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REFINED EULER’S INEQUALITIES IN PLANE
GEOMETRIES AND SPACES

Darko Veljan

Abstract. Refined famous Euler’s inequalities R ≥ nr of an n-
dimensional simplex for n = 2, 3 and 4 as well as of non-Euclidean triangles
in terms of symmetric functions of edge lengths of a triangle or a simplex
in question are shown. Here R is the circumradius and r the inradius of
the simplex. We also provide an application to geometric probabilities of
our results and an example from astrophysics to the position of a planet
within the space of four stars. We briefly discuss a recursive algorithm to
get similar inequalities in higher dimensions.

1. Introduction

In papers [6] and [5] are presented improvements of the well known Euler’s
inequality R ≥ 2r from 1765, where R and r are the circumradius and inradius
of a triangle, respectively, in terms of symmetric functions of triangle’s side
lengths and similarly for tetrahedra. In [4] we established non-Euclidean
versions of Euler’s inequality: tan(R) ≥ 2 tan(r) in spherical and tanh(R) ≥
2 tanh(r) in hyperbolic geometry (when the triangle has the circumcircle). In
[1] the authors reproved our Theorem 1 and tried to adapt it to hyperbolic
(and spherical) triangles, but it did not work directly. Instead, we found in [6]
the right analogue of our improvement of Euler’s inequality in non-Euclidean
geometries of the previous results. This was, in fact, an initial motivation
for [6]. In this paper we give one more intrinsic improvement of R ≥ 2r,
and hence one more non-Euclidean analogue. The second motivation was
to refine the 3D-analogue of R ≥ 3r of Euler’s inequality and possibly in
higher dimensions, as well as applications in astrophysics of positions of a
planet within the space between four stars. In this work we shall briefly recall
main results from previous works and make advances as well as some new
interpretations of the results.
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2. Triangle

We stick with standard triangle notations. Let T = △ABC be a triangle
with side lengths a, b, c, S its area, 2s the perimeter, R the circumradius and
r the inradius of T . With these notations, recall, we have

Theorem 2.1.
(2.1) R/r ≥ (abc+ a3 + b3 + c3)/2abc ≥ 2.
Equalities hold in both inequalities if and only if T is an equilateral triangle.

Note that the right inequality (2.1) is just the AM-GM inequality (i.e., the
arithmetic-geometric means inequality) for numbers a3, b3, c3. We presented
three proofs of (2.1), two in [6] and another one in [5], modifying and simpli-
fying proof given in [1]. The algebraic proof from [6] basically reduces to the
inequality d3(a, b, c)2 −d3(a2, b2, c2) ≥ 0 (inequality (2.4) in [6]). Here in gen-
eral, d3(u, v, w) := (u+v−w)(u−v+w)(−u+v+w). The second proof of (2.1)
in [6] is shown to be equivalent to Gerretsen’s inequality (from 1953) which
in turn follows from Blundon’s inequality (from 1965): s ≤ 2R + (3

√
3 − 4)r

as explained in [4] (note, s = 2R+ r holds only for right triangles).
Proofs in [1] and [5] have more geometric flavor by considering tangent

segments from vertices to the incircle. Gerretsen’s inequalities can also be
proved geometrically by computing distances between the incenter I, centroid
G and orthocenter H. Namely, 9IG2 = s2 − 16Rr + 5r2 ≥ 0 and IH2 =
4R2 + 4Rr − s2 ≥ 0. These formulas can also be proved geometrically by
using vectors and Euler’s line.

Here we provide yet another (a bit weaker) refinement of Euler’s basic
inequality R ≥ 2r in terms of symmetric functions of a, b, and c.

Theorem 2.2.
(2.2) (R/r)2 ≥ 12(a2 + b2 + c2)/(a+ b+ c)2 ≥ 4.
Equality holds only for an equilateral triangle.

