3, αϵk3 = 71 + 41

√
3, E : y2 = x3 + 3x2 + 2x+ 416, r = 7.

k = 4, αϵk3 = 265 + 153
√

3, E : y2 = x3 + 3x2 + 2x+ 1536, r = 5.
k = 5, αϵk3 = 989 + 571

√
3, E : y2 = x3 + 3x2 + 2x+ 5716, r = 6.

k = 6, αϵk3 = 3691 + 2131
√

3, E : y2 = x3 + 3x2 + 2x+ 21316, r = 6.

Example 1.3. The Pell equation in the statement of Theorem 1.1 is al-
ways solvable when a = 1, and to exploit the existence of a small fundamental
unit, as in the previous example, one can put b = t2 − 2 so that the discrimi-
nant a+ b = t2 − 1. In this way, the first few corresponding solutions to the
Pell equations, and their corresponding parametric family of elliptic curves,
are as follows.

k = 0, αϵk = 1 +
√
t2 − 1,

E0(t) : y2 = x3 + (t2 − 1)x2 + (t2 − 2)x+ 1.
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k = 1, αϵk = t2 + t− 1 + (t+ 1)
√
t2 − 1,

E1(t) : y2 = x3 + (t2 − 1)x2 + (t2 − 2)x+ (t+ 1)6.

k = 2, αϵk = 2t3 + 2t2 − 2t− 1 + (2t2 + 2t− 1)
√
t2 − 1,

E2(t) : y2 = x3 + (t2 − 1)x2 + (t2 − 2)x+ (2t2 + 2t− 1)6.

The reader may wish to attempt to compute the ranks of these curves,
although their heights grow extremely rapidly, perhaps requiring developing
methods which make use of Mestre-Nagao sums (the reader is referred to [3]
and its references for more on this topic). At the time of writing, the record
is rk(E1(6001)) = 9 sent to the author recently by Andrej Dujella.

2. Proof of Theorem 1.1

We now turn our attention to the proof of Theorem 1.1. It is al-
ready known from [5] that E is 2-torsion free, and that P = (−a,m3)
and Q = (−b,m3) are independent points on E. Let R denote the point
R = (−m2,mn), which is on E because of the fact that (n,m) is an integer
solution to the Pell equation in the statement of the theorem. In order to
show that R is a third independent point on E, we apply Proposition 1.5 of
[2] by showing that none of R, P + R, Q+ R and P +Q+ R are doubles of
a point on E. The polynomials F , G, and H arise from each of these cases
respectively (the case P +R is the same as Q+R).

Let (x, y) denote a point on E, and assume that 2(x, y) = R = (−m2,mn).
Using the doubling formulae on E from p.54 of [4], equating the corresponding
quantities in the x coordinates, and translating x by m2, one obtains the
equation Fa,b(x,m) = 0, where Fa,b(x,m) is given by

x4+(4am2+4bm2−6m4−2ab)x2+(8abm2−8am4−8bm4)x+(9m8−6m4ab+a2b2).
In order to derive the desired result, one requires that certain properties hold
with regard to Fa,b(x,m). Firstly, the curve defined by Fa,b(x,m) = 0 is
singular, but can be desingularized by the map x → xm, and the resulting
curve has genus equal to 5. Therefore, if it were known that Fa,b(x,m) is
irreducible as a polynomial in Q[x,m] for every pair a, b being considered in
the statement of the theorem, the proof that R is not in 2E would be complete
by Faltings theorem.

In order to show that none of P + R,Q + R and P + Q + R are in 2E,
we follow the same approach. A computation almost identical to that above,
equating the x-coordinate of 2(x, y) and that of P + R, yields a polynomial
Ga,b(x,m) of degree 8 in x. Thus, a solution to 2(x, y) = P +R gives rise to
an integer solution to Ga,b(x,m) = 0. Similar to Fa,b(x,m), the polynomial
Ga,b(x,m) is irreducible in Q[x,m, a, b] when regarded as a polynomial in four
variables, and has been computationally verified to be irreducible in Q[x,m]
for all distinct positive integers 1 < a < b up to 103. For a = 1, G is divisible
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by m2 − 1, and so in this case, G is replaced by the cofactor. The weighted
sum of highest order terms of Ga,b(x,m) satisfies the reducibility hypothesis
of Runge’s theorem on Diophantine equations (see [7]). Therefore, under the
irreducibility condition, one can assert that m is bounded effectively in terms
of a and b. The interested reader can access Ga,b(x,m) directly from [6].

Finally, for the case P + Q + R, one can follow the identical procedure
using the equation 2(x, y) = P +Q+R. This results in an integer solution to
an equation of the form Ha,b(x,m) = 0 in which the polynomial Ha,b(x,m) is
irreducible in Q[x,m, a, b], and has been verified to be irreducible in Q[x,m]
for all pairs of distinct positive integers (a, b) up to 103. The curve defined by
Ha,b(x,m) = 0 is of positive genus, and hence the argument given above for
Fa,b(x.m) shows that the equation Ha,b(x,m) = 0 is not solvable in integers
(x,m) for m large, which completes the proof of the theorem.

Remark 2.1. Each of the parametric curves Ei(t) (−10 ≤ i ≤ 10) have
been verified using Magma to have rank at least 3 over Q(t) by showing
that P , Q and R are linearly independent over the function field. Therefore,
Silverman’s Specialization Theorem (see Theorem 20.3 in [4]) provides an
effective proof that the curves in these families have rank at least 3 for t
sufficiently large.
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O donjim granicama za rangove pomoću Pellovih jednadžbi

P. G. Walsh

Sažetak. U ovom kratkom članku ispitujemo rangove
potfamilije krivulja iz prethodnog rada izvedene iz postojanja
rješenja odredenih Pellovih jednadžbi. Prikazujemo obilje
krivulja umjereno velikog ranga, a koristeći odredene dobro poz-
nate rezultate iz diofantske analize, dokazujemo pod blagim uvje-
tima da te krivulje imaju rang najmanje tri ako je konstantni
koeficijent kubnog polinoma koji definira krivulju dovoljno velik.
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