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A GEOMETRIC APPROACH TO ELLIPTIC CURVES WITH
TORSION GROUPS Z/10Z, Z/12Z, Z/14Z, AND Z/16Z

Lorenz Halbeisen, Norbert Hungerbühler, Arman Shamsi Zargar
and Maksym Voznyy

Abstract. We give new parametrisations of elliptic curves in Weier-
strass normal form y2 = x3 + ax2 + bx with torsion groups Z/10Z and
Z/12Z over Q, and with Z/14Z and Z/16Z over quadratic fields. Even
though the parametrisations are equivalent to those given by Kubert and
Rabarison, respectively, with the new parametrisations we find three infi-
nite families of elliptic curves with torsion group Z/12Z and positive rank.
Furthermore, we find elliptic curves with torsion group Z/14Z and rank 3 –
which is a new record for such curves – as well as some new elliptic curves
with torsion group Z/16Z and rank 3.

1. Introduction

An elliptic curve E over a field K is a smooth projective curve of genus 1
equipped with a K-rational point. When embedded in the affine plane, E is
described by the Weierstrass model y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6,
where the coefficients belong to K. Elliptic curves can be represented by
several other equations. The interested reader may consult [14, Ch. 2]. In
the few past decades, many alternative equations describing E have been
introduced in the context of cryptographic applications.

Given an elliptic curve E defined over a field K, the Mordell–Weil theorem
shows that as an abelian group E(K) is finitely generated over a number field.
In particular, E(K) ∼= T × Zr, where the torsion group T is finite. The non-
negative integer r is called the rank.

Many number theorists have tried to construct families of elliptic curves
with rank as high as possible. The rank of an elliptic curve measures, in some
sense, the number of rational points on the curve. Despite this, there is no
known algorithm guaranteed to compute the rank.
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With a geometric approach developed in [5], we investigate the rank of
elliptic curves with torsion groups Z/10Z and Z/12Z over Q, and with tor-
sion groups Z/14Z and Z/16Z over quadratic fields. In particular, we give
new parametrisations of elliptic curves in Weierstrass normal form for these
curves. Even though the parametrisations are equivalent to those given by
Kubert [6] and Rabarison [12], respectively, especially the parametrisation of
elliptic curves with torsion group Z/14Z and Z/16Z over quadratic fields are
novel (see [3]). By our approach, we are able to find parametrisations of el-
liptic curves with torsion groups Z/10Z and Z/12Z, and we provide three
infinite families of curves with torsion group Z/12Z and positive rank. Fur-
thermore, we find elliptic curves with torsion group Z/14Z and rank 3 – which
is a new record for such curves, as well as some new elliptic curves with tor-
sion group Z/16Z and rank 3. Consult [2, 3] for the current records on the
rank of elliptic curves (with prescribed torsion groups) over the rational and
quadratic fields.

2. A geometric approach to elliptic curves

In this section we present a geometric approach to elliptic curves with
torsion groups Z/2nZ over arbitrary fields. The approach is based on a ruler
construction of cubic curves due to Schroeter [13], which was further developed
and applied to elliptic curves in [5].

Let F be a finite field extension of Q and let

Γa,b : y2 = x3 + ax2 + bx

with a, b ∈ F be a cubic curve. Furthermore, let T := (0, 0). Then T belongs
to Γa,b and T + T = O, where O denotes the neutral element of the Mordell–
Weil group of Γa,b and “+” is the group operation. If A is a point on Γa,b,
then we call the point Ā := T + A the conjugate of A. Since T + T = O, we
have

¯̄A = T + Ā = T + T +A = O +A = A.

Furthermore, for points A,B on an elliptic curve Γ (over F), let

A#B := −(A+B).

In particular, if C = A#A, then the line through C and A is tangent to Γa,b

with contact point A.
The following fact gives a connection between conjugate points and tan-

gents (see Figure 1):

Fact 2.1. If A, Ā,B are three points on Γa,b which lie on a straight line,
then A#A = B̄.

Proof. If A, Ā,B are three points on Γa,b lying on a straight line, then
A + Ā = −B (see Figure 1). Thus, A + T + A = T + A + A = −B, which
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implies

A+A = T + (T +A+A) = T + (−B)
= (−T ) + (−B) = −(T +B) = −B̄.

Therefore, the line AB̄ is tangent to Γa,b with contact point A, i.e., A#A = B̄.

x

y

T

A

Ā

A# T

B
B̄

B # T

Γa,b

Figure 1. Conjugate points and tangents.

In homogeneous coordinates, the curve y2 = x3 + ax2 + bx becomes

Γ : Y 2Z = X3 + aX2Z + bXZ2.

Assume now that Ã = (x0, y0, 1) is a point on the cubic Γ, where x0, y0 ∈ F
and y0 ̸= 0. Then the point (1, 1, 1) is on the curve

y2
0 Y

2Z = x3
0 X

3 + a x2
0 X

2Z + b x0 XZ
2.

Now, by exchanging X and Z (i.e., (X,Y, Z) 7→ (Z, Y,X)), dehomogenising
with respect to the third coordinate (i.e., (Z, Y,X) 7→ (Z/X, Y/X, 1)), and
multiplying with 1/y2

0 , we obtain that the point A = (1, 1) is on the curve

Γα,β,γ : y2x = α+ βx+ γx2,

where α, β, γ ∈ F. Notice that since A = (1, 1) is on Γα,β,γ , we have α+β+γ =
1. We denote this projective transformation which maps Γa,b to Γα,β,γ and Ã
to A by Φ.
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In homogeneous coordinates, the neutral element of Γα,β,γ is O = (0, 1, 0),
and the image under Φ of the point (0, 0, 1) on Γa,b is T = (1, 0, 0). With
respect to the curve Γα,β,γ , we obtain that the conjugate P̄ of a point P =
(x0, y0) on Γα,β,γ is of the form P̄ = (x1,−y0) for some x1 ∈ F.

