NUMERICAL RADIUS POINTS OF A BILINEAR MAPPING FROM THE PLANE WITH THE l_{1}-NORM INTO ITSELF

Sung Guen Kim

Abstract

For $n \geq 2$ and a Banach space E we let $\Pi(E)=\left\{\left[x^{*}, x_{1}, \ldots, x_{n}\right]: x^{*}\left(x_{j}\right)=\left\|x^{*}\right\|=\left\|x_{j}\right\|=1\right.$ for $\left.j=1, \ldots, n\right\}$. Let $\mathcal{L}\left({ }^{n} E: E\right)$ denote the space of all continuous n-linear mappings from E to itself. An element $\left[x^{*}, x_{1}, \ldots, x_{n}\right] \in \Pi(E)$ is called a numerical radius point of $T \in \mathcal{L}\left({ }^{n} E: E\right)$ if $$
\left|x^{*}\left(T\left(x_{1}, \ldots, x_{n}\right)\right)\right|=v(T)
$$ where $v(T)$ is the numerical radius of T. Nradius (T) denotes the set of all numerical radius points of T. In this paper we classify $\operatorname{Nradius}(T)$ for every $T \in \mathcal{L}\left({ }^{2} l_{1}^{2}: l_{1}^{2}\right)$ in connection with $\operatorname{Norm}(T)$, where $\operatorname{Norm}(T)$ denotes the set of all norming points of T.

1. Introduction

Let us sketch a brief history of norm or numerical radius attaining multilinear forms and polynomials on Banach spaces. In 1961, Bishop and Phelps [2] initiated and showed that the set of norm attaining functionals on a Banach space is dense in the dual space. Shortly after, attention was paid to possible extensions of this result to more general settings, specially bounded linear operators between Banach spaces. The problem of denseness of norm attaining functions has moved to other types of mappings like multilinear forms or polynomials. The first result about norm attaining multilinear forms appeared in a joint work of Aron, Finet and Werner [1], where they showed that the Radon-Nikodym property is sufficient for the denseness of norm attaining multilinear forms. Choi and Kim [3] showed that the Radon-Nikodym property is also sufficient for the denseness of norm or numerical radius attaining polynomials. Jiménez-Sevilla and Payá [5] studied the denseness of norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces. Choi, Domingo, Kim and Maestre [6] showed that for a scattered compact Hausdorff space K, every continuous n-homogeneous polynomial on

[^0]$\mathcal{C}(K: \mathbb{C})$ can be approximated by norm attaining ones at extreme points and also that the set of all extreme points of the unit ball of $\mathcal{C}(K: \mathbb{C})$ is a norming set for every continuous complex polynomial. The authors obtained similar results if "norm" is replaced by "numerical radius".

Let $n \in \mathbb{N}, n \geq 2$. We write S_{E} for the unit sphere of a Banach space E. $\mathcal{L}\left({ }^{n} E: E\right)$ is usually endowed with the norm

$$
\|T\|=\sup _{\left(x_{1}, \cdots, x_{n}\right) \in S_{E} \times \cdots \times S_{E}}\left\|T\left(x_{1}, \cdots, x_{n}\right)\right\|
$$

$\mathcal{L}_{s}\left({ }^{n} E: E\right)$ denotes the closed subspace of all continuous symmetric n-linear mappings on E. We let

$$
\Pi(E)=\left\{\left[x^{*}, x_{1}, \ldots, x_{n}\right]: x^{*}\left(x_{j}\right)=\left\|x^{*}\right\|=\left\|x_{j}\right\|=1 \text { for } j=1, \ldots, n\right\}
$$

An element $\left[x^{*}, x_{1}, \ldots, x_{n}\right] \in \Pi(E)$ is called a numerical radius point of $T \in$ $\mathcal{L}\left({ }^{n} E: E\right)$ if $\left|x^{*}\left(T\left(x_{1}, \ldots, x_{n}\right)\right)\right|=v(T)$, where the numerical radius

$$
v(T)=\sup _{\left[y^{*}, y_{1}, \ldots, y_{n}\right] \in \Pi(E)}\left|y^{*}\left(T\left(y_{1}, \ldots, y_{n}\right)\right)\right|
$$

