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ON SOME PROPERTIES OF KIEPERT PARABOLA IN THE
ISOTROPIC PLANE

Vladimir Volenec and Zdenka Kolar-Begović

Abstract. In this paper we consider the curve which is an envelope
of the axes of homology of a given triangle and the corresponding Kiepert
triangles in the isotropic plane – the Kiepert parabola of the given triangle.
We derive the equation of this parabola by using appropriate coordinate
system. We give some new significant characterizations of this curve which
are not valid in the Euclidean plane. We have also studied the relationships
between Kiepert parabola and the Steiner point, the tangential triangle as
well as the Jeřabek hyperbola of the given triangle.

1. Introduction and Motivation

The isotropic (or Galilean) plane is a projective-metric plane, where the
absolute consists of one line, absolute line ωA, and one point on that line,
absolute point ΩA. The lines through the point ΩA are isotropic lines, and
the points on the line ωA are isotropic points. Points with the same abscissa,
i.e., which lie on the same isotropic line, are called parallel points.

For two non-parallel points P1(x1, y1) and P2(x2, y2) the isotropic distance
is defined by d(P1, P2) := x2 − x1. The isotropic distance is directed. For
two parallel points P1(x1, y1) and P2(x1, y2), the isotropic span is defined by
s(P1, P2) := y2 − y1 ([4], [5]).

A triangle is called allowable if none of its sides is isotropic ([4]). If we
choose the coordinate system in a way that the circumscribed circle of an
allowable triangle ABC has the equation y = x2, and therefore its vertices
are the points A = (a, a2), B = (b, b2), C = (c, c2), where a + b + c = 0,
then we say that the triangle ABC is in the standard position, or that ABC
is a standard triangle, for short. Its sides BC, CA, and AB have equations
y = −ax − bc, y = −bx − ca, and y = −cx − ab. Denoting p := abc and
q := bc+ ca+ ab, the authors proved a number of useful equalities in [2], e.g.
a2 = bc− q, q+ 3bc = −(b− c)2, 2q− 3bc = (c−a)(a− b). To prove geometric
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facts for all allowable triangles it is sufficient to provide a proof for a standard
triangle [2].

Conics which touch the absolute line ωA at the absolute point ΩA are
circles. However, singular circles (circles of the second kind) are sets of points
which are equidistant from a given point and they consist of pairs of isotropic
lines.

In the isotropic plane we have the following formula for Brocard angle of
standard triangle ω = − 1

3q (b− c)(c− a)(a− b) ([6]).
In [6] we have proved that if Am, Bm, and Cm are the midpoints of the

sides BC,CA, and AB of the allowable triangle ABC, and A′, B′, and C ′

are points on the perpendicular bisectors of these sides such that the spans
s(Am, A

′), s(Bm, B
′), and s(Cm, C

′) are proportional to the lengths of the
sides BC,CA, and AB, then the points BC∩B′C ′, CA∩C ′A′, and AB∩A′B′

lie on a line T (see Figure 1). In the case of a standard triangle ABC, the
line T has the equation

(1.1) T . . . y = 6pt
q(2t+ 3ω)x+ q

6t (2t+ 3ω),

where t is a parameter, and ω is the Brocard angle of a standard triangle
ABC. The triangles A′B′C ′ are the so-called Kiepert triangles of the triangle
ABC, and the line T is the axis of homology of the triangle ABC and the cor-
responding Kiepert triangle A′B′C ′. In this paper we are going to determine
what curve envelopes the lines T for variable t.

2. Kiepert parabola of a triangle in the isotropic plane

Our first result concerns the curve which is an envelope of the axes of
homology of a given triangle and the corresponding Kiepert triangles in the
isotropic plane.

Theorem 2.1. Axes of homology of an allowable triangle ABC and its
Kiepert triangles, envelope a parabola P (see Figure 1), which for the standard
triangle ABC has the equation

(2.1) y2 = 4px.