A generalisation of these observations is given by the following:

Lemma 2.2. Let Ã0 = (x0, y0) be a point on the cubic Γa,b : y2 = x3 +
ax2 + bx, where x0, y0, a, b ∈ F and y0 ̸= 0. Then there exists an F-projective
transformation Φ which maps the curve Γa,b to the curve

Γα,β,γ,δ : y2(x− δ) = α+ βx+ γx2 (with α, β, γ, δ ∈ F),
and the point Ã0 to A0 = (1, 1). Moreover, we can require that Ā0 = (−1,−1).

Proof. By the above observations there exists an F-projective transfor-
mation Φ which maps the curve Γa,b to the curve

Γ̃ : y2x = α̃+ β̃x+ γ̃x2 (with α̃, β̃, γ̃ ∈ F),
and the point Ã0 to A0 = (1, 1). The conjugate Ā0 of A0 is of the form
Ā0 = (x1,−1), and by shifting and stretching the x-axis, we obtain the curve

Γα,β,γ,δ : y2(x− δ) = α+ βx+ γx2 (with α, β, γ, δ ∈ F),
which contains the points A0 = (1, 1) and Ā0 = (−1, 1).

With respect to the curve Γα,β,γ,δ, we can compute the conjugate of a
point by the following:

Fact 2.3. Let P = (x0, y0) be a point on Γα,β,γ,δ. Then

P̄ =
(
α+ δ(x0γ + β)
γ(x0 − δ) , −y0

)
.

Proof. Let P = (x0, y0) be a point on Γα,β,γ,δ. Then
y2

0(x0 − δ) = α+ βx0 + γx2
0,

which implies that x0 is a root of
x2γ + x(β − y2

0) + (α− δy2
0),

and since the other root is α+δ(x0γ+β)
γ(x0−δ) , we obtain P̄ =

(
α+δ(x0γ+β)

γ(x0−δ) , −y0

)
.

Let Γa,b : y2 = x3 + ax2 + bx be a regular curve over some field F
with torsion group Z/2nZ (for some n ≥ 5). Each element of the group
Z/2nZ = {0, 1, . . . , 2n − 1} corresponds to a point on Γa,b. Let T̃ be the
unique point of order 2. Then T̃ corresponds to n. Furthermore, let A′ be
a point on Γa,b which corresponds to 1. Then A′ is of order 2n. Finally,
let B′ be the point on Γa,b which corresponds to 2. Then A′ + A′ = B′.
Now, by Lemma 2.2, there is a projective transformation Φ which maps the



A GEOMETRIC APPROACH TO ELLIPTIC CURVES 91

curve Γa,b to the curve Γα,β,γ,δ, the point A′ to the point A = (1, 1), and
the point Ā′ to the point Ā = (−1,−1). Moreover, since A + Ā corresponds
to 1+(n+1) = n+2, we obtain that A+Ā = B̄. In other words, A#Ā = −B̄,
which implies that −B̄ is on the line AĀ. Hence, −B̄ = (u, u) for some u ∈ F,
and therefore B = (v, u) for some v ∈ F.

Since the points A, Ā,B, B̄ belong to the curve Γα,β,γ,δ, we obtain

α = −u, β = 1, γ = u2 − 1
u+ v

, δ = u− γ, v = u2 − uγ − 1
γ

.

For u, v ∈ F, let

Γu,v : y2
(
x− u+ u2 − 1

u+ v

)
= −u+ x+ u2 − 1

u+ v
x2.

By applying Φ−1 to the curve Γu,v, we obtain the curve Γa,b with

a = −2 + 3u2 + 2u3v + v2 and b = (u2 − 1)3(v2 − 1).

In the following sections we shall apply this approach to elliptic curves
with torsion groups Z/2nZ for n = 5, 6, 7, 8.

3. Elliptic curves with torsion group Z/10Z

To warm up, we give a parametrisation of elliptic curves with torsion
group Z/10Z.

Let Γa,b : y2 = x3 + ax2 + bx be a regular curve with torsion group
Z/10Z over Q. Each element of the group Z/10Z = {0, 1, . . . , 9} corresponds
to a rational point on Γa,b. Let T̃ be the unique point of order 2. Then T̃

correspond to 5. Furthermore, let Ã and B̃ be the rational points on Γa,b

which correspond to 1 and 2, respectively. Then Ã is of order 10 and B̃ is
of order 5. Finally, let Φ be a projective transformation Φ which maps the
curve Γa,b to the curve Γα,β,γ,δ, the point Ã to the point A = (1, 1), and the
conjugate of Ã to the point Ā = (−1,−1). Let B := Φ(B̃) and T := Φ(T̃ ).
Then, for A,−A, Ā, . . . we obtain the following correspondence between these
points on Γα,β,γ,δ and the elements of the group Z/10Z:

Elements of Z/10Z 0 1 2 3 4 5 6 7 8 9
Points on Γα,β,γ,δ O A B −B̄ −Ā T Ā B̄ −B −A
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By definition, we have:
(i) The points A, Ā,−B̄ are collinear.
(ii) The points A,B, B̄ are collinear.
Since A = (1, 1) and Ā = (−1,−1), by (i) we have −B̄ = (u, u) for some

u ∈ Q, i.e., B̄ = (u,−u) and B = (v, u). So, by (ii), we have

v = 3u− u2

u+ 1 ,

and since v = u2−uγ−1
γ , we have

γ = (u+ 1)2(u− 1)
4u .

Now, by applying the formulae a = −2 + 3u2 + 2u3v + v2 and b = (u2 −
1)3(v2 −1) for the parameters of the curve Γa,b, we obtain the following result:

Theorem 3.1. Let u ∈ Q \ {0,±1} and let

a1 = −2(1 + 2u− 5u2 − 5u4 − 2u5 + u6),

b1 = (u2 − 1)5(−1 − 4u+ u2).

