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ON THE VARCHENKO DETERMINANT FORMULA FOR
ORIENTED BRAID ARRANGEMENTS

Milena Sošić

Abstract. In this paper, we first consider the arrangement of hyper-
planes and then the corresponding oriented arrangement of hyperplanes in
n-dimensional real space. Following the work of Varchenko, who studied
the determinant of the quantum bilinear form of a real configuration and
the determinant formula for a matroid bilinear form, we discuss here first
some of the main properties of the braid arrangement and then of the ori-
ented braid arrangements in n-dimensional real space. The main result of
this study is a theorem that provides an explicit formula for determining
the determinant of the matrix associated with the oriented braid arrange-
ment. The proof of this theorem is based on the results of two different
approaches. One is to determine the space of all constants in the mul-
tiparametric quon algebra equipped with a multiparametric q-differential
structure, and the other is to study the feasibility of multiparametric quon
algebras in Hilbert space.

1. Introduction

Here we show the connection between the determinant of Varchenko’s
bilinear form [15] (i.e., the Varchenko matrix) and the more explicit determi-
nant of the quantum bilinear form of the oriented braid arrangement in Rn,
which has been studied by many researchers. We will also discuss the results
of the author [12] and Meljanac-Svrtan [7], who had different approaches to
prove the same formula.

In Section 2 we will first discuss some of the main properties related to
the arrangement A of hyperplanes in the real affine space Rn, n ≥ 1 studied
by Varchenko. He assigned to each weighted arrangement A of hyperplanes in
Rn a symmetric matrix whose rows and columns are indexed by the regions of
the arrangement A, i.e., by components of the complement of the union of all
hyperplanes of the arrangement A. The entries of the Varchenko matrix are
products of the weights ai of the hyperplanes separating the respective regions,
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where to each hyperplane Hi ∈ A is associated a weight ai = a(Hi) of the
hyperplane Hi. These weights are variables in a polynomial ring. Varchenko
gave an explicit combinatorial formula for the determinant of this matrix, as
a product of terms of the form (1 −a2

L)l(L), where L passes through the edges
in intersection poset (except Rn) and l(L) denotes a computable multiplicity
of the edge L, see Theorem 2.4.

Several other works have dealt with this subject, including those of
Varchenko with Brylawski [2] or Schechtman [11] and those of Denham and
Hanlon [3], Hochstättler and Welker [6]. It should be noted that the study of
arrangements of hyperplanes is a much more complicated area of research than
is described in this article. We note that the study of hyperplane arrangements
was a continuation of the geometric study of Knizhnik-Zamolodchikov differ-
ential equations, which first appeared in conformal field theory. Briefly, in the
papers [11,15] studies are given on the cohomology of certain quantum groups
with special interest in the cohomology of one-dimensional local systems over
complements of hyperplanes in complex affine spaces with specialization to
arbitrary real affine arrangements.

Following the paper [2], in which the authors introduced a symmetric bi-
linear form of a weighted matroid, and the paper [6], in which the authors
generalized the Varchenko matrix to oriented matroids, we are concerned here
with oriented real arrangements and, in a special case, with the oriented braid
arrangement in the space Rn, n ≥ 2. Consequently, we introduce the orien-
tation of an arrangement A in Rn by choosing a unit normal vector to each
hyperplane Hi ∈ A. Then each hyperplane Hi partitions the n-dimensional
space Rn into an open half-space containing a unit normal vector, an open
half-space not containing it, and the hyperplane itself. In particular, each
hyperplane Hi can be obtained as the intersection of the closures of the
half-spaces containing Hi. Then each region is a nonempty intersection of
the corresponding open half-spaces. Therefore, we consider here two open
half-spaces H+

i ⊂ Rn\Hi and H−
i ⊂ Rn\Hi associated with the oriented hy-

perplane Hi ∈ A∗ with the weight a+
i assigned to H+

i and the weight a−
i to

H−
i . These weights are variables in a polynomial ring. We denote by A∗

an arrangement A provided with an orientation and A∗ we call an oriented
arrangement. To an oriented arrangement A∗ of hyperplanes in Rn one as-
sociates a matrix whose rows and columns are indexed by the regions D∗

i ,
1 ≤ i ≤ m of the arrangement A∗. The (D∗

i , D
∗
j )-entry of this matrix is the

product of weights of all open half-spaces containing the region D∗
i and not

containing the region D∗
j , see identity (2.10). By examining in detail the edges

L in the arrangement A and the edges L∗ in the oriented arrangement A∗ and
their associated weights aL and aL∗ , we found that the relation between them
can be expressed in the form a2

L = aL∗ , where we obtained a∗
L = a+

L∗ · a−
L∗ , see

Remark 2.7 Thus, the determinant of the matrix associated with the oriented
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arrangement A∗ can be obtained as a generalization of the determinant of the
matrix associated with the arrangement A, see Theorem 2.9 and Theorem 2.4.