Proof. Let us make the following splitting of the fraction (R/r)2. Recall
first rs = S:

(2.3) (R/r)2 = R2 · s2/S · 1/S.
Now use the well known inequality 9R2 ≥ a2 +b2 +c2 (see also later in the

text the general inequality (n+ 1)2R2 ≥
∑
a2 for any n-simplex, here we use

the case n = 2). Next, use the standard triangle inequality s2/S ≥ 3
√

3, and
once again in the form 1/S ≥ 3

√
3/s2 (see also later in the text the standard

isoperimetric for simplices, but we use here the case n = 2). By inserting all
three estimates in (2.3) yields the left hand side inequality (2.2). The right
hand side of (2.2) follows from the quadratic-algebraic mean inequality for
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numbers a, b and c. Again, (2.2) is tight because both inequalities become
equalities only in the case of an equilateral triangle.

As it was explained in [6], if we express (2.1) in the form R/r =
2abc/d3(a, b, c) and express everything in terms of elementary symmetric func-
tions e1, e2 and e3 in variables a, b and c, the left hand side inequality (2.1)
is equivalent to the inequality

(2.4) e6
1 + 12e3

1e3 + 12e2
1e

2
2 + 36e2

3 ≥ 7e4
1e2 + 40e1e2e3.

By using Lemma 1.4 from [6], we have the following theorem which im-
proves non-Euclidean versions of Euler: tan(R) ≥ 2 tan(r) and tanh(R) ≥
2 tanh(r) from [4].

Theorem 2.3. In the spherical geometry (2.4) holds but for variables
s(a), s(b), s(c), where s(x) = sin(x/2) and in the hyperbolic geometry (2.4)
holds but for variables h(a), h(b), h(c), where h(x) = sinh(x/2). (In (2.4)
the variables are a/2, b/2, c/2.). Theorem 2.2 would also give an inequality
in elementary symmetric functions of degree 8, and hence the corresponding
inequality in non-Euclidean planes which also improves the standard Euler’s
inequality.

3. Tetrahedron

3D-Euler’s inequality for a tetrahedron T is R ≥ 3r. A short elegant
argument is worth repeating. Consider the tetrahedron T ′ with centroids of
faces of T as vertices. Since T and T ′ are similar, the circumradius R′ of T ′

is R′ = R/3, since the similarity coefficient is 1/3. But R′ ≥ r, because the
smallest ball that touches all faces of T is just the inscribed ball of T . So,
R ≥ 3r. The same proof works in all dimensions (including n = 2), but of
course then R ≥ nr.

This is the inequality which reflects only the ambient dimension and not
the simplex itself. So, the motivation in [6] (and [5]) was to find an intrinsic
refinement of R ≥ nr.

Let T = ABCD be any tetrahedron (3-simplex) with edge lengths a, b,
c, a′, b′, c′ with a, b, c forming the base triangle ABC, a opposite to a′ etc.
Let V , S, R and r be the volume, surface area, circumradius and inradius
of T , respectively. In [6] we proved the following refinement of 3D Euler’s
inequality.

Theorem 3.1.

(3.1) (R/r)2 ≥ 3(aa′ + bb′ + cc′)/d3(aa′, bb′, cc′)1/3 ≥ 9.

The left hand side of (3.1) becomes equality only when T is equifacial,
i.e., all faces of T are congruent, that is a = a′, b = b′, c = c′. The right
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hand side inequality in (3.1) becomes equality only when aa′ = bb′ = cc′, that
is when Crelle’s triangle of T with these side lengths is equilateral.

Note that the right hand side of (3.1) is the AM-GM inequality combined
with Schur’s inequality uvw ≥ d3(u, v, w) , which in turn follows from ordinary
Euler’s R ≥ 2r, since R/r = 2abc/d3(a, b, c) and by continuity in general.

Recall that the main ingredients of the proof of Theorem 3.1 are Crelle’s
formula C = 6RV for the area C of Crelle’s triangle (proved by inversion e.g.
in [3]), the standard isoperimetric inequality for tetrahedra 2334V 2 ≤

√
3S3

(proved in [6], and also in [3]), and finally Mazur’s inequality for volume
proved in [2]:

(M) 2332V 2 ≤ d3(aa′, bb′, cc′).