Then, the curve
Γa1,b1 : y2 = x3 + a1x

2 + b1x

is an elliptic curve with torsion group Z/10Z. Conversely, if Γa,b is a regular
elliptic curve with torsion group Z/10Z, then there exists a u ∈ Q such that
Γa,b is isomorphic to Γa1,b1 .

Remarks.
• In [6, Table 3, p. 217], Kubert gives the following parametrisation of

curves of the form

y2 + (1 − c)xy − by = x3 − bx2

with torsion group Z/10Z (see also Kulesz [8, p. 341,(1.1.9)], who found
Kubert’s parametrisation in a different way):

τ = p

q
, d = τ2

τ − (τ − 1)2 , c = τ(d− 1), b = cd.

After transforming Kubert’s curve into the form

y2 = x3 + ãx2 + b̃x,

we find

ã = −(2p2 − 2pq + q2)(4p4 − 12p3q + 6p2q2 + 2pq3 − q4),

b̃ = 16p5(p− q)5(p2 − 3pq + q2).
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Now, by substituting in ã and b̃ the values p and q with p+ q and 2q,
respectively, and setting u = p/q, we obtain 4a1 and 16b1, respectively,
which shows that the two parametrisations are equivalent.

• Recall that the Calkin–Wilf sequence

s1 = 1, sn+1 = 1
2⌊sn⌋ − sn + 1

lists every positive rational number exactly once. By checking the first
22 000 fractions in this sequence we found, with the help of MAGMA,
46 elliptic curves with torsion group Z/10Z and rank 3.

• The following table gives the fractions p/q and their indices in the
Calkin–Wilf sequence of six of the 25 known elliptic curves with torsion
group Z/10Z and rank 4 (see [2]):

p q Calkin–Wilf index Discovered by
2244 1271 307 485 Fisher (2016)
3051 2164 623 897 Fisher (2016)
4777 7725 1 629 610 Fisher (2016)
1333 475 3 137 659 Dujella (2005)
2407 308 67 161 983 Dujella (2008)
1564 1991 532 575 944 622 Elkies (2006)

• For p/q = 13360/9499 (Calkin–Wilf index 15 352 857), we identified a
new Z/10Z curve of conditional rank 4:
y2 + xy = x3

− 37727175946500513344407792867239647500428495062395x
+ 8919228755111936535268573001459752244770998391496121\

1487019041502289387025
MAGMA computations reveal three generators on the curve and confirm
that its root number is 1, therefore the rank should be even. The point
search up to height 238 on each of the 256 4-coverings for each of the 4
curves in the isogeny class did not uncover the missing last generator.
We leave it as an open challenge to test new descent methods.

4. Elliptic curves with torsion group Z/12Z

Let us now consider parametrisations of elliptic curves with torsion group
Z/12Z. By similar arguments as above, one can show the following result:

Theorem 4.1. Let t ∈ Q \ {1} be a positive rational and let
a1 = 2(3t8 + 24t6 + 6t4 − 1), b1 = (t2 − 1)6(1 + 3t2)2.

Then the curve
Γa1,b1 : y2 = x3 + a1x

2 + b1x
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is an elliptic curve with torsion group Z/12Z. Conversely, if Γa,b is a regular
elliptic curve with torsion group Z/12Z, then there exists a positive rational
t such that Γa,b is isomorphic to Γa1,b1 .

In [6, Table 3, p. 217], Kubert gives the following parametrisation of ellip-
tic curves of the form

y2 + (1 − c)xy − by = x3 − bx2

with torsion group Z/12Z (see also Kulesz [8, p. 341,(1.1.10)], who found
Kubert’s parametrisation in a different way):
(4.1)

τ = r

s
, m = 3τ − 3τ2 − 1

τ − 1 , f = m

1 − τ
, d = m+ τ, c = f(d− 1), b = cd.

After transforming Kubert’s curve into the form

y2 = x3 + ãx2 + b̃x,

we find

ã = s8 + 12r(r − s)
(
s6 + 2r(r − s)(r2 − rs+ s2)(r2 − rs+ 2s2)

)
,

b̃ = 16r6(r − s)6(3r(r − s) + s2)2
.

Now, for t = r/s we obtain

a1 := 6r8 + 48r6s2 + 12r4s4 − 2s8 and b1 := (r2 − s2)6 (3r2 + s2)2.

Then, by substituting in ã and b̃, r with r + s and s with 2s, we obtain 4a
and 16b, respectively. This shows that the two elliptic curves

Γã,b̃ : y2 = x3 + ãx2 + b̃x

and
Γa,b : y2 = x3 + ax2 + bx

are equivalent.

4.1. Elliptic curves of rank at least 2. By checking the first 3441 fractions r/s
of the Calkin–Wilf sequence we found, with the help of MAGMA, 125 fractions
which lead to elliptic curves with torsion group Z/12Z and rank 2, and among
these 3441 fractions, we even found some which lead to curves with rank 3.

As a matter of fact, we would like to mention that until today (April 2022),
up to isomorphisms only one elliptic curve of rank 4 is known, namely

y2 + xy = x3 − 4422329901784763147754792226039053294186858800x
+ 98943710602886706347390586357680210847183616798\

063680624530387016000



A GEOMETRIC APPROACH TO ELLIPTIC CURVES 95

discovered by Fisher in 2008 (see [2]). This curve is isomorphic to

y2 = x3 + 588436986469809874425598x2

+ 44662083920000859376188675997725867856489478401x

which is of type Γa,b, where r = 726 and s = 133 (Calkin–Wilf index of
726/133 is 274 335).

4.2. Families of elliptic curves with positive rank. In this section, we con-
struct three infinite families of elliptic curves Γa,b with positive rank. Other
such families were found, for example, by Rabarison [11, Thm. 12], Kulesz [8,
Thm. 2.12] (see also [7, Sec. 2.12]), and by Suyama (see [9, p. 262 f]). Although
the parametric families of positive rank and torsion group Z/12Z are not ex-
plicitly given in the work of Rabarison, they are mentioned on page 17, line 3
of his manuscript and on page 90, line 1 of his thesis. In fact, the elliptic
curves which correspond to our three families are, in Cremona’s notation, the
curves 368d1, 226a1 and 720e2.

