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NULL-TRANSLATION SURFACES WITH CONSTANT
CURVATURES IN LORENTZ-MINKOWSKI 3-SPACE

Ivana Filipan, Željka Milin Šipuš and Ljiljana Primorac Gajčić

Abstract. Translation surface is a surface formed by two curves
moving along each other. In this paper we analyze this kind of surfaces
in Lorentz-Minkowski 3-space R3

1, which is the smooth manifold R3 en-
dowed by a flat Lorentzian pseudometric. Translation surfaces in R3

1 can
be classified with respect to the causal character of their generating curves
(spacelike, timelike or null (lightlike)). We are specially interested in trans-
lation surfaces generated by at least one null curve, which we refer to
as null-translation surfaces. In the present paper we determine all null-
translation surfaces of constant mean curvature and prove that the only
null-translation surfaces of constant Gaussian curvature are cylindrical sur-
faces.

1. Introduction

In physics, especially kinematics, translation surfaces are well known.
They are a special case of Darboux surfaces, which are surfaces generated
by the one-parametric subgroup of space motions of a curve, and therefore
admit a parametrization of the form f(u, v) = A(v)α(u) + β(v), where A(v)
is an orthogonal matrix. Spatial curves α and β are called generating curves
(generatrices) of a Darboux surface.

In the case when matrix A is the identity matrix, a Darboux surface
is called a translation surface. In most research done on this topic, it is
assumed that translation surfaces are generated by two planar curves, usually
lying in orthogonal planes e.g. [1, 6, 13, 14], or at least one planar curve
[8]. This is also the case when a considered surface is a function graph, e.g.
z(x, y) = f(x) + g(y). On the other hand, surfaces are additionally analyzed
due to different constraints, such as that of constant curvatures, Gaussian or
mean, e.g. [5, 8–10]. Recently, classification of translation surfaces generated
by spatial curves in Euclidean space and with constant Gaussian curvature
has been completed [3], while in the Lorentz-Minkowski space it is still an
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open problem. The theory of non-null curves in the Lorentz-Minkowski space
is analogous to the theory of curves in Euclidean space, while for null curves
there are striking differences. Motivated by this, we investigate the analogous
problem for translation surfaces generated by at least one null curve. We refer
to these surfaces as null-translation surfaces.

Concerning minimal surfaces, a well-known result from Euclidean space
states that every such surface can be represented as a translation surface whose
generating curves are null curves, that is, as a null-translation surface. How-
ever, generating curves of minimal surfaces in Euclidean space are not real
curves, whereas in Lorentz-Minkowski space, where the same result can be
stated, they are real [12]. In [11] minimal helicoidal surfaces were described,
they are translation surfaces obtained by translating two null helices with
spacelike (resp. timelike, cubic) axis, one along the other. Worth to mention
that regarding to their formation as helicoidal surfaces, their generating curves
(the so-called cross sections) are cusped cycloids (epi- and hypocycloids), ei-
ther of Euclidean or Lorentzian type, and a Neill parabola, respectively.

In present paper, following the method presented in [8], we consider gen-
eratrices as graphs of two functions with respect to the axis coordinate of R3

1
and determine all null-translation surfaces of constant mean curvature. Fur-
thermore, by using the theory of complex analysis, we prove that there are
no surfaces of constant Gaussian curvature other then cylindrical ones.

2. Preliminaries

The 3-dimensional Lorentz-Minkowski space, denoted by R3
1, is the

smooth manifold R3 endowed with a pseudo-scalar product defined by

x · y = x1y1 + x2y2 − x3y3,

where x = (x1, x2, x3), y = (y1, y2, y3). In R3
1, a vector x can be of the follow-

ing causal character: spacelike if x · x > 0 or x = (0, 0, 0), timelike if x · x < 0
or null (lightlike, isotropic) if x ·x = 0 and x ̸= (0, 0, 0). The pseudo-norm of a
vector x is defined as the real number ∥x∥ =

√
|x · x|. The Lorentzian cross-

product of vectors x and y is defined by x× y = (x2y3 − x3y2, x3y1 − x1y3,
x2y1 − x1y2). In R3

1 the following counterpart of Lagrange identity holds

(2.1) ∥x× y∥2 = (x · y)2 − (x · x)(y · y).

