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NUMERICAL RADIUS POINTS OF A BILINEAR MAPPING
FROM THE PLANE WITH THE [;-NORM INTO ITSELF

SuNG GUEN Kim

ABSTRACT. For n > 2 and a Banach space E we let
II(E) = {[z",z1,...,zn] : 2" (x;) = ||z"|| = ||zj|| =1 for j=1,...,n}.

Let L(™E : E) denote the space of all continuous n-linear mappings from
E to itself. An element [x*,z1,...,2zs] € II(E) is called a numerical radius
point of T € L("E : E) if
|5 (T(@1, .. o) = o(T),

where v(T') is the numerical radius of T'. Nradius(7T") denotes the set of
all numerical radius points of 7. In this paper we classify Nradius(7T') for
every T € £(212 : 12) in connection with Norm(T'), where Norm(7') denotes
the set of all norming points of 7T'.

1. INTRODUCTION

Let us sketch a brief history of norm or numerical radius attaining multi-
linear forms and polynomials on Banach spaces. In 1961, Bishop and Phelps
[2] initiated and showed that the set of norm attaining functionals on a Banach
space is dense in the dual space. Shortly after, attention was paid to possible
extensions of this result to more general settings, specially bounded linear
operators between Banach spaces. The problem of denseness of norm attain-
ing functions has moved to other types of mappings like multilinear forms
or polynomials. The first result about norm attaining multilinear forms ap-
peared in a joint work of Aron, Finet and Werner [1], where they showed that
the Radon-Nikodym property is sufficient for the denseness of norm attaining
multilinear forms. Choi and Kim [3] showed that the Radon-Nikodym prop-
erty is also sufficient for the denseness of norm or numerical radius attaining
polynomials. Jiménez-Sevilla and Payd [5] studied the denseness of norm at-
taining multilinear forms and polynomials on preduals of Lorentz sequence
spaces. Choi, Domingo, Kim and Maestre [6] showed that for a scattered
compact Hausdorff space K, every continuous n-homogeneous polynomial on
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C(K : C) can be approximated by norm attaining ones at extreme points and
also that the set of all extreme points of the unit ball of C(K : C) is a norming
set for every continuous complex polynomial. The authors obtained similar
results if “norm” is replaced by “numerical radius”.

Let n € N, n > 2. We write Sg for the unit sphere of a Banach space E.
L("E : E) is usually endowed with the norm

1T = sup [T (@1, ).
(1, ,xn)ESEX--XSE

Ls("E : E) denotes the closed subspace of all continuous symmetric n-linear
mappings on F. We let

(E) = {[:ﬂ*,xl,...,xn]:x*(mj) =" = ||zl =1for j=1,....n }

An element [z*,21,...,2,] € II(E) is called a numerical radius point of T €
LME : E)if |o*(T(x1,...,2,))| = v(T), where the numerical radius

o(T) = sup y* (T(yl,...,yn))’.
[y* 51, yn]€IL(E)
Notice that [x*, 21,...,2,] € Nradius(7T) if and only if [—z*, —z1,..., —xz,] €
Nradius(T).

Kim [12] classified Nradius(T') for every T € L(?I? : 13), where [§ = R?
with the /;-norm. Kim [11] also studied Nradius(T) for every T € L(™I? :
™) (m € N) and classified Nradius(T) for every T € L(%1% : I2), where
[ = R™ with the sup-norm.

An element (z1,...,2,) € E™ is called a norming point of T € L(™E) or
LME : E)if ||z1]| = - = |lzp]| =1 and ||T|| = ||T(z1, - - ., zn)|. We denote
the set of all norming points of T by Norm(T).

Kim [9, 7, 10] classified Norm(T) for every T € L4(*1%), L(3I%) or
Ls(313), respectively.

A mapping P : E — C is a continuous n-homogeneous polynomial if
there exists a continuous n-linear form L on the product £ x --- x E such
that P(x) = L(z,...,x) for every x € E. We denote by P("E) the Banach
space of all continuous n-homogeneous polynomials from E into R endowed
with the norm || P|| = sup, = |P()].