In Section 3 we first describe the basic concepts of the braid arrange-
ment in Rn, denoted by Bn, and then introduce the orientation of the braid
arrangement. Then we show the relationship between the matrix associated
with the braid arrangement and the matrix associated with the oriented braid
arrangement, and their determinants. The main result of this study is Theo-
rem 3.8, which provides an explicit formula for determining the determinant
of the matrix associated with the oriented braid arrangement. The proof of
Theorem 3.8 is based on the results of two different approaches [7,12], which
are detailed below.

2. Preliminaries on arrangements

A finite set of hyperplanes in the n-dimensional real space Rn, n ≥ 1
is called a hyperplane arrangement or simply an arrangement, where a hy-
perplane is a (n− 1)-dimensional subspace of Rn, n ≥ 1 (i.e., a subspace of
codimension one).

Let A = {H1, H2, . . . ,Hk} be an arrangement consisting of k hyperplanes
Hi in Rn, where k = #A denotes the number of hyperplanes in A. A con-
nected component

(2.1) D ⊆ Rn\
⋃

1≤i≤k

Hi

in the complement of the union of all hyperplanes in A is called a region or
a chamber. The regions are open and convex. Let D(A) = {D1, D2, . . . , Dm}
be the set of all regions of A, where m = #D(A) denotes the number of
regions of A. A fundamental object associated with the arrangement A is its
intersection poset LA, which is partially ordered by reverse inclusion and is
defined as follows. The elements of LA, called edges of A, are the nonempty
intersections of subsets of hyperplanes in A, including the empty intersection,
where the space Rn can be viewed as the intersection of the empty set of
hyperplanes. Consequently, Rn is a single minimal element of LA. The poset
LA has a single maximal element, the centre of A, if and only if the intersection
of all hyperplanes in A is nonempty. An arrangement A is called centred if
LA has a single maximal element, otherwise it is called A centerless. In
the general case, LA has no single maximal element. In particular, a single
maximal element is a zero-dimensional edge called a vertex. If the center of an
arrangement A is a vertex, then A is called central, see [8,9] for more details.

We mention a very important result discovered by Zaslavsky [17]. He
proved that the number of regions of A is equal to ∥pA(−1)∥, where pA(λ)
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denotes the characteristic polynomial of A given by

(2.2) pA(λ) =
∑

t∈LA

= µ(0̂, t)λdim t.

Here µ denotes the Möbius function of LA, see also [14].
Let us briefly recall the result of Varchenko [15], which is designated as

follows. Let RA = Z[ai | 1 ≤ i ≤ k] be the polynomial ring in variables ai.

Definition 2.1. To each hyperplane Hi ∈ A is associated a commutative
variable ai = a(Hi) ∈ RA, which is called the weight of the hyperplane Hi.

Definition 2.2. The weight of an edge L ∈ LA is defined as the product
of the weights of all hyperplanes containing the edge L.

In particular, the weight of the space Rn is equal to one. Since Rn can
be viewed as the intersection of the empty set of hyperplanes, in what follows
we consider intersection poset L′

A = LA\Rn (except Rn). In other words, all
edges without Rn are treated. The arrangement of hyperplanes, where to
each hyperplane Hi is associated a particular monomial of weight ai (i.e., a
variable in a polynomial ring) is sometimes called a weighted arrangement.

Remark 2.3. Suppose that r hyperplanes Hj1 , . . . ,Hjr
∈ A are all hy-

perplanes that contain an edge L ∈ L′
A. Then

L =
⋂

1≤p≤r

Hjp
.

Thus, according to Definition 2.2, the weight of the edge L is given by

(2.3) aL =
∏

1≤p≤r

ajp
.