Notice that $\left[x^{*}, x_{1}, \ldots, x_{n}\right] \in \operatorname{Nradius}(T)$ if and only if $\left[-x^{*},-x_{1}, \ldots,-x_{n}\right] \in$ Nradius (T).
$\operatorname{Kim}[12]$ classified $\operatorname{Nradius}(T)$ for every $T \in \mathcal{L}\left({ }^{2} l_{1}^{2}: l_{1}^{2}\right)$, where $l_{1}^{2}=\mathbb{R}^{2}$ with the l_{1}-norm. Kim [11] also studied $\operatorname{Nradius}(T)$ for every $T \in \mathcal{L}\left({ }^{n} l_{\infty}^{m}\right.$: $\left.l_{\infty}^{m}\right)(m \in \mathbb{N})$ and classified $\operatorname{Nradius}(T)$ for every $T \in \mathcal{L}\left(l_{\infty}^{2}: l_{\infty}^{2}\right)$, where $l_{\infty}^{m}=\mathbb{R}^{m}$ with the sup-norm.

An element $\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$ is called a norming point of $T \in \mathcal{L}\left({ }^{n} E\right)$ or $\mathcal{L}\left({ }^{n} E: E\right)$ if $\left\|x_{1}\right\|=\cdots=\left\|x_{n}\right\|=1$ and $\|T\|=\left\|T\left(x_{1}, \ldots, x_{n}\right)\right\|$. We denote the set of all norming points of T by $\operatorname{Norm}(T)$.
$\operatorname{Kim}[9,7,10]$ classified $\operatorname{Norm}(T)$ for every $T \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right), \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ or $\mathcal{L}_{s}\left({ }^{3} l_{1}^{2}\right)$, respectively.

A mapping $P: E \rightarrow \mathbb{C}$ is a continuous n-homogeneous polynomial if there exists a continuous n-linear form L on the product $E \times \cdots \times E$ such that $P(x)=L(x, \ldots, x)$ for every $x \in E$. We denote by $\mathcal{P}\left({ }^{n} E\right)$ the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$.

For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [4].

An element $\left[x^{*}, x\right] \in \Pi(E)$ is called a numerical radius point of $P \in$ $\mathcal{P}\left({ }^{n} E: E\right)$ if $\left|x^{*}(P(x))\right|=v(P)$, where the numerical radius

$$
v(P)=\sup _{\left[y^{*}, y\right] \in \Pi(E)}\left|y^{*}(P(y))\right|
$$

We denote the set of all numerical radius points of P by $\operatorname{Nradius}(P)$. Notice that $\left[x^{*}, x\right] \in \operatorname{Nradius}(P)$ if and only if $\left[-x^{*},-x\right] \in \operatorname{Nradius}(P)$.

An element $x \in E$ is called a norming point of $P \in \mathcal{P}\left({ }^{n} E\right)$ or $\mathcal{P}\left({ }^{n} E: E\right)$ if $\|x\|=1$ and $\|P\|=\|P(x)\|$. We denote the set of all norming points of P by $\operatorname{Norm}(P)$.

Kim [8] classified $\operatorname{Norm}(P)$ for every $\mathcal{P}\left({ }^{2} l_{\infty}^{2}\right)$. If $T \in \mathcal{L}\left({ }^{n} E\right)$ or $\mathcal{L}\left({ }^{n} E: E\right)$ and $\operatorname{Norm}(T) \neq \emptyset, T$ is called a norm attaining and if $T \in \mathcal{L}\left({ }^{n} E: E\right)$ and $\operatorname{Nradius}(T) \neq \emptyset, T$ is called a numerical radius attaining. Similarly, if $P \in \mathcal{P}\left({ }^{n} E\right)$ or $\mathcal{P}\left({ }^{n} E: E\right)$ and $\operatorname{Norm}(P) \neq \emptyset, P$ is called a norm attaining and if $P \in \mathcal{P}\left({ }^{n} E: E\right)$ and $\operatorname{Nradius}(P) \neq \emptyset, P$ is called a numerical radius attaining (see [3]).

Choi, Domingo, Kim and Maestre [6] showed that for a scattered compact Hausdorff space K and $n \in \mathbb{N}, P \in \mathcal{P}\left({ }^{n} \mathcal{C}(K: \mathbb{C}): \mathcal{C}(K: \mathbb{C})\right)$ is norm attaining if and only if it is numerical radius attaining.