The causal character of a regular curve c : I → R3
1 is locally determined by its

velocity vector ċ(u).
For surfaces we have the following. Let S be a smooth immeresed surface

in R3
1 given by a local parametrization f : U → R3

1, f = f(u, v), where U ⊂
R2 is an open set. A surface S in R3

1 is said to be spacelike, timelike or
lightlike if the induced metric on S is positive definite, indefinite or degenerate,
respectively. For an immersed spacelike (resp. timelike) surface, the unit
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normal vector field n = fu×fv

∥fu×fv∥ is timelike (resp. spacelike) field, where fu

and fv are derivatives of f with respect to parameters u and v, respectively.
The Gaussian curvature of S is in local coordinates given by

(2.2) K = ϵ
LN −M2

EG− F 2 ,

whereas for the mean curvature we have

(2.3) H = ϵ

2
LG− 2FM + EN

EG− F 2 ,

where E,F and G are coefficientes of the first fundamental form, L,M and
N are coefficientes of the second fundamental form and ϵ = n · n = ±1, see
[7].

3. Translation surfaces in R3
1

Consider a translation surface parametrized by

(3.1) f(u, v) = α(u) + β(v), u, v ∈ R,

where α and β are generating curves such that α̇ and β̇ are linearly inde-
pendent, i.e. α̇(u) × β̇(v) ̸= 0, (derivatives with respect to the respective
parameter are denoted by dots). With respect to the causal character of
generatrices, we differ three types of translation surfaces in R3

1:
i) both generatrices are non-null,
ii) only one generatrix is null,
iii) both generatrices are null curves.

The first fundamental form of a surface parametrized by (3.1) is

I = α̇(u)2du2 − 2α̇(u)β̇(v)dudv + β̇(v)2dv2,

and a surface of the case (ii), resp. case (iii) is obviously a timelike surface.
Since the theory of non-null curves in Lorentz-Minkowski space is analogous to
the theory of curves in Euclidean space, we are specially interested in surfaces
of a case (ii) and a case (iii), which we call the null-translation surfaces.

3.1. Null-translation surfaces with constant mean curvature. Let S be a sur-
face with parametrization of the form (3.1), whereby α is a curve of any
causal character, that is, α can be a spacelike, timelike or null curve,
while β is a null curve. Locally, a curve α can be considered as a graph
of two functions with respect to the axis coordinate of R3

1, so we assume
α(u) = (α1(u), α2(u), u) for some differentiable functions α1 and α2. No-
tice that we can take these functions up to an additive constant which
only changes the surface by a translation. Analogously, null curve β can
be parametrized by β(v) = (β1(v), β2(v), v), whereby functions β1 and β2
satisfy β̇1(v)2 + β̇2(v)2 = 1. Therefore, we can assume β̇1(v) = cosφ(v) and
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β̇2(v) = sinφ(v), for some differentiable function φ, [7]. In a such parametriza-
tion, coefficients of the first fundamental form of a surface S are

E = fu · fu = α̇2
1 + α̇2

2 − 1,
F = fu · fv = α̇1 cosφ+ α̇2 sinφ− 1,
G = fv · fv = cos2 φ+ sin2 φ− 1 = 0.

For the normal vector field of a surface S, by (2.1) it holds n= α̇× β̇

∥α̇× β̇∥
= α̇× β̇

|α̇ · β̇|
,

so the coefficients of the second fundamental form are

L = fuu · n = α̈1α̇2 − α̈1 sinφ− α̈2α̇1 + α̈2 cosφ
|α̇1 cosφ+ α̇2 sinφ− 1|

,

M = fuv · n = 0,

N = fvv · n = −φ̇(α̇1 cosφ+ α̇2 sinφ− 1)
|α̇1 cosφ+ α̇2 sinφ− 1|

= ∓φ̇.

Since a surface S is a timelike surface, n is a spacelike vector and ε = 1, so
the mean curvature of a surface S is given by

(3.2) H = EN

−2F 2 = − (α̇2
1 + α̇2

2 − 1) · (∓φ̇)
2(α̇1 cosφ+ α̇2 sinφ− 1)2 .

Obviously H = 0, if E = 0 or N = 0. If E = 0, i.e. when α is also a null
curve, surface S is generated by two null curves, which is a known result, [12].
If N = φ̇ = 0, i. e. when curve β is a null line, a surface S is a cylindrical
surface with null rulings.

Let us now assume H = λ, λ ∈ R \ {0}. Then the equation (3.2) can be
rewritten as

(3.3) α̇2
1 + α̇2

2 − 1
(α̇1 cosφ+ α̇2 sinφ− 1)2 = 2λ

±φ̇
.

We will determine the conditions on curves α and β in order to be H = const.
by considering equivalent case when Hu = Hv = 0.