Let MA be the module of RA-linear combinations of regions of arrange-
ment A. Then a RA-bilinear symmetric form B in the module MA is defined
as follows
(2.4) B(Dp, Dq) =

∏
1≤i≤l

aji

where the product runs over all hyperplanes Hji
∈ A separating regions Dp

and Dq. Here we have used aji
= a(Hji

) for 1 ≤ i ≤ l and l ≤ k, where
k = #A. It is easy to see that for any two regions Dp, Dq ∈ D(A), 1 ≤
p, q ≤ m, m = #D(A) it follows B(Dp, Dq) = B(Dq, Dp) and B(Dp, Dp) = 1.
Consequently, the matrix B with entries (2.4) is a symmetric square matrix.
The matrix B is called the quantum bilinear form of the arrangement A.

Theorem 2.4. The determinant of the matrix B is given by

(2.5) det B =
∏

L∈L′
A

(1 − a2
L)l(L)
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where aL is the weight of the edge L ∈ L′
A and l(L) is a certain natural number

called the multiplicity of the edge L.

Briefly, the natural number l(L) is defined as the product of the num-
bers n(L) and p(L), where n(L) is the number of regions of the arrangement
AL = {Hi ∩ L | Hi ∈ A, L ̸⊂ Hi} induced in L, and p(L) is the number of re-
gions of the projective localization PAL such that the closures of these regions
do not intersect the hyperplane, see [11,15].

In the following we introduce the orientation of an arrangement A con-
sisting of k hyperplanes Hi in Rn. Let ni denote a unit normal vector to
a hyperplane Hi ∈ A. Then each hyperplane Hi, 1 ≤ i ≤ k divides Rn into
three parts:

1. Hi the hyperplane itself,
2. H+

i the open half-space in Rn containing ni,
3. H−

i the open half-space in Rn which does not contain ni.
The arrangement A which is provided with an orientation is denoted by A∗

and is called an oriented arrangement. We introduce the abbreviations Hεi
i ,

εi ∈ {+,−} for the corresponding open half-spaces H+
i and H−

i in Rn. It is
straightforward to check the following two properties.
(OA1) Any hyperplane Hi ∈ A∗ can be obtained as the intersection of the

closures of the half-spaces containing Hi :
Hi = Cl(H+

i ) ∩ Cl(H−
i ) for each 1 ≤ i ≤ k,

where k denotes the number of hyperplanes in A∗.
(OA2) A region of an oriented arrangement A∗ (consisting of k hyperplanes

in Rn) is a nonempty intersection⋂
1≤i≤k

Hεi
i ̸= ∅

of the corresponding open half-spaces Hεi
i ⊂ Rn\Hi, εi ∈ {+,−}.

Note that each region can be associated with the sequence (ε1, ε2, . . . , εk)
consisting of plus or minus signs. It is obvious that the length of this sequence
is equal to the number of hyperplanes in A∗. In agreement with (OA1) as
well as the predefined weight of the hyperplane, it is sufficient to define the
weight of the open half-space in Rn. Let RA∗ = Z[a+

i , a
−
i | 1 ≤ i ≤ k] be the

polynomial ring in variables aεi
i for each εi ∈ {+,−}, i ∈ {1, 2, . . . , k}.

Definition 2.5. To each open half-space Hεi
i ⊂ Rn\Hi with εi ∈ {+,−}

for all 1 ≤ i ≤ k is associated a commutative variable aεi
i ∈ RA∗ called the

weight of the open half-space Hεi
i , εi ∈ {+,−}.

Thus, the ring RA∗ is generated by two sets of variables consisting of the
weights of the open half-spaces distinguishing between the intersection of a
hyperplane in the positive and negative directions. According to Definition 2.2
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and Property (OA1), we define the weight of an edge L∗ ∈ L′
A∗ of an oriented

arrangement A∗ as follows.

Definition 2.6. The weight of an edge L∗ ∈ L′
A∗ is defined as the product

of the weights of all open half-spaces in Rn whose closures contain the edge
L∗.

Remark 2.7. The edge L ∈ L′
A from Remark 2.3 leads to the edge L∗ ∈

L′
A∗ , where the oriented arrangement A∗ descends to the arrangement A, after

forgetting orientations. Consequently, we can write

(2.6) L∗ =
⋂

1≤p≤r

(
Cl(H+

jp
) ∩ Cl(H−

jp
)
)
.