The line T given by (1.1) has a point of tangency T with this parabola, where

(2.2) T = (xt, yt) =
(

q2

36pt2 (2t+ 3ω)2,
q

3t (2t+ 3ω)
)
.

Proof. The point T from (2.2) lies on the parabola with equation (2.1),
and has the polar yty = 2p(x+xt) with respect to this parabola. Substituting
the coordinates xt and yt from (2.2) into equation of this polar, and dividing
by q

3t (2t+ 3ω), equation of the polar assumes the form (1.1).



PROPERTIES OF KIEPERT PARABOLA IN THE ISOTROPIC PLANE 191

By analogy with the Euclidean case, the parabola P from Theorem 2.1
will be called the Kiepert parabola of the triangle ABC.
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Figure 1. The axis of homology T of the triangle ABC and
its Kiepert triangle A′B′C ′, Kiepert parabola P of the trian-
gle ABC, Ceva’s triangle A0B0C0 of the Steiner point S of
the triangle ABC.

Corollary 2.2. The Kiepert parabola of a standard triangle ABC has
the equation (2.1), and it has the tangent T given by (1.1) at the point T
given by (2.2) (see Figure 1).

Equation (1.1) is of the form y = kx+ l with

k = 6pt
q(2t+ 3ω) , l = q

6t (2t+ 3ω),

from which it follows that

(2.3) kl = p.

Corollary 2.3. The line given by the equation y = kx + l touches the
Kiepert parabola of a standard triangle ABC if and only if the equality (2.3)
holds.
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3. Kiepert parabola and some significant elements of a
triangle in the isotropic plane

In this section we are going to study the relationships between Kiepert
parabola and some elements of the given triangle.

Theorem 3.1. The Kiepert parabola P of an allowable triangle is in-
scribed in that triangle, i.e., it touches its sides (see Figure 1). In the case
of a standard triangle ABC, the points of tangency of parabola P with lines
BC,CA,AB are

A0 =
(
bc

a
,−2bc

)
, B0 =

(
ca

b
,−2ca

)
, C0 =

(
ab

c
,−2ab

)
.

Proof. By (2.1) and the equation y = −ax−bc of the line BC, it follows
that 4px = a2x2 + 2px + b2c2, i.e., a2x2 − 2px + b2c2 = 0 or (ax − bc)2 = 0,
with double solution x = bc

a
, and on the other hand, it follows that y2 =

−4p · y + bc

a
, i.e., y2 +4bcy+4b2c2 = 0 or (y+2bc)2 = 0, with double solution

y = −2bc.

Points A0, B0, and C0 in Theorem 3.1 coincide with vertices of the Ceva’s
triangle of the Steiner point of triangle ABC from [3, Corollary 2.7], so we
have

Corollary 3.2. Using the notations from Theorem 3.1, lines AA0, BB0,
and CC0 pass through the Steiner point S of the triangle ABC (see Figure 1).

The isotropic line x = 0, which is according to [2] the Euler line of triangle
ABC, touches parabola (2.1) at the point Φt = (0, 0), which is by [8] the
Feuerbach point of the tangential triangle AtBtCt of triangle ABC. We may
consider Φt as the vertex of parabola P. According to terminology in [4], this
point is the focus of parabola P.

Letting t → ∞, from (2.2) it follows that T =
(
q2

9p ,
2
3q
)

, and equation

(1.1) assumes the form y = 3p
q
x + q

3 , and it is by [8] the equation of the
Lemoine line of triangle ABC. With respect to the circumscribed circle of
triangle ABC given by y = x2, the point (x0, y0) has the polar line given by
y + y0 = 2x0x. By [2], for the centroid G = (x0, y0) of triangle ABC, we get
x0 = 0, y0 = −2

3q, and its polar line has the equation y = 2q
3 . Obviously, it

passes through the point of tangency T of parabola P with the Lemoine line
of triangle ABC (see Figure 2).
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Figure 2. Euler line E , Lemoine line L, Steiner axis G, or-
thic axis H of the triangle ABC, and orthic axis Ht and the
Feuerbach point Φt of the tangential triangle AtBtCt.