Let

$$
\mathrm{NA}\left(\mathcal{L}\left({ }^{n} E: E\right)\right)=\left\{T \in \mathcal{L}\left({ }^{n} E: E\right): T \text { is norm attaining }\right\}
$$

and
$\operatorname{NRA}\left(\mathcal{L}\left({ }^{n} E: E\right)\right)=\left\{T \in \mathcal{L}\left({ }^{n} E: E\right): T\right.$ is numerical radius attaining $\}$.
It seems to be interesting to characterize a Banach space E such that $\operatorname{NA}\left(\mathcal{L}\left({ }^{n} E: E\right)\right)=\operatorname{NRA}\left(\mathcal{L}\left({ }^{n} E: E\right)\right)$. Kim [13] showed that for every $n \geq 2$, $\operatorname{NA}\left(\mathcal{L}\left({ }^{n} l_{1}: l_{1}\right)\right)=\operatorname{NRA}\left(\mathcal{L}\left({ }^{n} l_{1}: l_{1}\right)\right)$ and also characterized $\operatorname{NA}\left(\mathcal{L}\left({ }^{n} l_{1}: l_{1}\right)\right)$.

In this paper we classify $\operatorname{Nradius}(T)$ for every $T \in \mathcal{L}\left({ }^{2} l_{1}^{2}: l_{1}^{2}\right)$ in connection with $\operatorname{Norm}(T)$.

2. Results

Let $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be the canonical basis of real or complex space l_{1} and $\left\{e_{n}^{*}\right\}_{n \in \mathbb{N}}$ the biorthogonal functionals associated to $\left\{e_{n}\right\}_{n \in \mathbb{N}}$. The following theorem presents explicit formulas for the numerical radius and the norm of T for every $T \in \mathcal{L}\left({ }^{n} l_{1}: l_{1}\right)$ and every $n \geq 2$.

Theorem 2.1 ([12]). Let $n \geq 2$. Let $T=\sum_{j \in \mathbb{N}} T_{j} e_{j} \in \mathcal{L}\left({ }^{n} l_{1}: l_{1}\right)$ be such that

$$
T_{j}\left(\sum_{i \in \mathbb{N}} x_{i}^{(1)} e_{i}, \cdots, \sum_{i \in \mathbb{N}} x_{i}^{(n)} e_{i}\right)=\sum_{i_{1}, \ldots, i_{n} \in \mathbb{N}} a_{i_{1} \cdots i_{n}}^{(j)} x_{i_{1}}^{(1)} \cdots x_{i_{n}}^{(n)} \in \mathcal{L}\left({ }^{n} l_{1}\right)
$$

for some $a_{i_{1} \cdots i_{n}}^{(j)} \in \mathbb{R}$. Then

$$
\sup \left\{\sum_{j \in \mathbb{N}}\left|a_{i_{1} \cdots i_{n}}^{(j)}\right|:\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}\right\}=v(T)=\|T\|
$$

Let $l_{1}^{2}=\mathbb{R}^{2}$ with the l_{1}-norm. Let $T=\sum_{j=1}^{2} T_{j} e_{j} \in \mathcal{L}\left({ }^{2} l_{1}^{2}: l_{1}^{2}\right)$ be such that $\|T\|=1, T_{j} \in \mathcal{L}\left({ }^{2} l_{1}^{2}\right)$ and

$$
\begin{aligned}
& T_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+d x_{2} y_{1} \\
& T_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a^{\prime} x_{1} x_{2}+b^{\prime} y_{1} y_{2}+c^{\prime} x_{1} y_{2}+d^{\prime} x_{2} y_{1}
\end{aligned}
$$

for some $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, d, d^{\prime} \in \mathbb{R}$. Notice that by Theorem 2.1,

$$
\|T\|=v(T)=\max \left\{|a|+\left|a^{\prime}\right|,|b|+\left|b^{\prime}\right|,|c|+\left|c^{\prime}\right|,|d|+\left|d^{\prime}\right|\right\}=1
$$