Let aL∗ be the weight of the edge L∗. Then

(2.7) aL∗ =
∏

1≤p≤r

a+
jp

· a−
jp

can be rewritten as follows

(2.8) aL∗ = a+
L∗ · a−

L∗

with
a+

L∗ =
∏

1≤p≤r

a+
jp
, a−

L∗ =
∏

1≤p≤r

a−
jp
,

where the products run over all corresponding open half-spaces whose clo-
sures contain the edge L∗. Comparing (2.3) with (2.7) and applying Property
(OA1), we find that the relation between the weights of edges L and L∗ can
be expressed in the form: a2

L = aL∗ . Thus we obtain

(2.9) a2
L = a+

L∗ · a−
L∗ .

In particular, it follows from (2.9) a2
i = a+

i a
−
i , where ai = a(Hi) denotes the

weight of the hyperplane Hi ∈ L′
A and aεi

i = a(Hεi
i ) with εi = {+,−} are the

weights of the corresponding open half-spaces Hεi
i whose closures contain the

hyperplane Hi.

Let D(A∗) = {D∗
1 , D

∗
2 , . . . , D

∗
m} be the set of all regions of A∗ and let

B∗ be the quantum bilinear form of the oriented arrangement A∗ (associated
with the arrangement A).

Proposition 2.8. The entries of B∗ are monomials of the form

(2.10) B∗(D∗
p, D

∗
q ) =

∏
D∗

p⊂H
εji
ji

, D∗
q ̸⊂H

εji
ji

a
εji
ji
, εji

∈ {+,−}

where the product is taken over all open half-spaces containing the region D∗
p

and not containing the region D∗
q .
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It is now obvious that a+
ji

̸= a−
ji

implies B∗(D∗
q , D

∗
p) ̸= B∗(D∗

p, D
∗
q ) for

p ̸= q. Clearly, B∗(D∗
p, D

∗
p) = 1. Consequently, the square matrix B∗ is not

symmetric. Note that it follows directly from (2.10) that the product of the
quantum forms B∗(D∗

p, D
∗
q ) and B∗(D∗

q , D
∗
p) is equal to the square of the

corresponding associated bilinear symmetric form B(Dp, Dq) given by (2.4).
See also two examples below. From this it follows the following theorem.

Theorem 2.9. The determinant of the matrix B∗ is given by the formula

(2.11) det B∗ =
∏

L∗∈L′
A∗

(1 − a+
L∗ · a−

L∗)l(L∗),

where a+
L∗ ·a−

L∗ is the weight of the edge L∗ ∈ L′
A∗ and l(L∗) is a certain natural

number called the multiplicity of the edge L∗.

The following two examples are intended to illustrate the relationship
between the formulas (2.5) and (2.11).

Example 2.10. Figure 1 shows an arrangement A of two points on a line
and Figure 2 illustrates the corresponding oriented arrangement A∗ of the
arrangement A. The orientations should be designated on a real line. Let us
denote by Dj = D∗

j , j = 1, 2, 3 the regions of A and A∗, respectively.

Figure 1. An arrangement of two points on a line

Figure 2. Oriented arrangement of two points on a line

Then by applying the formulas (2.5) and (2.11) we obtain that the corre-
sponding matrices B1 and B∗

1 and also their determinants are given as follows:

B1 =

 1 a1 a1a2
a1 1 a2
a1a2 a2 1

 , B∗
1 =

 1 a−
1 a−

1 a
+
2

a+
1 1 a+

2
a+

1 a
−
2 a−

2 1

 ,

det B1 =
(
1 − a2

1
)

·
(
1 − a2

2
)
, det B∗

1 =
(
1 − a+

1 a
−
1
)

·
(
1 − a+

2 a
−
2
)
.
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Example 2.11. Let A = {H1, H2} be an arrangement of two lines in a
plane as shown in Figure 3, and let A∗ be the associated oriented arrangement
as shown in Figure 4.

Figure 3. An arrangement of two lines in a plane

Figure 4. Oriented arrangement of two lines in a plane

Then the corresponding matrices B2 and B∗
2 and their determinants are

given as follows:

B2 =


1 a1 a1a2 a2
a1 1 a2 a1a2
a1a2 a2 1 a1
a2 a1a2 a1 1

 , det B2 =
(
1 − a2

1
)2 ·

(
1 − a2

2
)2
,

B∗
2 =


1 a−

1 a−
1 a

−
2 a−

2
a+

1 1 a−
2 a+

1 a
−
2

a+
1 a

+
2 a+

2 1 a+
1

a+
2 a−

1 a
+
2 a−

1 1

 ,

det B∗
2 =

(
1 − a+

1 a
−
1
)2 ·

(
1 − a+

2 a
−
2
)2
.