For t = −ω

2 , from (2.2) we obtain T =
(

4q2

9p ,−
4
3q
)

, and equation (1.1)

becomes y = −3p
2q x − 2

3q. By [8], it is the equation of the Steiner axis of
triangle ABC.

For t = −ω, equation (1.1) of the line T is y = −6p
q
x − q

6 , the point T

from (2.2) becomes T =
(
q2

36p ,−
q

3

)
, and it lies on the orthic line of triangle

ABC, which by [2] has the equation y = −q

3 . In [6], it is shown that e.g. the
vertex A′ of the Kiepert triangle A′B′C ′ is of the form

A′ =
(

−a

2 ,−
1
2(q + bc) + 1

2(b− c)t
)
.
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For t = −ω, the ordinate of A′ is

y = −1
2(q + bc) − 1

2(b− c)ω = −1
2(q + bc) + 1

6q (b− c)2(c− a)(a− b)

= − 1
6q [3q(q + bc) + (q + 3bc)(2q − 3bc)] = − 1

6q (5q2 + 6bcq − 9b2c2)

= − 1
6q [5q2 + 6(q+a2)q − 9bc(q+a2)] = − 1

6q [11q2 + 6a2q − 9(q+a2)q − 9ap]

= 1
6q (9ap+ 3a2q − 2q2),

and then A′ = A1, where

A1 =
(

−a

2 ,
1
6q (9ap+ 3a2q − 2q2)

)
.

Tangent lines of the Kiepert parabola of a triangle can be characterized in
several other geometric ways.

Theorem 3.3. Let AtBtCt be the tangential triangle of an allowable tri-
angle ABC, i.e., let the lines BtCt, CtAt, and AtBt be tangents to the circum-
scribed circle of the triangle ABC at the points A,B, and C. Let A′′B′′C ′′ be a
triangle obtained from the triangle AtBtCt by any translation in the isotropic
direction. The points BC ∩B′′C ′′, CA∩C ′′A′′, and AB ∩A′′B′′ lie on a line
T ′, which envelopes the Kiepert parabola P of triangle ABC.

Proof. In [1], it is proved that in the case of standard triangle ABC the
line T ′ has the equation

T ′ . . . y = 3p
t+ q

x+ t+ q

3 ,

where t is a parameter. By Corollary 2.3, the line T ′ touches parabola P.
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Figure 3. Visualization of the statements of Theorems 3.4
and 3.5.

Theorem 3.4. Let D,E, and F be intersections of the line T with bisec-
tors of the sides BC,CA, and AB of an allowable triangle ABC. The lines
AD, BE, and CF pass through one point P if and only if the line T touches
the Kiepert parabola of the triangle ABC (see Figure 3).

Proof. Let the line T have the equation y = kx + l. As the midpoint
of BC has the abscissa b+c

2 = − a
2 (because a+ b+ c = 0), the bisector of the

side BC has the equation x = − a
2 and we get y = l − ak

2 , and then

D =
(

−a

2 , l − ak

2

)
.
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The line given by the equation

(3.1) 3y =
(
k + 2a− 2l

a

)
x+ a2 − ak + 2l

passes through the point A = (a, a2) and through the point D because we
have (

k + 2a− 2l
a

)
a+ a2 − ak + 2l = 3a2,(

k + 2a− 2l
a

)(
−a

2

)
+ a2 − ak + 2l = 3l − 3

2ak,

and this is the line AD. Equations of lines BE and CF look analogously.
These three lines pass through a common point P under the condition

0 =

k + 2a− 2l
a

a2 − ak + 2l 1

k + 2b− 2l
b

b2 − bk + 2l 1

k + 2c− 2l
c

c2 − ck + 2l 1

= 2 ·

a− l

a
a2 − ak 1

b− l

b
b2 − bk 1

c− l

c
c2 − ck 1

.