Let t ∈ Q \ {−1, 0, 1}. Instead of Γa,b we consider the equivalent elliptic
curve

Γt : y2 = x3 + 2(3t8 + 24t6 + 6t4 − 1)x2 + (t2 − 1)6(1 + 3t2)2x.

The finite torsion points of Γt are given in the following table:
Order x-coordinate y-coordinate

2 0 0
3 (t2 − 1)4 ±4t2(t2 − 1)4(t2 + 1)
4 −(t2 − 1)3(1 + 3t2) ±8t3(t2 − 1)3(1 + 3t2)
6 (t2 − 1)2(1 + 3t2)2 ±4t2(t2 − 1)2(t2 + 1)(1 + 3t2)2

12 (t2 − 1)(t+ 1)4(1 + 3t2)2 ±4t(t2 − 1)(t+ 1)4(1 + t2)(1 + 3t2)
12 −(t2 − 1)(t+ 1)4(1 + 3t2)2 ±4t(t2 − 1)(t− 1)4(1 + t2)(1 + 3t2)

Now, if we find any additional rational point P on Γt, then the order of P
is infinite which implies that the rank of Γt is positive. On the other hand, if
we find an infinite family T of values for t such that for every t ∈ T, the curve
Γt has an additional point, then {Γt : t ∈ T} is an infinite family of elliptic
curves with torsion group Z/12Z and positive rank.

4.2.1. First family. Let P1 = (x1, y1) with

x1 = −(t+ 1)2(t− 1)6.

Then P1 is a rational point on Γt if and only if

v2 = −(t4 + 8t3 + 2t2 + 1) for some rational v.
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This quartic curve has a rational solution (t, v) = (−1, 2), hence, by [4,
Prop. 15.1, p. 477], it is equivalent to the elliptic curve

y2 = x3 + x2 − 1,

which is a rank-1 elliptic curve, where G1 := (1, 1) is a point of infinite
order. In particular, for all but finitely many k ∈ Z, for [k]G1 = (xk, yk) and
tk := (yk − 1)/(2xk − yk − 1), Γtk

is a non-singular curve with torsion group
Z/12Z and positive rank.
Examples. For k = 2 we obtain [2]G1 = (13/4,−53/8) and t2 = −61/97.
So, the parameters a and b of Γa,b are

a = 23452774585480768
7837433594376961 and b = 14332124021409323029654935699456

61425365346268570446197767595521 ,

where Γa,b has rank 2. In order to compute the rank of Γa,b, it seems to be
faster to use Kubert’s form (4.1) with τ = (r+ s)/(2s) where t2 = r/s, which
gives us

1 − c = 53471797
47824783 and b = − 37072646910

366481312129 .

The following table summarises what we have found with the help of
MAGMA:

k tk 1 − c b Rank
−2 −5 − 163

27
2470

81 1

−1 −1 1 0 Γ−1 is singular

2 − 61
97

53471797
47824783 − 37072646910

366481312129 2

3 − 5737
1921 − 172463134332983

107840890126669
5130041565973335306660
793224637894724969521 2

4 − 1500953
1090945

p
q

r
s 1

with p
q = 1763009864383862432547449

2374469464172162335214805 and r
s = 1052634091165646643245217267815958652

3357046492915255175591448074492123025 .
MAGMA calculations also confirm the rank to be at least 1 for both k = 5 and
k = 6.

4.2.2. Second family. Let P2 = (x2, y2) with

x2 = (t+ 1)8.

Then P2 is a rational point on Γt if and only if

v2 = t4 − 2t3 + 13t2 + 4t+ 4 for some rational v.

This quartic curve has a solution (t, v) = (0, 2) and, by [14, Thm. 2.17], is
birationally equivalent to

y2 + xy = x3 − 5x+ 1,
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which is, according to MAGMA, a rank-1 elliptic curve, where G2 := (0, 1) is
a point of infinite order. In particular, for all but finitely many k ∈ Z, for
[k]G2 = (xk, yk) and tk := 2(xk +2)/(yk +1), Γtk

is a non-singular curve with
torsion group Z/12Z and positive rank.
Examples. With the help of MAGMA, we computed the rank of the curve Γtk

for k = 1, . . . , 8, 10:
k tk 1 − c b Rank
1 2 79 390 1

2 4
3 533 13300

3 1

3 3
14

7261
18634

2331465
2869636 1

4 175
17

395470463
8381663

5983231581600
11256573409 1

5 − 799
1200

3553536961599
3195202399600 − 744762911993283599

7664651516160480000 1

6 − 43872
18847 − 2079664621920150527

4649857101108754273
15343052413669431178634306400
5496433301673119911952465089 1

MAGMA calculations also confirm that the rank is exactly 1 for k = 7 and
k = 10, and the rank is at least 1 for k = 8.

4.2.3. Third family. Let P3 = (x3, y3) with

x3 = 3
4 (t+ 1)4(t− 1)4.

Then P3 is a rational point on Γt if and only if

v2 = 75t4 + 66t2 + 3 for some rational v.

This quartic curve has a solution (t, v) = (1, 12), hence it is equivalent to the
elliptic curve

y2 = x3 − 147x− 286

of rank 1, generated by the point G3 = (−5,−18) of infinite order, as deter-
mined by MAGMA. For all but finitely many k ∈ Z, for [k]G3 = (xk, yk) and
tk := (yk − 3xk + 3)/(yk + 9xk + 63), Γtk

is a non-singular curve with torsion
group Z/12Z and positive rank.