For more details about the theory of multilinear mappings and polyno-
mials on a Banach space, we refer to [4].

An element [z*,z] € II(E) is called a numerical radius point of P €
P("E : E) if |z*(P(x))| = v(P), where the numerical radius

v(P)=  sup ‘y*(P(y)))-
[y* yl€(E)

We denote the set of all numerical radius points of P by Nradius(P). Notice
that [z*, z] € Nradius(P) if and only if [—z*, —z] € Nradius(P).
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An element z € E is called a norming point of P € P("E) or P("E : E)
if ||z|| = 1 and || P|| = ||P(x)||. We denote the set of all norming points of P
by Norm(P).

Kim [8] classified Norm(P) for every P(%I2,). If T € L("E) or L("E : E)
and Norm(7T) # 0, T is called a norm attaining and if T € L("E : E)
and Nradius(T) # 0, T is called a numerical radius attaining. Similarly, if
P e P(™E) or P("E : E) and Norm(P) # 0, P is called a norm attaining
and if P € P("E : E) and Nradius(P) # 0, P is called a numerical radius
attaining (see [3]).

Choi, Domingo, Kim and Maestre [6] showed that for a scattered compact
Hausdorff space K andn € N, P € P("C(K : C) : C(K : C)) is norm attaining
if and only if it is numerical radius attaining.

Let

NA(L("E : E))={T € L("E : E) : T is norm attaining}
and
NRA(L("E : E)) ={T € L("E : E) : T is numerical radius attaining}.

It seems to be interesting to characterize a Banach space E such that
NA(L("E : E)) = NRA(L("E : E)). Kim [13] showed that for every n > 2,
NA(L(™; :11)) = NRA(L(™; : 1)) and also characterized NA(L("l; : I1)).

In this paper we classify Nradius(7') for every T' € £(?13 : [2) in connection
with Norm(7).

2. RESULTS

Let {ey, }nen be the canonical basis of real or complex space I3 and {e} },,en
the biorthogonal functionals associated to {e,}nen. The following theorem
presents explicit formulas for the numerical radius and the norm of T for
every T' € L£(™y : l;) and every n > 2.

THEOREM 2.1 ([12]). Letn > 2. Let T = 3",y Tje; € L("l1 : l1) be such
that

Tj ( Z zgl)eia e 72 xgn)ez) = Z az(llj)ln 517511) e I,E:) S E(nll)
1€EN 1€EN i1y..0in €N

for some al) . € R. Then

B1%

sup{z

jeN

(4)
a”il"'in

(i1, ... in) € N”} = o(T) = ||

Let 12 = R? with the [y-norm. Let T = 25:1 Tjej € L(317 : 13) be such
that ||| = 1,7; € L£(*13) and
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T ((I17y1)7 (33273/2)) = ax1T2 + by1ys + cr1y2 + droys
Ty ((551,91), (332»3/2)) =a'zixo + b yrys + ¢ 21y + d zoyn.
for some a, a/, b, b/,c7 c/, d, d € R. Notice that by Theorem 2.1,

111 = o(T) = wax {Ja| + [a’, ol + '], le] + ¢, |d] +|d' |} = 1.

Let
Ay ={(X,¥) € 8 x S 1 T (X, V)T3(X,Y) > 0},
A= {(X7Y) € S x S : T (X, Y)Ta(X,Y) < 0},
B = {(X,Y) € S x Sp : Ty (X,Y) = o},
By = {(X,Y) € S x Sz : To(X,Y) = o}.

Notice that
Sl% X Sl% :AJFUA, UB1UBQ.
Let

—~

Wy=9+[ef+e5, X, Y]ell(l3): X=Xor —X,Y =Y or -V,
X,Y)e Ay nNorm(T) ¢,
2

W_=3+[e;—es, X,Y]cl(l}): X=Xor —X,Y =Y or —Y,
(X,Y) e A_n Norm(T)},

Wy =13 £[te; +se5, X, Y] ell(i?): X=Xor —X,Y =Y or —Y,
(X,Y) € BN Norm(T)},

Wgz{:ﬁ:[te’{—i—se;f(,f/]EH(Z?):X:Xor ~X,Y=Yor -,

(X,Y) € By Norm(T)}.
Notice that W, W_,W;, Wy are mutually disjoint.
We are in position to classify Nradius(7T) for every T € L(%1? : I2) in
connection with Norm(T').