We have(
b− l

b

)
(c2−ck) −

(
c− l

c

)
(b2−bk) = bc(c−b) + l

bc
(b3−c3) + kl

bc
(c2−b2)

= c− b

bc
[b2c2 − (b2 + bc+ c2)l + (b+ c)kl]

= −b− c

p
(bcp+ aql − a2kl),

and similarly for the other two terms, and therefore this condition becomes
(bcp+aql−a2kl)(b−c)+(cap+bql−b2kl)(c−a)+(abp+cql−c2kl)(a−b) = 0,
i.e.,
[bc(b− c) + ca(c− a) + ab(a− b)]p− [a2(b− c) + b2(c− a) + c2(a− b)]kl = 0,
and since the terms in each of the square brackets are equal to −(b − c)(c −
a)(a− b), the condition kl − p = 0 follows again.

What curve does the point P in Theorem 3.4 describe? Since l = p

k
, we obtain

k + 2a− 2l
a

= k + 2a− 2bc
k
,

a2 − ak + 2l = a2 − ak + 2p
k
,

and hence the line AD from (3.1) has the equation

3y =
(
k + 2a− 2bc

k

)
x+ a2 − ak + 2p

k
.
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It passes through the point

P =
(
k

2 ,
1
3

(
k2

2 − q + 2p
k

))
because we get(

k + 2a− 2bc
k

)
· k2 + a2 − ak + 2p

k
= k2

2 − bc+ a2 + 2p
k

= k2

2 − q + 2p
k
,

and the lines BE and CF also pass through this point. The point P describes
the curve with the parametric equations

x = k

2 , 3y = k2

2 − q + 2p
k
,

where k is a parameter. Substituting k = 2x into the second equation, we
obtain

(3.2) 3y = 2x2 − q + p

x
,

and the derived curve C is a curve of third order with the equation

(3.3) 2x3 − 3xy − qx+ p = 0.

By (3.2), this curve has an isotropic asymptote with the equation x = 0 and
an asymptotic circle with the equation

y = 2
3x

2 − q

3 .

Abscissae of intersections of the cubic C with the circumscribed circle Kc

of the triangle ABC are found by substituting y = x2 into (3.3), giving
−x3 − qx+ p = 0, i.e. (x− a)(x− b)(x− c) = 0. The solutions x = a, x = b,
and x = c show that these intersections are precisely the points A, B, and C.
Therefore we obtain

Theorem 3.5. The point P from Theorem 3.4 describes a circular cubic
circumscribed to the triangle ABC whose asymptote is the line x = 0, the
Euler line of this triangle (see Figure 3).

Theorem 3.6. Let T be a non-isotropic line that is not parallel to lines
BC,CA and AB, and let D,E, and F be its intersections with these lines.
Let D, E , and F be singular circles with centers D,E, F , which pass through
the points A,B and C. The circles D, E and F belong to a pencil of circles if
and only if the line T is tangent to the Kiepert parabola of the triangle ABC,
and in that case the common radical center S of circles D, E, F and the
circumscribed circle Kc of the triangle ABC describes its Jeřabek hyperbola.

Proof. Let the line T have the equation y = kx + l, k ̸∈ {−a,−b,−c}.
From this equation and the equation y = −ax−bc of the line BC, for abscissa
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of the point D, we get the equation (k + a)x = −(l + bc) with the solution
x = d, where

d = − l + bc

k + a
.

In addition, denoting

d′ = 2d− a = −a− 2 l + bc

k + a
,

the circle D has the equation (x− a)(x− d′) = 0, i.e.,

(x− a)
(
x+ a+ 2 l + bc

k + a

)
= 0

or

(3.4) D . . . x2 + 2 l + bc

k + a
x− a2 − 2al + p

k + a
= 0.