We have computed the rank of the curve Γtk
for k = −2, 2, 3, 4:

k tk 1 − c b Rank
−2 − 1

11
2531
2376 − 9455

156816 2

2 − 59
169

282022931
250380936 − 506936401895

4823839112976 2

3 − 9059
61 − 2502776666788081

5783947776000
102937783902951852766681

1608862913372160000 ≥ 1

4 2086379
6069899 − 58188154268169008260521361

47961469780361881818624000
r
s

≥ 1

with r
s

= 2186504518566993279256742865370434477481
579843715590440818015794769800437760000 .
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5. Elliptic curves with torsion group Z/14Z

For an elliptic curve over some field F with torsion group Z/14Z, starting
with a value for u ∈ F, we compute a value for v, which will lead to a
parametrisation of elliptic curves with torsion group Z/14Z.

Theorem 5.1. Let F be a field containing Q. Then there exists an elliptic
curve Γa,b over F with torsion group Z/14Z if and only if for some u ∈
F \ {−1, 0, 1}, √

1 − 2u+ u2 + 4u3

belongs to F.

Proof. Assume that the curve Γα,β,γ,δ over F has torsion group Z/14Z
and that the points A = (1, 1), Ā = (−1,−1), B = (v, u), −B̄ = (u, u) belong
to Γα,β,γ,δ, where A, Ā, B, −B̄ correspond to 1, 8, 2, 5, respectively. Finally,
let C := A+B. Then C corresponds to 3. The complete group table is given
as follows:

Elements of Z/14Z 0 1 2 3 4 5 6 7
Points on Γα,β,γ,δ O A B C −C̄ −B̄ −Ā T

Points on Γα,β,γ,δ O −A −B −C C̄ B̄ Ā T

Elements of Z/14Z 14 13 12 11 10 9 8 7

Since B # B̄ = C, the point C is on the line g passing through B and
B̄. Furthermore, we have A # B = −C = Ā # B̄. In other words, −C is
the intersection point of the lines AB and ĀB̄, denoted −C = AB ∧ ĀB̄.
Furthermore, we have −C̄ = AB̄ ∧ ĀB. Notice that the points C and −C̄
have the same y-coordinate.

In homogeneous coordinates, we obtain

g : B × B̄ = (v, u, 1) × (u,−u, 1) = (2u, u− v, −u2 − uv)

and

−C = (A×B)×(Ā×B̄) =
(
−3u−u2 +v+3uv, (u−1)(3u−v), (1−u)(u+v)

)
,

and therefore

C =
(

− 3u− u2 + v + 3uv, (1 − u)(3u− v), (1 − u)(u+ v)
)
.

Since the point C belongs to g, we must have the scalar product ⟨g, C⟩ = 0,
i.e.,

u2(−3 − 6u+ u2) + 2u(−1 + 4u+ u2) v + (u− 1)2 v2 = 0.
Now, for u ∈ F, this implies that also

v1,2 =
u
(
1 − 4u− u2 ± 2

√
1 − 2u+ u2 + 4u3

)
(u− 1)2
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belong to F, and hence
√

1 − 2u+ u2 + 4u3 belongs to F.
On the other hand, if Γa,b is an elliptic curve over F with torsion group

Z/14Z, then we can transform this curve (over F) to the curve Γα,β,γ,δ

which contains the points A = (1, 1), B = (v, u), and −B̄ = (u, u) with
the above properties. In particular, we have that u, v ∈ F which implies that√

1 − 2u+ u2 + 4u3 belongs to F.

As an immediate consequence we obtain:

Corollary 5.2. Let u ∈ Q\{−1, 0, 1} and let d = 1−2u+u2+4u3. Then
there exists an elliptic curve Γa,b over Q(

√
d) with torsion group Z/14Z.

5.1. High rank elliptic curves with torsion group Z/14Z. By some further
calculations, we can slightly simplify the formulae for the parameters a and b
of the curve Γa,b. For z =

√
1 − 2u+ u2 + 4u3 we have:

a = −2(1 − 4u+ 2u2 + 10u3 − 18u4 − 10u6 + 2u7 + u8)
+ 4u2(1 − 4u− 2u3 + u4)z

b = (1 − u)7(1 + u)3((1 + u)(1 − 5u+ 6u2 + 6u3 − 23u4 − u5)
− 4u2(1 − 4u− u2)z

)
With the help of MAGMA we found that for each

u = 4, 4
7 ,

4
9 ,

8
5 , − 4

11 ,
5
17 ,

√
2081 + 39

8 ,

√
2713 + 37

32 ,
√

12121 + 121
18 ,

√
23641 + 109

98 ,

√
55441 + 169

128 ,

the corresponding curve has rank 2. We would like to mention that different
values of u ∈ Q may not necessarily lead to different quadratic fields Q(

√
d).

For example, for u1 = 4/9 and u2 = 5/13, both curves have torsion group
Z/14Z over the same quadratic field Q(

√
481). Moreover, for u1 and u2, the

corresponding curves have the same rank, which follows from the following
result (see Rabarison [12, Lem. 4.4]):

Fact 5.3. Let d be a square-free integer and let Fd = Q(
√
d). Further-

more, let u0 ∈ Fd be such that Fd = Q(
√
z) where z = 1 − 2u0 + u2

0 + 4u3
0.

Then the elliptic curve

Γ0 : y2 = 4x3 + x2 − 2x+ 1

has torsion group Z/6Z over Fd for d ̸= −7 and has torsion group Z/2Z ×
Z/6Z over F−7.

Now, since (u0, z) is a non-torsion point on Γ0, the curve Γ0 has rank ≥ 1
over Fd, and by adding (in the case d ̸= −7) the 6 torsion points of Γ0 to
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(u0, z), we obtain the following 6 values for u, which all lead to essentially the
same curve with torsion group Z/14Z over Fd:

u1 = u0, u2 = 1 − u0

1 + u0
, u3,4 = u0(u0 + 1) ± z

(u0 − 1)2 , u5,6 = (1 − u0) ± z

2u2
0

.

For example, if u1 = 4/9, then u2 = 5/13 and the corresponding curves are
essentially the same.