3. The oriented braid arrangement

In this section we study a particularly important arrangement in a real
affine space Rn, n ≥ 2, the braid arrangement, denoted by Bn, consisting of
n(n− 1)/2 hyperplanes
(3.1) Hij = {(x1, x2, . . . , xn) ∈ Rn | xi − xj = 0}, 1 ≤ i < j ≤ n.

Note that although this arrangement is centered, it is not a central arrange-
ment because its center (=the unique maximal element of LA) is the line given
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by T (A) = {(x1, x2, . . . , xn) ∈ Rn | x1 = x2 = · · · = xn}. From the definition
of the rank of an arrangement A, denoted by r(A), see [8, Definition 2.10], it
follows that the rank of the braid arrangement is equal to n− 1. We recall
briefly that the rank of an arrangement A is given by r(A) = r(T (A)), where
T (A) =

⋂
H∈A H ̸= ∅ is the single maximal element of the poset LA, called

the center of A. Thus A is an essential arrangement if and only if the center
is a vertex. In other words, an arrangement A in space Rn is essential if and
only if r(A) = r(T (A)) = n. Consequently, the braid arrangement Bn is not
an essential arrangement. In each space Rn, n ≥ 2 there is a unique braid
arrangement, denoted by Bn.

Example 3.1. In the plane R2 there is the braid arrangement B2 = {H12}
consisting of a line H12 = {(x1, x2) ∈ R2 | x1 = x2}, which is also the center
of B2.

From the definition of the reflection arrangement, see [9], it follows that
the braid arrangement is the reflection arrangement of the symmetric group
Sn. We can thus say that Bn consists of the reflecting hyperplanes, see [3].
Moreover, the regions of the braid arrangement Bn are directly connected to
Sn, i.e., to the set of all permutations of the first n natural numbers. Each
region of Bn is indexed by exactly one permutation in Sn, and conversely,
each permutation σ ∈ Sn is connected to exactly one region Pσ ∈ D(Bn) via
the correspondence

σ ↔ Pσ = {(x1, x2, . . . , xn) ∈ Rn | xσ1 < xσ2 < · · · < xσn
}.

Let σ ∈ Sn be any permutation in Sn. Two points x, y ∈ Rn lie in the same
region Pσ ∈ D(Bn) if and only if the relative orders of their coordinates are
equal. Then we can write

x, y ∈ Pσ ⇔ xσ1 < xσ2 < · · · < xσn
, yσ1 < yσ2 < · · · < yσn

.

Consequently, #D(Bn) = Card Sn = n!. We recall that #D(Bn) denotes the
number of all regions of the braid arrangement Bn. Given the notation intro-
duced above, a commutative variable aij = a(Hij) denotes the weight of the
hyperplane Hij ∈ Bn. The identity aji = aij follows directly from the identity
Hji = Hij for each 1 ≤ i < j ≤ n, n ≥ 2. Let us denote by Bn the quantum
bilinear form of the braid arrangement Bn. Then the (Pσ, Pτ )-entry of the
matrix Bn is equal to the product of all weights aij , so that the index i ap-
pears to the left of the index j in the one-line form of σ and to the right in
the one-line form of τ .

Let I(σ) = {(p, q) | p < q, σ(p) > σ(q)} be the set of inversions of the
permutation σ ∈ Sn. Then the following proposition is obtained.
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Proposition 3.2. The entries of the matrix Bn are the monomials of the
form

(3.2) Bn(Pσ, Pτ ) =
∏

(p,q)∈I(τ−1σ)

aσ(p)σ(q),

where aij = aji, for i, j distinct and aii = 1, i, j = 1, . . . , n.

Comparing (3.2) with (2.4), it is easy to see that the entries of the matrix
Bn are a special case of the entries of the Varchenko matrix.

Example 3.3. The braid arrangement B3 consists of three diagonal planes
H12, H13, H23, the line {(x1, x2, x3) ∈ R3 | x1 = x2 = x3} is the center of B3.
Then #D(B3) = 6. From the identity (3.2) it follows

B3 =


1 a23 a13a23 a12a13a23 a12a13 a12
a23 1 a13 a12a13 a12a13a23 a12a23

a13a23 a13 1 a12 a12a23 a12a13a23
a12a13a23 a12a13 a12 1 a23 a13a23
a12a13 a12a13a23 a12a23 a23 1 a13
a12 a12a23 a12a13a23 a13a23 a13 1

.