Let

$$
\begin{aligned}
A_{+} & =\left\{(X, Y) \in S_{l_{1}^{2}} \times S_{l_{1}^{2}}: T_{1}(X, Y) T_{2}(X, Y)>0\right\} \\
A_{-} & =\left\{(X, Y) \in S_{l_{1}^{2}} \times S_{l_{1}^{2}}: T_{1}(X, Y) T_{2}(X, Y)<0\right\} \\
B_{1} & =\left\{(X, Y) \in S_{l_{1}^{2}} \times S_{l_{1}^{2}}: T_{1}(X, Y)=0\right\} \\
B_{2} & =\left\{(X, Y) \in S_{l_{1}^{2}} \times S_{l_{1}^{2}}: T_{2}(X, Y)=0\right\}
\end{aligned}
$$

Notice that

$$
S_{l_{1}^{2}} \times S_{l_{1}^{2}}=A_{+} \cup A_{-} \cup B_{1} \cup B_{2}
$$

Let

$$
\begin{aligned}
W_{+}= & \left\{ \pm\left[e_{1}^{*}+e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in \Pi\left(l_{1}^{2}\right): \tilde{X}=X \text { or }-X, \tilde{Y}=Y \text { or }-Y\right. \\
& \left.(X, Y) \in A_{+} \cap \operatorname{Norm}(T)\right\} \\
W_{-}= & \left\{ \pm\left[e_{1}^{*}-e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in \Pi\left(l_{1}^{2}\right): \tilde{X}=X \text { or }-X, \tilde{Y}=Y \text { or }-Y\right. \\
& \left.(X, Y) \in A_{-} \cap \operatorname{Norm}(T)\right\} \\
W_{1}= & \left\{ \pm\left[t e_{1}^{*}+s e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in \Pi\left(l_{1}^{2}\right): \tilde{X}=X \text { or }-X, \tilde{Y}=Y \text { or }-Y,\right. \\
& \left.(X, Y) \in B_{1} \cap \operatorname{Norm}(T)\right\} \\
W_{2}= & \left\{ \pm\left[t e_{1}^{*}+s e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in \Pi\left(l_{1}^{2}\right): \tilde{X}=X \text { or }-X, \tilde{Y}=Y \text { or }-Y,\right. \\
& \left.(X, Y) \in B_{2} \cap \operatorname{Norm}(T)\right\}
\end{aligned}
$$

Notice that $W_{+}, W_{-}, W_{1}, W_{2}$ are mutually disjoint.
We are in position to classify $\operatorname{Nradius}(T)$ for every $T \in \mathcal{L}\left({ }^{2} l_{1}^{2}: l_{1}^{2}\right)$ in connection with $\operatorname{Norm}(T)$.

ThEOREM 2.2. Let $T=\sum_{j=1}^{2} T_{j} e_{j} \in \mathcal{L}\left({ }^{2} l_{1}^{2}: l_{1}^{2}\right)$ be be such that $\|T\|=$ $1, T_{j} \in \mathcal{L}\left({ }^{2} l_{1}^{2}\right)$. Then

$$
\operatorname{Nradius}(T)=W_{+} \cup W_{-} \cup W_{1} \cup W_{2}
$$

Proof. By Theorem 2.2 of [13], it was shown that $\operatorname{Nradius}(T) \neq \emptyset$ if and only if $\operatorname{Norm}(T) \neq \emptyset$. Without loss of generality we may assume that $\operatorname{Norm}(T) \neq \emptyset$.
$(\subseteq):$ Let $X:=\left[t e_{1}^{*}+s e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in \operatorname{Nradius}(T)$. Without loss of generality we may assume that $t \geq 0$. Since $t e_{1}^{*}+s e_{2}^{*} \in S_{l_{\infty}^{2}}, t=1$ or $|s|=1$.

Case 1. $t=1$
It follows that

$$
\begin{aligned}
(*) 1 & =v(T)=\left|\left(e_{1}^{*}+s e_{2}^{*}\right)\left(T\left(X^{\prime}, Y^{\prime}\right)\right)\right|=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)+s T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+|s|\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \leq\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =\left\|T\left(X^{\prime}, Y^{\prime}\right)\right\|_{l_{1}^{2}} \leq\|T\|=1,
\end{aligned}
$$

which shows that $\left(X^{\prime}, Y^{\prime}\right) \in \operatorname{Norm}(T)$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in A_{+}$. By $(*)$,

$$
\begin{aligned}
1 & =v(T)=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)+T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)+s T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+|s|\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
\end{aligned}
$$

which shows that $s=1$. Hence, $X=\left[e_{1}^{*}+e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{+}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in A_{-}$. By $(*)$,