First we consider the derivative of the expression (3.3) with respect to
parameter u and after simplification, we obtain
(3.4)
(α̇1α̈1 + α̇2α̈2)(α̇1 cosφ+ α̇2 sinφ−1)− (α̇2

1 + α̇2
2 −1)(α̈1 cosφ+ α̈2 sinφ) = 0,

what can be rewritten as
(3.5) sinφ(α̇1α̇2α̈1 −α̇2

1α̈2 +α̈2)+cosφ(α̇1α̇2α̈2 −α̇2
2α̈1 +α̈1) = α̇1α̈1 +α̇2α̈2.

In order to make expressions more readable, we introduce A = α̇1α̇2α̈1 −
α̇2

1α̈2 +α̈2 and B = α̇1α̇2α̈2 −α̇2
2α̈1 +α̈1. Now, if we divide (3.5) by

√
A2 +B2,

by assumption
√
A2 +B2 ̸= 0, it can be written as

(3.6) sin(φ(v) + ψ(u)) = α̇1α̈1 + α̇2α̈2√
A2 +B2

.
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Therefore, the function φ satisfies

(3.7) φ(v) = arcsin
( α̇1α̈1 + α̇2α̈2√

A2 +B2

)
− ψ(u).

Since the equation (3.7) holds for every v and u, and the righthand side is
the function of u only, we conclude that function φ is constant, which is
contradiction with the assumption H ̸= 0, i.e. φ̇ ̸= 0. Therefore it follows√
A2 +B2 = 0, i.e.

α̇1α̇2α̈1 − α̇2
1α̈2 + α̈2 = 0,

α̇1α̇2α̈2 − α̇2
2α̈1 + α̈1 = 0.

The obtained system of differential equations can be written as[
α̇1α̇2 1 − α̇2

1
1 − α̇2

2 α̇1α̇2

] [
α̈1
α̈2

]
=
[

0
0

]
.

Since α is a non-null (otherwise H = 0), the determinant ∆ of the system
matrix is

∆ = (α̇1α̇2)2 − (1 − α̇2
2)(1 − α̇2

1) = α̇2
1 + α̇2

2 − 1 ̸= 0.
Hence, the matrix is regular, giving α̈1 = 0 and α̈2 = 0, i.e. α is a non-null
line.

Notice that since H is constant it also needs to hold Hv = 0. When we
substitute condition α̈1 = α̈2 = 0, i.e. α̇1 = c1, α̇2 = c2, for c1, c2 ∈ R in (3.2)
and consider derivative with respect to v, after simplification, we obtain
(3.8) φ̈(c1 cosφ+ c2 sinφ− 1) − 2φ̇2(−c1 sinφ+ c2 cosφ) = 0.
Expression (3.8) can be rewritten as

φ̈

φ̇
= 2φ̇(−c1 sinφ+ c2 cosφ)

c1 cosφ+ c2 sinφ− 1 ,

giving
ln(|φ̇|) = ln |C(c1 cosφ+ c2 sinφ− 1)2|, C ∈ R.

Therefore, the function φ is the solution of a separable ordinary differential
equation
(3.9) φ̇ = C(c1 cosφ+ c2 sinφ− 1)2.

For the function φ, we obtain

φ = 1
C(c2

1+c2
2)

(
cos(C1 + φ)

(C2
2 −1)(sin(C1+φ)−C2) −

2C2 tan−1
(

1−C2 tan( C1+φ
2 )√

C2
2 −1

)
(C2

2 − 1)3/2

)
,

where C1 = arcsin(c1/
√
c2

1 + c2
2), C2 = 1/

√
c2

1 + c2
2. Notice that if we substi-

tute (3.9) for φ̇ in (3.2), we can conclude that constant C in (3.9) is equal to
2H/(c2

1 + c2
2 − 1).
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Finally, we analyze a special case, when a non-null line α is parametrized
by the arc-length parameter. In that case, we have α̇2

1 + α̇2
2 − 1 = ±1. For a

timelike straight line α, we have α̇1 = α̇2 = 0 and equation (3.9) is a first order
ordinary differential equation of the form φ̇ = 2λ. So function φ is given by
φ(v) = 2λv + C, C ∈ R and without loss of generality, we can assume C = 0
and for curve β we obtain β(v) =

(
1

2λ sin(2λv),− 1
2λ cos(2λv), v

)
. Therefore,

we can conclude the following.