Equations of the circles E and F look analogously. The radical axis of any
two of these three circles is an isotropic line. Radical axis F ′ of the circles D
and E has the equation

2
(
l + bc

k + a
− l + ca

k + b

)
x = a2 − b2 + 2

(
al + p

k + a
− bl + p

k + b

)
,

which after multiplication by (k + a)(k + b) and rearrangement becomes
2[ck(b−a)+l(b−a)+c(b2−a2)]x = (k2−ck+ab)(a2−b2)+2[kl(a−b)+p(b−a)],
and after cancelling the factor b− a we obtain

2(ck + l − c2)x = c(k2 − ck + ab) + 2p− 2kl,
i.e.,

2(ck + l − c2)x = k(ck + l − c2) + 3(p− kl),
or finally,

F ′ . . . x = k

2 + 3
2 · p− kl

ck + l − c2 .

Analogously, the circles D and F have the radical axis E ′ given by

E ′ . . . x = k

2 + 3
2 · p− kl

bk + l − b2 .

These two radical axes coincide either under the condition kl = p or the
condition bk − b2 = ck − c2, i.e., (b− c)(k − b− c) = 0, or finally, k + a = 0,
which is not true. Therefore, the circles D, E , and F belong to the same pencil
subject to (2.3), which means that the line T is a tangent of the parabola P,
and then the common radical axis of these circles has the equation x = k

2 .
When kl = p, we obtain

l + bc = l + p

a
= l + kl

a
= l

a
(k + a),
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al + p = al + kl = l(k + a),
so equation (3.4) becomes

D . . . x2 + 2l
a
x− a2 − 2l = 0.

Therefore, the circle Kc with the equation y = x2 and the circle D have the
radical axis with the equation

y = −2l
a
x+ a2 + 2l.

For x = k

2 , we get

y = −kl

a
+ a2 + 2l = −p

a
+ bc− q + 2l = 2l − q,

and the common radical center of circles D, E , F , and Kc is the point

P =
(
k

2 , 2l − q

)
.

It describes a curve with parametric equations x = k

2 , y = 2l− q, from where
x(y + q) = kl, i.e. x(y + q) = p, and it is by [1] the equation of the Jeřabek
hyperbola of the triangle ABC.

The Kiepert parabola of a triangle has interesting relations with some other
curves of that triangle.

Theorem 3.7. The Jeřabek hyperbola of the tangential triangle is the po-
lar to the Kiepert parabola of the given triangle with respect to its circumscribed
circle.

Proof. With respect to the circumscribed circle, the point (x0, y0) has
the polar line with equation y + y0 = 2x0x. If (x0, y0) lies on parabola (2.1),

then x0 = y2
0

4p , and this polar has the following equation

y = y2
0

2px− y0.

Therefore, it is necessary to find the equation of the envelope of lines with
equation

(3.5) y = t2

2px− t,

where t is a parameter. The point(
2p
t+ t′

,− tt′

t+ t′

)
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lies on line (3.5) because t2 − t(t+ t′) = −tt′, and it also lies on an analogous
line with the parameter t′ instead of t. For t′ = t we get that points with
coordinates

(3.6) x = p

t
, y = −1

2 t

are points of tangency of lines with equation (3.5) with their envelope, i.e.,
(3.6) are parametric equations of this envelope. From (3.6) follows xy = −p

2 ,
and by [1, Theorem 15] this is the equation of the Jeřabek hyperbola of the
tangential triangle of triangle ABC.

Theorem 3.8. The intersections (except vertices A,B,C) of the Kiepert
hyperbola of an allowable triangle ABC with sides of its anticomplementary
triangle AnBnCn are the points of tangency of these sides with the Kiepert
parabola of triangle AnBnCn.