In order to obtain different curves with torsion group Z/14Z, we can,
for example, start with an arbitrary u0 ∈ Q \ {−1, 0, 1} and double the point
(u0, z) on Γ0 (over the corresponding field Fd). This way, we get the following
value for u:

u = u0(u0 − 1)(u2
0 + u0 + 2)

z2 = u0(u0 − 1)(u2
0 + u0 + 2)

(u0 + 1)(4u2
0 − 3u0 + 1)

.

For example, taking u0 = 1/2 (curve of rank 0) we produce a different
Z/14Z curve with u = −11/12 (rank 1) over the same field Q(

√
3). Similarly,

taking u0 = 2/3 (curve of rank 1) we produce a different Z/14Z curve with
u = −8/15 (rank 0) over the same field Q(

√
105).

Another approach to find independent values for u would be to search
for values d, such that Γ0 has high rank over Fd. With the help of MAGMA we
found an abundance of quadratic fields Fd over which the Z/6Z curve Γ0 has
rank 2, 3, 4, 5. The fields Fd with the smallest absolute d-values for the curve
Γ0 of rank 2, 3, 4, 5 are F22,F874,F−5069,F1578610, respectively. Two essen-
tially different Z/14Z curves over Q(

√
22) we found this way are produced

by u1 = 1/8 and u2 = 7/4. The former curve has rank 0, whereas the latter
has rank 1. The mentioned u-values correspond to the two generators of Γ0,
which has rank 2 over F22. Similarly, the four Z/14Z curves over Q(

√
2233)

produced by u1 = 4/7 (curve of rank 2), u2 = 13 (rank 1), u3 = 1/28 (rank 0),
and u4 = −2/11 (rank 1) are all essentially different, as all the u-values corre-
spond to pairwise linearly independent combinations of the three generators
of the curve Γ0 over F2233.

Let us now turn back to the search of high rank elliptic curves with torsion
group Z/14Z. With the help of MAGMA we first found that for u = 11/5 (or
equivalently for u = −3/8), the produced curve has rank 3 – the current
record for torsion group Z/14Z (see Dujella [3]). The curve in Weierstrass
normal form is

y2 = x3 −
64
(
214412

√
430 − 4876337

)
390625 x2

−
146767085568

(
9559

√
430 − 198202

)
152587890625 x,

and is isomorphic to the curve
y2 = x3 − (214412

√
430 − 4876337)x2 − 127(9559

√
430 − 198202)x
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with the three independent points of infinite order
P1 = (85536

√
430 − 1844856, 117398160

√
430 − 2391265800),

P2 = (−45684
√

430 + 945999, 197481240
√

430 − 4096319040),

P3 = (150336
√

430 + 5895504, 389901600
√

430 + 19611195120).

Later, we found that also u =
√

−2759−11
32 produces a Z/14Z curve of

rank 3:
y2 = x3 − (5327056844923892

√
−2759 + 151212615362621956)x2

+ 6525845768 (236459153187683150165981
√

−2759
− 27186277677196768482611999)x

with the three generators
P1 = (3390432200076922

√
−2759 + 362094129708044162,

4074194213434761922471680
√

−2759
+ 34672137787509115316417280),

P2 = (2744055515797882
√

−2759 + 421484961222088322,
3344617042430565258489600

√
−2759

+ 57335992491288398889081600),

P3 = (29793656566415482
√

−2759 − 1346439443735230078,
− 17912501237343415639622400

√
−2759

− 2714013162586144875488198400).
Another parametrisation of elliptic curves over a quadratic field with tor-

sion groupZ/14Z is given by Rabarison [12, Sec. 4.2]. The defining polynomial
of the quadratic field is w2 + wu+ w = u3 − u, which leads to

w1,2 = −(u+ 1) ±
√

1 − 2u+ u2 + 4u3

2 .

The parametrised curve is
Eã,b̃ : y2 + ãxy + b̃y = x3 + b̃x2

with

ã = u4 − u3w + u2(2w − 4) − uw + 1
(u+ 1)(u3 − 2u2 − u+ 1) ,

b̃ =
u(1 − u)

(
u5 − u4 − 2u3w + u2 + u(2w − 1) − w

)
(u+ 1)2(u3 − 2u2 − u+ 1)2 ,

where the point (0, 0) is a point of order 14.



102 L. HALBEISEN, N. HUNGERBÜHLER, A. SHAMSI ZARGAR AND M. VOZNYY

Like Kubert’s parametrisation for elliptic curves with torsion group
Z/10Z or Z/12Z, Rabarison’s parametrisation for elliptic curves with torsion
group Z/14Z can be transformed to our parametrisation. For this, notice first
that a and b depend on u and v. Now, for

v = u(1 − 4u− u2 + 2z)
(u− 1)2

we obtain expressions for a and b which just depend on u and z. On the other
hand, if we set

v = −u(u2 + 2u− 3 − 4w)
(u− 1)2 ,

then, for

w = −(u+ 1) + z

2 ,

we obtain exactly the same expressions for a and b (also depending just on u
and z). A similar result we get for ã and b̃ by setting

w = u(u2 + 2u− 3) + v(u− 1)2

4u .

With respect to Rabarison’s parametrisation, the curve given above with
rank 3 obtained by u = 11/5 is

y2 + −15835 + 792
√

430
1160 xy + 165(−46394 + 2 237

√
430)

26912 y

= x3 + 165(−46394 + 2237
√

430)
26912 x2,

where three independent points of infinite order are:

P1 =
(

85983835575 − 4146565170
√

430
39891856 ,

27225(2574034836965503 − 124130941794256
√

430)
423791610918272

)
,

P2 =
(

2298171927997 − 110831541546
√

430
1777510688 ,

121(69150183657283025 − 3334717851516528
√

430)
105982297261312

)
,

P3 =
(

−36778174426785 + 1824475255680
√

430
15921363350048 ,

1089(1274259861468796925 − 61481356412574002
√

430)
89843234417066460928

)
.
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5.2. A normal form for elliptic curves with torsion group Z/14Z. For u ∈ Q,
d := 1 − 2u+ u2 + 4u3, z :=