We have used here the Johnson-Trotter ordering of permutations in S3 given
by 123, 132, 312, 321, 231, 213. It is easy to check

(3.3) det B3 = (1 − a2
12)2 · (1 − a2

13)2 · (1 − a2
23)2 · (1 − a2

12a
2
13a

2
23).

Remark 3.4. The quantum bilinear form and its determinant of the braid
arrangement B2 are given by

B2 =
(

1 a12
a12 1

)
, det B2 = 1 − a2

12.

In particular, in the one-parameter case where all weights aij are equal
to q, the (Pσ, Pτ )-entry of the matrix Bn is expressed by qi(τ−1σ), where i(σ)
denotes the number of inversions of the permutation σ ∈ Sn, see [16] for more
details.

Let us introduce the orientation of the braid arrangement Bn in Rn, n ≥ 2
similar to Section 2. Then, for each 1 ≤ i < j ≤ n, we denote by

H+
ij = {(x1, x2, . . . , xn) ∈ Rn | xi > xj},

H−
ij = {(x1, x2, . . . , xn) ∈ Rn | xi < xj}.

To each open half-space H+
ij is associated a weight qij = a(H+

ij ) and to each
open half-space H−

ij is associated a weight qji = a(H−
ij ) such that qji ̸= qij for

all 1 ≤ i < j ≤ n. Thus, the matrix B∗
n is not symmetric. In what follows we

use the same notation as above. Then Proposition 3.2 can be reformulated as
follows.
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Proposition 3.5. The entries of the matrix B∗
n are the monomials of the

form

(3.4) B∗
n(Pσ, Pτ ) =

∏
(a,b)∈I(τ−1σ)

qσ(a)σ(b)

where I(τ−1σ) = {(a, b) | a < b, τ−1σ(a) > τ−1σ(b)} denotes the set of in-
versions of τ−1σ.

We consider here that qσ(b)σ(a) ̸= qσ(a)σ(b). In the special case qji = qij

for each 1 ≤ i < j ≤ n it follows that the matrix Bn arises from the matrix
B∗

n. Then the symmetric matrix Bn is derived from the corresponding non-
symmetric matrix B∗

n; compare Example 3.3 with Example 3.6.

Example 3.6. Let B∗
3 be the oriented braid arrangement associated to

the braid arrangement B3. Then we obtain that the quantum bilinear form
of the oriented braid arrangement B∗

3 is given in the form

B∗
3 =


1 q23 q13q23 q12q13q23 q12q13 q12
q32 1 q13 q12q13 q12q13q32 q12q32
q31q32 q31 1 q12 q12q32 q12q31q32
q21q31q32 q21q31 q21 1 q32 q31q32
q21q31 q21q31q23 q21q23 q23 1 q31
q21 q21q23 q21q13q23 q13q23 q13 1

,
where
(3.5) det B∗

3 = (1−q12q21)2·(1−q13q31)2·(1−q23q32)2·(1−q12q21q13q31q23q32).

To write more efficiently, we will first introduce the following abbrevi-
ations. Let Q = {l1, l2, . . . , ln} be the set of cardinality n. Then for each
2 ≤ m ≤ n we define
(3.6) (Q;m) := {T ⊆ Q | Card T = m},
where Card T denotes the cardinality of the set T . Moreover, for each set
T ∈ (Q;m) we define

(3.7) σT :=
∏

{i,j}⊂T

σij

with σij := qijqji for i, j distinct. (We may consider σii := 1, it will be
consistent with qii = 1.) It is obvious that the formula (3.7) coincides with

(3.8) σT =
∏

a̸=b∈T

qab

see eq. (4.1) in [5].

Remark 3.7. The formula (3.7) implies that the identity (3.5) can be
rewritten in the form det B∗

3 = (1−σ12)2 · (1−σ13)2 · (1−σ23)2 · (1−σ123). In
particular, det B∗

2 = 1 − σ12 for n = 2 coincides with det B2 in Remark 3.4.
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Theorem 3.8. The determinant of the quantum bilinear form B∗
n of the

oriented braid arrangement B∗
n is given by the following formula

(3.9) det B∗
n =

∏
T ∈(Q;m)
2≤m≤n

(1 − σT )(m−2)! (n−m+1)!.