THEOREM 2.2. Let T = 23:1 Tje; € L(313 1 13) be be such that ||T|| =
1,T; € L(1}). Then
Nradius(T) = W+ uUw_u W1 ] WQ.
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PRrROOF. By Theorem 2.2 of [13], it was shown that Nradius(7T) # 0 if
and only if Norm(7T) # (. Without loss of generality we may assume that
Norm(T) # 0.

(C) : Let X := [tef+se5, X', Y] € Nradius(T'). Without loss of generality
we may assume that ¢ > 0. Since tej + se3 € Siz_, t = 1L or [s| = 1.

Case 1. t =1

It follows that

(¥) 1 =(T) = |(e] + se3)(T(X,
= [T (XY + 8| T2(X,
=T Y < 1T =1,

Ty (X ,Y) 4 sTo(X Y|

Y))l =
YO < ITX LY+ To(X YY)

)

which shows that (X', Y") € Norm(T).
Suppose that (X',Y") € A,. By (x),

1=o(T) = |T\(X,Y )+ (X V)| = TN (X,Y) + sTo(X ,Y)|
= T (X, Y]+ sl To(X Y],

which shows that s = 1. Hence, X = [eX + ¢}, X, Y ] € W,.
Suppose that (X',Y") € A_. By (%),

1=o(T) = |T\(X,Y) - To(X,Y)| = (X ,Y) + sTo(X,Y)|
= Ty(X Y| + |s||To (X, Y,

which shows that s = —1. Hence, X = [ef —e3, X, Y] € W_.
Suppose that (X',Y") € By. By (),

1=o(T) = |T(X,Y)| = |s|| (X, Y)],

which shows that |s| = 1. Hence, X = [et + se3, X, Y] € Wy.
Suppose that (X/,Y/) € Bs. By (),

1=o(T) =Ty (X, Y],

which shows that X = [} +e5, X, Y] € W.
Therefore, Nradius(T) C W, UW_ U W; U Ws.

Case 2. |s|] =1
It follows that

(xx) 1 =0(T) = |(te} + se3)(T(X ,Y))| = tTy(X ,Y') + sTo(X,Y)|
= [¢] TV (X, Y) + [s] |To(X Y| < ITU(X Y| + |To(X V)]
= |7(X" Y ) < 1T =1,
which shows that (X',Y") € Norm(T).
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Subcase 1. s=1
Suppose that (X',Y/) € A.. By (%),
1=o(T) = |Ty(X ,Y)+To(X,Y)| = tTy (X, Y )+ To(X,Y)|
= [t V(XY + [To(X V),

which shows that ¢ = 1. Hence, X = [e} +¢5, X ,Y'] € W,.
Suppose that (X/,Y/) € A_. By (),

1=o(T) = [tTy(X,Y) = To(X,Y)| = tTu(X Y )+ To(X,Y))]
= |t| [Tu(X Y| + |To(X, Y],

which shows that ¢ = —1. Hence, X = [—ef 4+ €5, X, Y] € W_.
Suppose that (X', Y") € By. By (x%),

1=v(T) = \TQ(X/:Y,)L

which shows that X = [teX +e3, X ,Y'] € Wy.
Suppose that (X/7Y/) € Bs. By (%),

L=o(T) = t| ITu(X,Y)| = |Tu(X,Y)],

which shows that X = [te} 4+ e5, X, Y] € W,
Therefore, Nradius(T) C W, UW_ U W; U Ws.