√
d, and

v :=
u
(
1 − 4u− u2 ± 2

√
1 − 2u+ u2 + 4u3

)
(u− 1)2 ,

the elliptic curve

Γu,v : y2 = (u2 − 1)2(v2 − 1) · 1
x

+ (3u2 + 2u3v + v2 − 2) + (u2 − 1)x

over the quadratic field Q(
√
d) has torsion group Z/14Z. Notice that Γu,v

has two points at infinity, namely (0, 1, 0), which is the point of order 1, and
(1, 0, 0), which is the point of order 2. The finite torsion points of Γu,v are
given in the following table:

Order x-coordinate y-coordinate
14 u2 − 1 ±u(u+ v)

7 v2 − 1 ±u(u+ v)

14 −(u− 1)(v − 1) ±(u+ v)

7 −(u+ 1)(v + 1) ±(u+ v)

14 − (u+ 1)2(v − 1)
(u− 1)

±(3u− v)

7 − (u− 1)2(v + 1)
(u+ 1)

±(3u− v)

As a matter of fact we would like to mention that for

a := (u2 − 1)2(v2 − 1), b := 3u2 + 2u3v + v2 − 2, c := (u2 − 1),

if (x0, y0) is a point on Γu,v, then (a/x0, ay0/x0) is a point on

Γb, ac : y2 = x3 + bx2 + acx,

where the point at infinity (1, 0, 0) is moved to (0, 0).

6. Elliptic curves with torsion group Z/16Z

In this section we use our geometric approach to construct a parametri-
sation of elliptic curves with torsion group Z/16Z.

Theorem 6.1. Let F be a field containing Q. Then there exists an elliptic
curve Γa,b over F with torsion group Z/16Z if and only if for some α ∈
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F \ {−1, 0, 1},

α
√

1 − α2 ±
√
α(α2 − 1)

(
1 +

√
1 − α2 − α

(
1 + α+

√
1 − α2

))
or

α
√

1 − α2 ±
√
α(α2 − 1)

(
1 −

√
1 − α2 − α

(
1 + α−

√
1 − α2

))
belongs to F.

Proof. Assume that the curve Γα,β,γ,δ over F has torsion group Z/16Z
and that for the points A and Ā, which correspond to 2 and 10, respectively,
we have A = (1, 1) and Ā = (−1,−1). Furthermore, let B and D be points
on Γα,β,γ,δ which correspond to 7 and 4, respectively. Then, the group table
with respect to these points, their inverses and their conjugates, is given as
follows:

Elements of Z/16Z 0 1 2 3 4 5 6 7 8
Points on Γα,β,γ,δ O −B̄ A D −Ā B T

Points on Γα,β,γ,δ O B̄ −A D̄ Ā −B T

Elements of Z/16Z 16 15 14 13 12 11 10 9 8

Because A and Ā are on Γα,β,γ,δ, we have β = 1 and δ = −(α + γ). Now,
since A # Ā = D, the point D is on the line passing through A and Ā, and
therefore, D = (x0, x0) for some x0 ∈ F. Since D is on Γα,β,γ,δ and D is
different from A and Ā, we obtain

x0 = −α.(6.1)

Furthermore, we have −D = D̄, which implies that for D̄ = (x̄0,−x0) we
have x0 = x̄0, where by Fact 2.3,

x̄0 = α+ δ(x0γ + β)
γ(x0 − δ) .

Thus, by (6.1) we obtain

γ = 1 − α2

2α ,

and for a point P = (x, y) on Γα,β,γ,δ, the x-coordinate of P̄ is

x̄ = −x+ 2α+ xα2

1 + 2xα+ α2 .

Now, let us consider the points B and B̄. Since B # B̄ = Ā, the point Ā
is on the line g passing through B and B̄. Let λ be the slope of g, then

g(x) = λx+ (λ− 1).
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Because the line g passes through the points B = (x1, y1) and B̄ = (x̄1,−y1),
we must have g(x1) = −g(x̄1), and solving this equation for λ gives

λ0 = 1 + 2x1α+ α2

1 + 2x1α+ α2 + α(x2
1 − 1) .

Furthermore, we must have that the points B and B̄ are on Γα,β,γ,δ, i.e.,

gλ0(x1)2 =
(
λ0x1 + (λ0 − 1)

)2 = α+ βx1 + γx2
1

x1 − δ
= x2

1 + 2x1α− α2(x2
1 − 2)

1 + 2x1α+ α2 ,

which finally gives us the following four values for x1:

−1 −
√

1 − α2

1 + α
±

√
α(α2 − 1)

(
1 +

√
1 − α2 − α

(
1 + α+

√
1 − α2

))
α(1 + α)

−1 +
√

1 − α2

1 + α
±

√
α(α2 − 1)

(
1 −

√
1 − α2 − α

(
1 + α−

√
1 − α2

))
α(1 + α)

Since x1 and α belong to F, this implies that at least one of

z1,3 = α
√

1 − α2 ±
√
α(α2 − 1)

(
1 +

√
1 − α2 − α

(
1 + α+

√
1 − α2

))
and

z2,4 = α
√

1 − α2 ±
√
α(α2 − 1)

(
1 −

√
1 − α2 − α

(
1 + α−

√
1 − α2

))
belongs to F. On the other hand, if at least one of z1, z2, z3, z4 belongs to F,
then also the corresponding x1 belongs to F, which shows that there exists
an elliptic curve Γa,b with torsion group Z/16Z over F.

As a consequence of Theorem 6.1 we obtain:

Corollary 6.2. Let m ∈ Q \ {−1, 0, 1} and let

d1 = (m4 − 1)(m2 − 2m− 1), d2 = m(m2 + 1)(m2 + 2m− 1).

Then for each i ∈ {1, 2} there is an elliptic curve over Q(
√
di) with torsion

group Z/16Z.