As Gerretsen’s and Blundon’s inequalities encompass the triangle’s peri-
meter in terms of R and r, so Theorem 3.1 implies lower and upper bounds
for the surface area S of T as follows:

23 · 3
√

3 · r2 ≤ S ≤
√

2 · d3(aa′, bb′, cc′)/4r and 3kV/R ≤ S ≤ 8
√

3 ·R3/9r.

Here k2 is the middle term in (3.1). Equalities hold in all these inequalities
only when T is a regular tetrahedron. Note that we can use our results to
many other situations. For instance, looking at exradii of T , rA the exradius
of T against A is given by rA = 3V/(S−SA), where SA is the area of the face
against A. Since 1/r = 3S/V , it follows that

∑
1/rA + 1/r = 4S/3V . So, we

can estimate this sum from above and below by using the above inequalities
and (M).

An analogue of Theorem 3.1 for non-Euclidean tetrahedra (inscribed in a
sphere) would be a big advance, but at the time it is not clear how to do it.

4. Probability and Euler’s inequalities

Let us give an interesting probabilistic interpretation of our results. Let
P be a randomly and uniformly chosen point from the circumball of the
tetrahedron T . What is the probability that P lies in the inscribed ball of T?
One can imagine four stars with known mutual distances and a small planet
orbiting around them. What is the utmost chance that the planet is deeply
within the stars (in the sense that it belongs to the inball of the stars)?

Theorem 4.1. The probability that a randomly and uniformly chosen
point within the circumsphere of T is within the inscribed sphere of T is at
most equal to

(4.1)
√
d3/(3e1)3.

Here d3 = d3(aa′, bb′, cc′) and e1 = aa′ + bb′ + cc′.
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Proof. The probability in question is equal to the quotient of volumes
of the inball and the circumball of T . But the ratio of these volumes is equal
to the ratio (r/R)3. The upper bound (r/R)3 ≤

√
d3/(3e1)3 follows directly

from the left hand side of inequality (3.1).

Note that bound (4.1) is ≤ 1/33 = 0.037037 . . . (by R ≥ 3r). For an
n-simplex the corresponding probability is ≤ 1/nn, so very fast goes to zero
in higher dimensional simplices; of course, this is due to Euler’s R ≥ nr.

For a triangle we can compute the exact probability. It is equal to
(r/R)2 = (S/s : abc/4S)2 and by using Heron’s formula 16S2 = 2sd3(a, b, c)
we get the exact probability (d3(a, b, c)/2abc)2 ≤ 0.25. Now we can use The-
orem 2.1 to get good upper bound for this probability. Note that Theorem
2.2 gives us also an upper bound (a+ b+ c)2/12(a2 + b2 + c2).

For one more application in astrophysics see [7].

5. 4-simplex and n-simplex

Let T = A0A1 . . . An be an n-dimensional simplex (or simply an n-
simplex) with edge lengths aij = AiAj and volume V , the surface area S
as the sum of all face (n-1)-dimensional volumes of Si, i = 0, 1, . . . , n, R the
circumradius and r the inradius of T . The general inequalities (see [6] and
literature cited there) are as follows:

(n!V )2nn ≤ (n+ 1)n+1R2n, (n!Sn/V n−1)2 ≥ n3n(n+ 1)n+1,

and this is the standard isoperimetric inequality for simplices, and

n3nV 2(n−1) ≤ (n+ 1)n−1(n!)2(S0 × S1 × · · · × Sn)2n/(n+1),

referred to as the “volume-faces inequality”. And one more is (n + 1)2R2 ≥∑
a2, the sum of squared edge lengths of T .

The next theorem can be considered as the 4D analogue of Mazur’s in-
equality (M) in 3D.