$$
\begin{aligned}
1 & =v(T)=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)-T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)+s T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+|s|\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
\end{aligned}
$$

which shows that $s=-1$. Hence, $X=\left[e_{1}^{*}-e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{-}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in B_{1}$. By $(*)$,

$$
1=v(T)=\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|=|s|\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
$$

which shows that $|s|=1$. Hence, $X=\left[e_{1}^{*}+s e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{1}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in B_{2}$. By $(*)$,

$$
1=v(T)=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|
$$

which shows that $X=\left[e_{1}^{*}+e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{2}$.
Therefore, $\operatorname{Nradius}(T) \subseteq W_{+} \cup W_{-} \cup W_{1} \cup W_{2}$.
Case 2. $|s|=1$
It follows that

$$
\begin{aligned}
(* *) 1 & =v(T)=\left|\left(t e_{1}^{*}+s e_{2}^{*}\right)\left(T\left(X^{\prime}, Y^{\prime}\right)\right)\right|=\left|t T_{1}\left(X^{\prime}, Y^{\prime}\right)+s T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =|t|\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+|s|\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \leq\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =\left\|T\left(X^{\prime}, Y^{\prime}\right)\right\|_{l_{1}^{2}} \leq\|T\|=1
\end{aligned}
$$

which shows that $\left(X^{\prime}, Y^{\prime}\right) \in \operatorname{Norm}(T)$.

Subcase 1. $s=1$
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in A_{+}$. By $(* *)$,

$$
\begin{aligned}
1 & =v(T)=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)+T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|=\left|t T_{1}\left(X^{\prime}, Y^{\prime}\right)+T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =|t|\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
\end{aligned}
$$

which shows that $t=1$. Hence, $X=\left[e_{1}^{*}+e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{+}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in A_{-}$. By $(* *)$,

$$
\begin{aligned}
1 & =v(T)=\left|t T_{1}\left(X^{\prime}, Y^{\prime}\right)-T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|=\left|t T_{1}\left(X^{\prime}, Y^{\prime}\right)+T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =|t|\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
\end{aligned}
$$

which shows that $t=-1$. Hence, $X=\left[-e_{1}^{*}+e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{-}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in B_{1}$. By $(* *)$,

$$
1=v(T)=\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
$$

which shows that $X=\left[t e_{1}^{*}+e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{1}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in B_{2}$. By $(* *)$,

$$
1=v(T)=|t|\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|
$$

which shows that $X=\left[t e_{1}^{*}+e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{2}$.
Therefore, $\operatorname{Nradius}(T) \subseteq W_{+} \cup W_{-} \cup W_{1} \cup W_{2}$.
Subcase 2. $s=-1$
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in A_{+}$. By $(* *)$,

$$
\begin{aligned}
1 & =v(T)=\left|t T_{1}\left(X^{\prime}, Y^{\prime}\right)-T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =|t|\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
\end{aligned}
$$

which shows that $t=-1$. Hence, $X=\left[-e_{1}^{*}-e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{+}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in A_{-}$. By $(* *)$,

$$
\begin{aligned}
1 & =v(T)=\left|t T_{1}\left(X^{\prime}, Y^{\prime}\right)-T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|=\left|t T_{1}\left(X^{\prime}, Y^{\prime}\right)+T_{2}\left(X^{\prime}, Y^{\prime}\right)\right| \\
& =|t|\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|+\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
\end{aligned}
$$

which shows that $t=1$. Hence, $X=\left[e_{1}^{*}-e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{-}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in B_{1}$. By $(* *)$,

$$
1=v(T)=\left|T_{2}\left(X^{\prime}, Y^{\prime}\right)\right|
$$

which shows that $X=\left[t e_{1}^{*}-e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{1}$.
Suppose that $\left(X^{\prime}, Y^{\prime}\right) \in B_{2}$. By $(* *)$,

$$
1=v(T)=|t|\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|=\left|T_{1}\left(X^{\prime}, Y^{\prime}\right)\right|
$$

which shows that $X=\left[t e_{1}^{*}-e_{2}^{*}, X^{\prime}, Y^{\prime}\right] \in W_{2}$.