Proof. By [7], the Kiepert hyperbola of a standard triangle ABC has
the equation
(3.7) 3px2 + 2qxy + 2q2x− 3py − 2pq = 0,
and by [2], the line BnCn is given by y = −ax+ 2a2, which, substituted into
(3.7), for the abscissa x of the intersection yields the equation

(3p− 2aq)x2 + (4a2q + 2q2 + 3ap)x− (6a2p+ 2pq) = 0.
Because

4a2q + 2q2 + 3ap = 4(bc− q)q + 2q2 + 3bc(bc− q)
= 3b2c2 + bcq − 2q2 = (3bc− 2q)(bc+ q)
= (3bc− 2q)(2bc− a2),

6a2p+ 2pq = 2p(q + 3a2) = 2p(3bc− 2q),

and
3p− 2aq = a(3bc− 2q),

after dividing by 3bc − 2q = −(c − a)(a − b) ̸= 0, this equation becomes
ax2 + (2bc − a2)x − 2p = 0, i.e., (x − a)(ax + 2bc) = 0. That is why the
abscissa of the second intersection is −2bc

a
(with exception of the vertex A).

This point on the line BnCn has for its complementary point on the line BC,
the point with abscissa bc

a
, and this is the point A0 from Theorem 3.1.

Theorem 3.9. With respect to its circumscribed Steiner ellipse, the
Kiepert hyperbola of a triangle has the Kiepert parabola of its anticomple-
mentary triangle for a polar.
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Proof. With respect to the circumscribed Steiner ellipse which is by [8]
given by

q2x2 − 9pxy − 3qy2 − 6pqx− 4q2y + 9p2 = 0,
the point T0 = (x0, y0) has the polar T0 with the equation

2q2x0x− 9p(x0y + y0x) − 6qy0y − 6pq(x+ x0) − 4q2(y + y0) + 18p2 = 0,

i.e.,

(2q2x0 − 9py0 − 6pq)x− (9px0 + 6qy0 + 4q2)y − (6pqx0 + 4q2y0 − 18p2) = 0,

or y = kx+ l, where

k = 2q2x0 − 9py0 − 6pq
9px0 + 6qy0 + 4q2 , l = −6pqx0 + 4q2y0 − 18p2

9px0 + 6qy0 + 4q2 .

Hence, we get

l + 2q = 12pqx0 + 8q2y0 + 18p2 + 8q3

9px0 + 6qy0 + 4q2

and then

(9px0+6qy0 + 4q2)2[k(l + 2q) + 2p]
=(2q2x0−9py0−6pq)(12pqx0+8q2y0+18p2+8q3) + 2p(9px0+6qy0+4q2)2

=(54p2 + 8q3)(3px2
0 + 2qx0y0 + 2q2x0 − 3py0 − 2pq) = 0

if the point T0 lies on the Kiepert hyperbola (3.7). Therefore, the line T0
satisfies the following condition

(3.8) k(l + 2q) + 2p = 0.

Line complementary to the line T0 is the line T ′
0 with equation y = kx+l′,

for which l + 2l′ = −2q since L + 2L′ = 3G holds for L = (0, l), L′ = (0, l′)

and G =
(

0,−2
3q
)

where L and L′ are corresponding points on the lines T0

and T ′
0 lying on the isotropic line x = 0.

That is why l + 2q = −2l′ and then condition (3.8) becomes kl′ = p. By
Corollary 2.3, the line T ′

0 touches the Kiepert parabola of the triangle ABC
and then the line T0 touches the Kiepert parabola of the anticomplementary
triangle AnBnCn of the triangle ABC.

Corollary 3.10. The line with equation y = kx+ l touches the Kiepert
parabola of the anticomplementary triangle of the standard triangle ABC if
and only if (3.8) holds.
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Neka svojstva Kiepertove parabole u izotropnoj ravnini

Vladimir Volenec i Zdenka Kolar-Begović

Sažetak. U ovom radu razmatramo krivulju koja je omo-
taljka osiju homologije dopustivog trokuta i njegovog varijabilnog
Kiepertovog trokuta u izotropnoj ravnini, koju ćemo po analogiji s
euklidskim slučajem zvati Kiepertovom parabolom danog trokuta.
Izvodimo jednadžbu ove parabole i navodimo neke nove značajne
karakteristike ove krivulje koje ne vrijede u Euklidskoj ravnini.
Proučavamo veze Kiepertove parabole i Steinerove točke, tangen-
cijalnog trokuta, kao i Jeřabekove hiperbole danog trokuta.
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