Proof. The formula (3.9) has already been discussed in several articles.
We will prove Theorem 3.8 here on the basis of the author study [12], in which
the problem of determining the space of all constants in the multiparametric
quon algebra B equipped with a multiparametric q-differential structure was
studied in detail. Of particular interest in [12] is the matrix AQ, which in
the generic case (when Q is a set) plays a crucial role in computing the de-
terminant of the matrix B∗

n. We note that the more general matrices AQ for
any multiset Q = {l1 ≤ · · · ≤ ln} of cardinality n have been studied in [12],
where SnQ = {σ(l1 . . . ln) | σ ∈ Sn} the set of all permutations of the multiset
Q, was considered.

We denote by j = j1, . . . , jn, k = k1, . . . , kn any two permutations in Sn

and let g ∈ Sn satisfies the following condition
k = g.j

i.e., jg−1(p) = kp for all 1 ≤ p ≤ n. Then the
(
k, j
)
-entry of the matrix AQ

(in the generic case) is given by

(3.10) (AQ)k, j =
∏

(a,b)∈I(g)

qjb
qja

where I(g) = {(a, b) | a < b, g(a) > g(b)} denotes the set of inversions of
g ∈ Sn. Note that (3.10) can be rewritten (as an operator on a free non-
commutative algebra) as follows

(3.11) AQ ej =
∑

g∈Sn

 ∏
(a,b)∈I(g)

qjb
qja

ek


with k = g.j, where j, k ∈ Sn (see [12] and also Proposition 4.8 in [13],
and also [7], Proposition 1.6.1. (ii) in slightly different notation). Moreover,
comparision of the matrix AQ given by (3.11) with the quantum bilinear form
B∗

n of the oriented braid arrangement B∗
n, n ≥ 2 leads to the conclusion that

the matrix B∗
n is equal to the matrix AQ. Consequently, det B∗

n = det AQ. By
applying the study in [12], it is then shown that det AQ can be represented
by the identity (3.9) from Theorem 3.8.

We also emphasize that the matrix AQ (i.e., B∗
n) can be written as a

product of simpler matrices BQ,k, 2 ≤ k ≤ n given in [12] by BQ,n−k+1,
1 ≤ k ≤ n− 1, where BQ,1 = I is equal to the unit matrix I. Moreover, each
matrix BQ,n−k+1 can be expressed as a product of even simpler matrices,
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which are not considered here because they are not relevant to the following
considerations. Thus it turns out

(3.12) det BQ,n−k+1 =
∏

T ⊆Q
2≤Card T ≤n−k+1

(1 − σT )(Card T −2)! (n−Card T )!

for each 1 ≤ k ≤ n− 1, where Card T denotes the cardinality of the set T and
σT is defined by (3.8) and

(3.13) det AQ =
∏

1≤k≤n−1
det(BQ,n−k+1)

where the formula (3.9) is obtained directly.
Note that the matrix B∗

n, n ≥ 2 is a part of the study [7] by Meljanac and
Svrtan, who worked out matrix-level factorizations in the interest of the feasi-
bility of multiparametric quon-algebras in Hilbert space. The authors studied
matrices A(ν), ∥ν∥ = n, their factorizations as well as their determinants first
in the generic case and then for general ν. They proved the determinant for-
mula of the matrix A(ν), ∥ν∥ = n for generic ν. Comparing the matrix A(ν)

with the matrix AQ discussed in [12], we find that they coincide. Moreover,
in the generic case, the determinant of the matrix A(ν) given in [7, Theo-
rem 1.9.2.] can be expressed by the formula (3.9) in Theorem 3.8. So we can
assume that B∗

n = AQ = A(ν). We note that the same matrices A(ν) and AQ

were obtained in different contexts. In particular, the matrix A(ν) in [7] was
obtained in the study of the explicit Fock representation of a multiparametric
quon algebra on the free associative algebra of noncommutative polynomials
with multiparametric partial derivatives. There, the basic problem was to
compute the inverse of the matrix A(ν) both in its original form and in the
generic case, see [7, Theorem 2.2.6. and Theorem 2.2.17.]. Consequently, the
factorizations are given from the right. On the other hand, another approach
was made based on [12], where the author was motivated by the problem of
computing the constants in the multiparametric quon algebra B. Therefore,
the factorizations from the left are shown because they were more appropriate
for determining the constants in the algebra B. See also [4] for more general
factorizations in braid group algebra.

We note that there are in [7] applications of the above results to arrange-
ments of hyperplanes also to contravariant forms of certain quantum groups.
There the authors proved that Theorem 1.9.2 can be reinterpreted by Theo-
rem 3.1.3, which we reproduce here because of its importance.