Therefore, $\operatorname{Nradius}(T) \subseteq W_{+} \cup W_{-} \cup W_{1} \cup W_{2}$.
$(\supseteq):$ We claim that $W_{+} \cup W_{-} \cup W_{1} \cup W_{2} \subseteq \operatorname{Nradius}(T)$.
Suppose that $\left[e_{1}^{*}+e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in W_{+}$. Without loss of generality we may assume that $\tilde{X}=X$ and $\tilde{Y}=-Y$ since the proofs for the other cases are similar. It follows that

$$
\begin{aligned}
1=v(T) & \geq\left|\left(e_{1}^{*}+e_{2}^{*}\right)(T(\tilde{X}, \tilde{Y}))\right|=\left|T_{1}(\tilde{X}, \tilde{Y})+T_{2}(\tilde{X}, \tilde{Y})\right| \\
& =\left|T_{1}(X,-Y)+T_{2}(X,-Y)\right|=\left|T_{1}(X, Y)+T_{2}(X, Y)\right| \\
& =\left|T_{1}(X, Y)\right|+\left|T_{2}(X, Y)\right|=\|T(X, Y)\|_{l_{1}^{2}}=\|T\|=1
\end{aligned}
$$

which shows that $\left[e_{1}^{*}+e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in \operatorname{Nradius}(T)$. Hence, $W_{+} \subseteq \operatorname{Nradius}(T)$.
Suppose that $\left[e_{1}^{*}-e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in W_{-}$. Without loss of generality we may assume that $\tilde{X}=X$ and $\tilde{Y}=-Y$ since the proofs for the other cases are similar. It follows that

$$
\begin{aligned}
1=v(T) & \geq\left|\left(e_{1}^{*}-e_{2}^{*}\right)(T(\tilde{X}, \tilde{Y}))\right|=\left|T_{1}(\tilde{X}, \tilde{Y})-T_{2}(\tilde{X}, \tilde{Y})\right| \\
& =\left|T_{1}(X,-Y)-T_{2}(X,-Y)\right|=\left|T_{1}(X, Y)-T_{2}(X, Y)\right| \\
& =\left|T_{1}(X, Y)\right|+\left|T_{2}(X, Y)\right|=\|T(X, Y)\|_{l_{1}^{2}}=\|T\|=1
\end{aligned}
$$

which shows that $\left[e_{1}^{*}-e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in \operatorname{Nradius}(T)$. Hence, $W_{-} \subseteq \operatorname{Nradius}(T)$.
Suppose that $\left[t e_{1}^{*}+s e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in W_{1}$. Without loss of generality we may assume that $\tilde{X}=X$ and $\tilde{Y}=-Y$ since the proofs for the other cases are similar. It follows that

$$
\begin{aligned}
1=v(T) & \geq\left|\left(t e_{1}^{*}+s e_{2}^{*}\right)(T(\tilde{X}, \tilde{Y}))\right|=\left|t T_{1}(\tilde{X}, \tilde{Y})+s T_{2}(\tilde{X}, \tilde{Y})\right| \\
& =\left|t T_{1}(X,-Y)+s T_{2}(X,-Y)\right|=\left|t T_{1}(X, Y)+s T_{2}(X, Y)\right| \\
& =|s|\left|T_{2}(X, Y)\right| \leq\left|T_{2}(X, Y)\right| \leq\|T(X, Y)\|_{l_{1}^{2}}=\|T\|=1
\end{aligned}
$$

which shows that $\left[t e_{1}^{*}+s e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in \operatorname{Nradius}(T)$. Hence, $W_{1} \subseteq \operatorname{Nradius}(T)$.
Suppose that $\left[t e_{1}^{*}+s e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in W_{2}$. Without loss of generality we may assume that $\tilde{X}=X$ and $\tilde{Y}=-Y$ since the proofs for the other cases are similar. It follows that

$$
\begin{aligned}
1=v(T) & \geq\left|\left(t e_{1}^{*}+s e_{2}^{*}\right)(T(\tilde{X}, \tilde{Y}))\right|=\left|t T_{1}(\tilde{X}, \tilde{Y})+s T_{2}(\tilde{X}, \tilde{Y})\right| \\
& =\left|t T_{1}(X,-Y)+s T_{2}(X,-Y)\right|=\left|t T_{1}(X, Y)+s T_{2}(X, Y)\right| \\
& =|t|\left|T_{1}(X, Y)\right| \leq\left|T_{1}(X, Y)\right| \leq\|T(X, Y)\|_{l_{1}^{2}}=\|T\|=1
\end{aligned}
$$

which shows that $\left[t e_{1}^{*}+s e_{2}^{*}, \tilde{X}, \tilde{Y}\right] \in \operatorname{Nradius}(T)$. Hence, $W_{2} \subseteq \operatorname{Nradius}(T)$.
Therefore, $W_{+} \cup W_{-} \cup W_{1} \cup W_{2} \subseteq \operatorname{Nradius}(T)$. This completes the proof.