Proof. If α ∈ Q is such that
√

1 − α2 ∈ Q, then α = α1 or α = α2,
where

α1 = m2 − 1
m2 + 1 or α2 = 2m

m2 + 1 .

Let z1, z2 be as above. If we substitute α by α1 into z1, then z1 ∈ Q(
√
d1),

and if we substitute α by α2 into z2, then z2 ∈ Q(
√
d2).
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For each m1 ̸= ±1, let m2 := 1/m1, m3 := (m1 − 1)/(m1 + 1), m4 :=
1/m3, and for j ∈ {1, 2, 3, 4} let m−j := −mj . Furthermore, for i ∈ {1, 2}
and k ∈ {±1,±2,±3,±4} let di,k be the value of di obtained from mk. Now,
for each value m1 ̸= ±1 we obtain four groups of four pairwise isomorphic
elliptic curves with torsion group Z/16Z over the same quadratic field Q(

√
d).

The four groups are given by the following pairs (mk, di,k) over the respective
quadratic fields:

over Q(
√
d1,1) : (m1, d1,1) (m−2, d1,−2) (m3, d2,3) (m−4, d2,−4)

over Q(
√
d2,1) : (m1, d2,1) (m−2, d2,−2) (m3, d1,3) (m−4, d1,−4)

over Q(
√
d1,−1) : (m−1, d1,−1) (m2, d1,2) (m−3, d2,−3) (m4, d2,4)

over Q(
√
d2,−1) : (m−1, d2,−1) (m2, d2,2) (m−3, d1,−3) (m4, d1,4)

Comment 6.1.

Group I : (m, d1) (−1/m, d1)
(

m−1
m+1 , d2

) (
− m+1

m−1 , d2

)
Group II : (m, d2) (−1/m, d2)

(
m−1
m+1 , d1

) (
− m+1

m−1 , d1

)
Group III : (−m, d1) (1/m, d1)

(
− m−1

m+1 , d2

) (
m+1
m−1 , d2

)
Group IV : (−m, d2) (1/m, d2)

(
− m−1

m+1 , d1

) (
m+1
m−1 , d1

)
with torsion group Z/16Z over the quadratic field Q(

√
d1) and four other

isomorphic curves corresponding to

−m −1/m −m− 1
m+ 1 −m+ 1

m− 1

over the quadratic field Q(
√
d2), respectively.

For example, over Q(
√
d1) we obtain the parametrisation

(6.2) y2 = x3 +
(
(m4 − 1)2 − 4m2(m4 + 1)

)
x2 + 16m8x,

or equivalently

y2 +
(
m4 + 2m2 − 1

m2

)
xy + (m4 − 1) y = x3 + (m2 − 1)x2,

and over Q(
√
d2), with respect to another normal form, we obtain the para-

metrisation
y2 + (1 − c)xy − b y = x3 − b x2

where

b = −m(m− 1)2

(m2 + 1)2 and c = − 2m(m− 1)2

(m2 + 1)(m+ 1)2 .
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6.1. High rank elliptic curves with torsion group Z/16Z. In [12, p. 38],
Rabarison listed a single Z/16Z curve of rank 1 over Q(

√
10), and in [1],

an example of a curve of rank 2 over Q(
√

1 785) is provided. In [10], Najman
used the 2-isogeny method to construct a Z/16Z curve over Q(

√
34 720 105)

of proven rank 3 and conditional rank 4, starting from a rank-3 curve with
the torsion group Z/2Z × Z/8Z. The three curves mentioned above can be
reproduced by using formula (6.2) for m = 3, m = 4, and m = 12/17, respec-
tively.

As [3] lists only the smallest, by magnitude, d-values for quadratic fields
Q(

√
d), the fourth author has shown that a Z/16Z curve of conditional rank 4

can be built over Q(
√

17 381 446) by using m = 29/65 in formula (6.2). This
is a current record for Z/16Z curves of conditional rank 4.

By implementing the 2-isogeny method [10], we have found new Z/16Z
curves of rank 3 for m = 5/8, m = 3/13, and m = 13/3 over Q(

√
413 049),

Q(
√

105 910), and Q(
√

36 490), respectively. For m = 3/13, it required a
point search performed by MAGMA up to height 1016 on the 8-coverings of the
quadratic twist by d = 105 910.

By using m = −9 in formula (6.2), we found a new Z/16Z curve over
Q(

√
205) isomorphic to

y2 = x3 + 10226878x2 + 43046721x,

that ties a current record for Z/16Z curves of rank 3, with the three generators

P1 = (4961,−1108800
√

205),

P2 = (67081/81,−1935672760/729),

P3 = (279524961,−332320219200
√

205).

Uncovering generators on the d-twists to prove rank 4 unconditionally for
Z/16Z curves over Q(

√
d) remains a challenge. The only MAGMA calculation

that has not resulted in a crash corresponds to the curve with m = 12/17.
After successfully performing both 8-descent and 3-descent in 68 hours, no
generator was found on the quadratic twist.
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Geometrijski pristup eliptičkim krivuljama s torzijskim grupama
Z/10Z, Z/12Z, Z/14Z i Z/16Z

Lorenz Halbeisen, Norbert Hungerbühler, Arman Shamsi Zargar i Maksym
Voznyy

Sažetak. Dajemo nove parametrizacije eliptičkih krivulja u
Weierstrassovom normalnom obliku y2 = x3 + ax2 + bx s torz-
ijskim grupama Z/10Z i Z/12Z nad Q, te sa Z/14Z i Z/16Z
nad kvadratnim poljima. Iako su parametrizacije ekvivalentne
onima koje su dali Kubert i Rabarison, s novim parametrizaci-
jama pronašli smo tri familije eliptičkih krivulja s torzijskom
grupom Z/12Z i pozitivnim rangom. Osim toga, pronašli smo
eliptičke krivulje s torzijskom grupom Z/14Z i rangom 3 – što je
novi rekord za takve krivulje – kao i neke nove eliptičke krivulje s
torzijskom grupom Z/16Z i rangom 3.
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