Theorem 5.1. Let T = A0A1A2A3A4 be a 4-simplex, aij = AiAj , i < j,
the edge lengths of T and V its volume. Denote by (ijkl) := d3(aijakl, aikajl,
ailajk) for all 0 ≤ i < j < k < l ≤ 4. Then we have the following upper bound
of the volume V in terms of edges:

(5.1) (25 · 3 · V )3 ≤ 5
√

5 ·
[∏

(ijkl)
]2/5

.

Equality holds for a regular 4-simplex.

Proof. The volume-faces inequality for n = 4 yields 412 · V 6 ≤ 53 ·
242(S0 × · · · × S4)8/5. Now apply to each of the five factors Si Mazur’s
inequality (M). Then a bit of checking confirms (5.1).
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Now we get a refinement of Euler’s R ≥ 4r for a 4-simplex in terms
of symmetric functions of edge lengths of T , a 4D analogue of Theorem 3.1
(formula (3.1)).

Theorem 5.2.

(5.2) (R/r)2 ≥ (8 ·
∑

a2)/5
∏

(ijkl)1/15 ≥ 24.

Equality is achieved for a regular 4-simplex.

Proof. From rS = 4V we have the following splitting

(5.3) (R/r)2 = R2 · S2/(42V 2) = (R/4)2 · [(24S4/V 3)2]1/4 · 24−1/2 · V −1/2.

Now use the inequality 25R2 ≥
∑
a2 to get (R/4)2 ≥ 2−2 · 5−2∑ a2. Next

use the standard isoperimetric inequality for n = 4 to get the estimate[
(24S4/V 3)2]1/4 ≥ 43 · 55/4 · 24−1/2. Finally, use Theorem 5.1, that is the

upper bound (5.1) for V to obtain V −1/2 ≥ (210 · 3/5)1/4 ·
∏

(ijkl)−1/15. By
inserting all these estimates to factors in (5.3) yields the left hand side inequal-
ity (5.2) in terms of edge lengths of T . The right inequality again follows by
using Schur’s inequality and the AM-GM inequality. Note if all aij = a = 1,
then clearly all d3 are equal to 1, so all (ijkl) = 1 and

∑
a2 = 10. Hence,

for a regular simplex (5.2) implies R = 4r as we know it should be by the
standard Euler’s inequality.

Let us only remark that Theorem 5.2 also has the probabilistic interpre-
tation in the Euclidean dimension 4. But the hyperbolic 3D and 4D (“space-
time”) analogues are still missing.

Now it is clear how to proceed with refining of Euler’s inequality to
the next dimension: a splitting like (5.3) and volume estimates like (5.1)
by iterating inequalities as used above. This recursive algorithm works for
any dimension. As we mentioned in [6] the concept of Crelle’s (n − 1)-
simplex C

(i)
n−1 of an n-simplex can be useful in this respect. The volume

voln−1(C(i)
n−1) = 2nRV ρ2(n−3)

i , where ρ2
i is the product of all edge lengths of

T ending at Ai(i = 0, 1, . . . , n), is the generalisation of Crelle’s formula for
n = 3 as we used it in the proof of Theorem 3.1.
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Profinjene Eulerove nejednakosti u ravninskim geometrijama te u
prostorima

Darko Veljan

Sažetak. Profinjene su poznate Eulerove nejednakosti R ≥
nr za n-dimenzionalni simpleks kad je n = 2, 3 ili 4, te za neeuk-
lidske trokute u terminima simetričnih funkcija duljina bridova
trokuta odnosno simpleksa. Pritom su R i r redom polumjeri
opisane i upisane sfere simpleksa. Nadalje, primijenjeni su do-
biveni rezultati u vidu geometrijskih vjerojatnosti, a kao primjer
iz astrofizike je položaj planeta unutar prostora izmedu četiriju
zvijezda. Na kraju je razmatran rekurzivni algoritam za dobi-
vanje analognih nejednakosti u višim dimenzijama.
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