Acknowledgements.
The author is thankful to the referee for the careful reading and considered suggestions leading to a better presented paper.

References

[1] R. M. Aron, C. Finet and E. Werner, Some remarks on norm-attaining n-linear forms, in: Function spaces (Edwardsville, IL, 1994), Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995, pp. 19-28.
[2] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98.
[3] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. (2) 54 (1996), 135-147.
[4] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London 1999.
[5] M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 127 (1998), 99-112.
[6] Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Norm or numerical radius attaining polynomial on $\mathcal{C}(K)$, J. Math. Anal. Appl. 295 (2004), 80-96.
[7] S. G. Kim, The norming set of a bilinear form on l_{∞}^{2}, Comment. Math. 60 (2020), 37-63.
[8] S. G. Kim, The norming set of a polynomial in $\mathcal{P}\left({ }^{2} l_{\infty}^{2}\right)$, Honam Math. J. 42 (2020), 569-576.
[9] S. G. Kim, The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud. 55 (2021), 171-180.
[10] S. G. Kim, The norming set of a symmetric 3-linear form on the plane with the l_{1} norm, New Zealand J. Math. 51 (2021), 95-108.
[11] S. G. Kim, Numerical radius points of $\mathcal{L}\left({ }^{m} l_{\infty}^{n}: l_{\infty}^{n}\right)$, New Zealand J. Math. 53 (2022), 1-10.
[12] S. G. Kim, Three kinds of numerical indices of l_{p}-spaces, Glas. Mat. Ser. III 55(77) (2022), 49-61.
[13] S. G. $\operatorname{Kim}, N A\left(\mathcal{L}\left({ }^{n} l_{1}: l_{1}\right)\right)=N R A\left(\mathcal{L}\left({ }^{n} l_{1}: l_{1}\right)\right)$,, Acta Sci. Math. (Szeged) 88 (2022), 769-775.

Točke numeričkog radijusa bilinearnog preslikavanja ravnine s l_{1}-normom u samu sebe

Sung Guen Kim

Sažetak. Za $n \geq 2$ i Banachov prostor E neka je
$\Pi(E)=\left\{\left[x^{*}, x_{1}, \ldots, x_{n}\right]: x^{*}\left(x_{j}\right)=\left\|x^{*}\right\|=\left\|x_{j}\right\|=1\right.$ for $\left.j=1, \ldots, n\right\}$.
Neka $\mathcal{L}\left({ }^{n} E: E\right)$ označava prostor svih neprekidnih n-linearnih preslikavanja E u samu sebe. Element $\left[x^{*}, x_{1}, \ldots, x_{n}\right] \in \Pi(E)$ naziva se točka numeričkog radijusa od $T \in \mathcal{L}\left({ }^{n} E: E\right)$ ako je

$$
\left|x^{*}\left(T\left(x_{1}, \ldots, x_{n}\right)\right)\right|=v(T)
$$

gdje je $v(T)$ numerički radijus od T. Nradius (T) označava skup svih točaka numeričkog radijusa od T. U ovom članku klasificiramo $\operatorname{Nradius}(T)$ za svaki $T \in \mathcal{L}\left({ }^{2} l_{1}^{2}: l_{1}^{2}\right)$ u vezi s $\operatorname{Norm}(T)$, gdje $\operatorname{Norm}(T)$ označava skup svih točaka normiranja od T.

Sung Guen Kim
Department of Mathematics
Kyungpook National University
Daegu 702-701, Republic of Korea
E-mail: sgk317@knu.ac.kr
Received: 19.4.2022.
Revised: 18.10.2022.
Accepted: 22.11.2022.

[^0]: 2020 Mathematics Subject Classification. 46A22.
 Key words and phrases. Numerical radius, numerical radius attaining bilinear forms, numerical radius points.