Theorem 3.1. The only null-translation surfaces of constant mean cur-
vature H are:

1. surfaces with null generatrices, whereby H = 0,
2. the cylindrical surface with non-null base curve and null rulings,

whereby H = 0,
3. surfaces with parametrization

f(u, v) = (c1u+ a1, c2u+ a2, u) +
( ∫

cosφ(v)dv,
∫

sinφ(v)dv, v
)

where a1, a2, c1, c2 ∈ R, c2
1 + c2

2 ̸= 1 and φ is a solution of the differ-
ential equation

φ̇ = 2λ
(c2

1 + c2
2 − 1)(c1 cosφ+ c2 sinφ− 1)2, λ ∈ R \ {0},

whereby H = λ.
In a special case, when u is the arc-length parameter of a timelike

curve α, the surface is parametrized by

f(u, v) = (c1, c2, u) +
( 1

2λ sin(2λv),− 1
2λ cos(2λv), v

)
.

Corollary 3.2. Every null-translation surface of constant mean curva-
ture H = λ, λ ∈ R \ {0}, generated by a timelike straight line is congruent to
a surface parametrized by

f(u, v) = (a1, a2, u) +
( 1

2λ sin(2λv),− 1
2λ cos(2λv), v

)
, a1, a2 ∈ R.

Proof. If a curve α is a timelike straight line, there is a positive space
isometry that maps a curve α to a straight line α̃ parallel to z axis. Without
loss of generality, we can assume that α̃ is parametrized by α̃(u) = (a1, a2, u).
Now by the special case of Theorem 3.1, we obtain the given parametrization.

Let us point out that instead of considering curves as graphs of functions
with respect to z axis, we could consider them with respect to x axis (or y axis
analogously). Then curve α is parametrized by α(u) = (u, α1(u), α2(u)) and
null curve β by β(v) = (v, β1(v), β2(v)), so we can assume β̇1(v) = sinhφ(v)
and β̇2(v) = coshφ(v). All previously presented theory can be easily adapted
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for such parametrizations of curves α and β, so we can state the following
theorem.

Theorem 3.3. Every null-translation surface of constant mean curvature
H ̸= 0 allows a parametrization of the form

f(u, v) = (u, c1u+ a1, c2u+ a2) +
(
v,

∫
sinhφ(v)dv,

∫
coshφ(v)dv

)
where a1, a2, c1, c2 ∈ R, c2

1 − c2
2 ̸= −1 and φ is a solution of the differential

equation

φ̇ = ± 2λ
(1 + c2

1 − c2
2) (1 + c1 sinhφ− c2 coshφ)2, λ ∈ R \ {0},

whereby H = λ.
In a special case, when u is the arc-length parameter of a spacelike curve

α, the surface is parametrized by

f(u, v) = (u, c1, c2) +
(
v,

1
2λ cosh(2λv), 1

2λ sinh(2λv)
)
.

In case when generating curve α is a spacelike straight line, we can, with-
out loss of generality, consider α as a straight line parallel to x axis and
parametrized by α(u) = (u, a1, a2). Analogously as in Corollary 3.2, by The-
orem 3.3, we obtain the following statement.

Corollary 3.4. Every null-translation surface of constant mean curva-
ture H = λ, λ ∈ R \ {0}, generated by a spacelike straight line is congruent
to a surface parametrized by

f(u, v) = (u, a1, a2) +
(
v,

1
2λ cosh(2λv), 1

2λ sinh(2λv)
)
, a1, a2 ∈ R.

Remark 3.5. Curve β from Corollary 3.2, resp. Corollary 3.4, is a gen-
eralized null helix with timelike, resp. spacelike axis, [4]. Notice that the
causal character of curve α corresponds to the causal character of an axis of
a generalized helix.

Example 3.6. By Corollary 3.2, we obtain that a null-translation surface
with H = 1 generated by timelike straight line (Figure 1 left), is parametrized
by

f1(u, v) = (0, 0, u) +
(1

2 sin(2v),−1
2 cos(2v), v

)
.

By Corollary 3.4, we obtain that a null-translation surface with H = 1 gen-
erated by spacelike straight line (Figure 1 right), is parametrized by

f2(u, v) = (u, 0, 0) +
(
v,

1
2 cosh(2v), 1

2 sinh(2v)
)
.
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Figure 1. Null-translation surface with constant mean cur-
vature H = 1 generated by timelike straight line (left) and
by spacelike straight line (right). The non-null generatrix ap-
pears in blue color and the null generatrix in green color.

3.2. Null-translation surfaces with constant Gaussian curvature. Further, we
investigate surfaces of constant Gaussian curvature. For the considered sur-
faces, formula for Gaussian curvature reduces to

(3.10) K = (α̈1α̇2 − α̈1 sinφ− α̈2α̇1 + α̈2 cosφ)(±φ̇)
(α̇1 cosφ+ α̇2 sinφ− 1)3 .