Subcase 2. s = —1
Suppose that (X', Y") € A,. By (x%),
1=o(T) = T (X ,Y) - To(X,Y)]
= 6] 1T (X, Y)| + [To(X Y,

which shows that ¢ = —1. Hence, X = [—ef —e5, X, Y ] € W,.
Suppose that (X',Y") € A_. By (x),

1=0(T) =t (X ,Y) —To(X,Y)| = tTi(X,Y') + To(X, V)|
= [t| IV (X, Y)| +|Ta(X, Y,

)
which shows that ¢ = 1. Hence, X = [ef — e}, X, Y] € W_.
Suppose that (X',Y") € By. By (%),

1=o(T) = [T(X, Y,

which shows that X = [te} — e}, X', Y] € Wy.
Suppose that (X/,Y/) € Bs. By (%),

1=o(T) = |t| [Tu(X ,Y)| = |Ty(X Y,
which shows that X = [tet — e}, X, Y'] € Wh.
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Therefore, Nradius(T) C W, UW_ U W; U Ws.

(D) : We claim that W UW_ UW; U W, C Nradius(T).

Suppose that [ef + e}, X, Y] € W,. Without loss of generality we may
assume that X = X and Y = —Y since the proofs for the other cases are
similar. It follows that

1=0(T) > |(ef +e3)(T(X,Y))| = |T1(X,Y) + To(X,Y))
=T (X, -Y) + To(X, -Y)| = [T1(X,Y) + To (X, Y)
= T(X,Y) |+ (X, Y)| = [T(X, V)| = T =1,
which shows that [e] + €3, )~(~ ) )7:] € Nradius(7T'). Hence, W, C Nradius(T).
Suppose that [e] —e3, X, Y] € W_. Without loss of generality we may

assume that X = X and Y = —Y since the proofs for the other cases are
similar. It follows that

L=u(T) 2 |(ef —e3)(T(X,Y))| = |T1(X,Y) - To(X, Y]
=T (X,-Y) - To(X,-Y)| = [[1(X,Y) - T2(X,Y)
= |T(X,Y)| + (X, Y)| = |T(X,Y)l;; = |7 = 1,
which shows that [e} — e}, X ,}7] € Nradius(T'). Hence, W_ C Nradius(7).
Suppose that [ter + se3, X, Y] € W;. Without loss of generality we may

assume that X = X and Y = —Y since the proofs for the other cases are
similar. It follows that

1=0(T) > |(tef + se3)(T(X,Y))| = fT1(X,Y) + sT2(X, Y|
=N (X, -Y) + sTL(X,-Y)| = tTh(X,Y) + sTH(X,Y)|
= [s| [To(X,Y)| < [To(X, V)| < [T(X, V)2 = T =1,
which shows that [te] + se3, )N{, ff] € Nradius(T). Hence, W; C Nradius(T).
Suppose that [te} + se5, X, Y] € Wy, Without loss of generality we may

assume that X = X and Y = —Y since the proofs for the other cases are
similar. It follows that

1=o(T) > |(te] + se3)(T(X,Y))| = tTh(X,Y) + sTo(X,Y)|
=t (X, -Y) + sTa(X,-Y)| = tTi(X,Y) + sTa(X,Y)|
= [t [M(X, V) < [T (X, Y) < [T(X, Yl = (1T = 1,
which shows that [te} 4 sej, X, Y] € Nradius(T). Hence, Wy C Nradius(T').

Therefore, W, UW_ UW; UW; C Nradius(T"). This completes the proof.
0
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Tocke numerickog radijusa bilinearnog preslikavanja ravnine s
[;-normom u samu sebe

Sung Guen Kim

SAZETAK. Za m > 2 i Banachov prostor F neka je
I(E) ={[z",z1,...,2n] : 2" (x;) = ||z7|| = ||zj]| = 1forj =1,...,n }.
Neka L£("E : E) oznacava prostor svih neprekidnih n-linearnih
preslikavanja E u samu sebe. Element [z*,z1,...,2,] € II(E)
naziva se tocka numerickog radijusa od T' € L("FE : E) ako je
‘.’E*(T(:El, SRR :Z?n))| = U(T)7

gdje je v(T") numericki radijus od 7. Nradius(7') oznacava skup
svih toc¢aka numerickog radijusa od T. U ovom ¢lanku klasifici-
ramo Nradius(7T) za svaki T € L(313 : I3) u vezi s Norm(T), gdje
Norm(7') oznac¢ava skup svih tocaka normiranja od 7.
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