Theorem 3.9 (Meljanac-Svrtan). The determinant of the quantum bilin-
ear form Bn of the arrangement An is given by the formula

(3.14) det Bn =
∏

L∈ε′(An)

(1 − a(L)2)l(L)
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where for L = {xi1 = xi2 = · · · = xik
} ∈ An,k ⊂ ε′(An) we have

a(L) =
∏

1≤a<b≤k

qiaib
, l(L) = (k − 2)! (n− k + 1)!

It should be noted that the authors argue that the formula (3.14) is more
explicit than Varchenko’s formula, see [7, Applications], which refers to non-
oriented arrangements, expressed here as (2.5) in Theorem 2.4. It is obvious
that the identity (3.14) corresponds to the identity (2.5) where a(L)2 coincides
with a2

L. Similarly, the two sets ε′(An) and L′
A denote a set of all edges of the

corresponding arrangement without Rn; we recall, l(L) is a certain natural
number called the multiplicity of edge L.

However, we would like to emphasize that the quantum bilinear form Bn

of the arrangement An given in Theorem 3.9 is compatible with the quantum
bilinear form Bn of the non-oriented braid arrangement Bn discussed above.
According to their compatibility there is a correlation between the determi-
nants of the quantum bilinear form of the arrangement and the quantum
bilinear form of the corresponding oriented braid arrangement B∗

n. Further-
more, by applying the identity (2.7) with

a+
L∗ =

∏
1≤a<b≤k

qiaib
, a−

L∗ =
∏

1≤a<b≤k

qibia
,

we obtain

(3.15) a(L)2 = a+
L∗ · a−

L∗ =
∏

1≤a<b≤k

σiaib

where we used σiaib
= qiaib

qibia
.

Let ξ′
∗ := L′

B∗
n

be a set of all edges of the oriented braid arrangement B∗
n

without Rn. Then the expression L = {xi1 = xi2 = · · · = xik
} ∈ An,k in Theo-

rem 3.9 can be treated in our notation as L∗ ∈ ξ′
∗ with L∗ = {xi1 = · · · = xim},

2 ≤ m ≤ n. From this we have concluded that Theorem 3.9 can be reinter-
preted as follows.

Theorem 3.10. The determinant of the quantum bilinear form B∗ of the
oriented braid arrangement B∗

n is given by the following formula

(3.16) det B∗
n =

∏
L∗∈ξ′

∗

(1 − a+
L∗ · a−

L∗)l(L∗)

where for L∗ = {xi1 = · · · = xim
} we get

a+
L∗ · a−

L∗ =
∏

1≤a<b≤m

σiaib
, l(L∗) = (m− 2)! (n−m+ 1)!

Theorem 3.10 is directly related to Theorem 2.9, where the product in
formula (3.16) runs over all subsets T ∈ (Q;m), 2 ≤ m ≤ n with Card Q = n;
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see also the identities (3.6) and (3.9). Theorem 3.10 then corresponds to The-
orem 3.8 and shows the connection between Theorem 3.8 and Theorem 2.9.
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O Varchenkovoj determinanti za orijentirane pletenične aranžmane

Milena Sošić

Sažetak. U ovom radu prvo razmatramo aranžmane hiper-
ravnina, a zatim odgovarajuće orijentirane aranžmane hiper-
ravnina u n-dimenzionalnom realnom prostoru. Slijedeći rad
od Varchenka, koji je proučavao determinantu kvantne bilin-
earne forme realne konfiguracije i formulu za izračunavanje de-
terminante bilinearne forme matroida, ovdje prvo raspravljamo
o nekim od glavnih svojstava pleteničnih aranžmana (diskrimi-
nantnih aranžmana), a zatim orijentiranih pleteničnih aranžmana
(orijentiranih diskriminantnih aranžmana) u n-dimenzionalnom
realnom prostoru. Glavni rezultat ove studije je teorem ko-
jim se iskazuje eksplicitna formula za odredivanje determi-
nante matrice pridružene orijentiranom pleteničnom aranžmanu.
Dokaz ovog teorema temelji se na rezultatima dva različita pris-
tupa. Jednog utemeljenog na odredivanju prostora svih konstanti
u višeparametarskoj kuonskoj algebri snabdjevenoj višeparam-
etarskom q-diferencijalnom strukturom, a drugog na proučavanju
reprezentabilnosti višeparametarskih kuonskih algebri u Hilber-
tovom prostoru.
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