Obviously, K = 0 for φ̇ = 0, and β is a null line, or when α̈1α̇2 − α̈1 sinφ
−α̈2α̇1 + α̈2 cosφ = 0. In the latter case, from linear independence of func-
tions sin x and cosx it follows α̈1 = 0 and α̈2 = 0, giving α is a line.

Further, we analyze conditions for considered surfaces to have constant
Gaussian curvature K = µ, µ ∈ R \ {0}. In that case, expression (3.10) can
be rewritten as

(3.11) α̈1α̇2 − α̈1 sinφ− α̈2α̇1 + α̈2 cosφ
(α̇1 cosφ+ α̇2 sinφ− 1)3 = ±µ

φ̇
.

By taking the derivative of (3.11) with respect to parameter u, and after
simplification, we obtain

− 3 ...
α 1α̇2 + 3α̇1

...
α 2 + cos(2φ) (−6α̈1α̈2 + ...

α 1α̇2 + α̇1
...
α 2) + cosφ

(
−6α̈2

1α̇2

+6α̇1α̈1α̈2 + 2α̇1
...
α 1α̇2 − 2 ...

α 2 − 2α̇2
1

...
α 2
)

+ sin(2φ)
(
3α̈2

1 − 3α̈2
2 − α̇1

...
α 1

+α̇2
...
α 2) + sinφ

(
−6α̈1α̇2α̈2 + 6α̇1α̈

2
2 + 2 ...

α 1 + 2 ...
α 1α̇

2
2 − 2α̇1α̇2

...
α 2
)

= 0.

(3.12)
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Deriving (3.12) with respect to parameter v gives

(
sinφ

(
3α̈2

1α̇2 + ...
α 2α̇

2
1 − ...

α 1α̇1α̇2 − 3α̇1α̈1α̈2 + ...
α 2
)

+ sin(2φ) (− ...
α 1α̇2

+ 6α̈1α̈2 − ...
α 2α̇1) + cos(2φ)

(
3α̈2

1 − ...
α 1α̇1 − 3α̈2

2 + ...
α 2α̇2

)
+ cosφ

( ...
α 1α̇

2
2

+ ...
α 1 − 3α̈1α̇2α̈2 + 3α̇1α̈

2
2 − ...

α 2α̇1α̇2
))

· φ̇ = 0.

(3.13)

Obviously φ̇ ̸= 0 and due to linear independence of functions sin x, sin 2x,
cosx and cos 2x, coefficients in (3.13) are all necessary equal to 0, which can
be written as

−α̇1α̇2 1 + α̇2
1

α̇2 α̇1
−α̇1 α̇2

1 + α̇2
2 −α̇1α̇2

[ ...
α 1...
α 2

]
=


−3α̈2

1α̇2 + 3α̇1α̈1α̈2
6α̈1α̈2

−3α̈2
1 + 3α̈2

2
3α̈1α̇2α̈2 − 3α̇1α̈

2
2.

 .
In order to be more efficient in solving the previous system, we introduce
complex functions to prove that functions α̇1 and α̇2 are constants. From
second and third equation, rewritten as[

α̇1 −α̇2
α̇2 α̇1

] [ ...
α 1...
α 2

]
= 3

[
α̈2

1 − α̈2
2

2α̈1α̈2

]
,

it follows (α̇1 + iα̇2)( ...
α 1 + i ...

α 2) = 3(α̈1 + iα̈2)2. Now by integrating, we ob-
tain
(3.14) α̈1 + iα̈2 = C(α̇1 + iα̇2)3, C ∈ C,

(3.15) (α̇1 + iα̇2)−2 = −2Cu+D, D ∈ C.
Further, by adding forth equation multiplied by α̇1 and first equation multi-
plied with α̇2 gives

α̇1
...
α 1 + α̇2

...
α 2 = −3(α̇2

1α̈
2
2 − 2α̇1α̈1α̇2α̈2 + α̈2

1α̇
2
2)

= −3(α̇1α̈2 − α̈1α̇2)2 = −3
(
Im((α̇1 − iα̇2)(α̈1 + iα̈2))

)2
.

On the other hand,

α̇1
...
α 1 + α̇2

...
α 2 =Re((α̇1 − iα̇2)( ...

α 1 + i ...
α 2))=3

Re
(
((α̇1 − iα̇2)(α̈1 + iα̈2))2)

α̇2
1 + α̇2

2
.

Using (3.14), we obtain

−Im(C(α̇2
1 + α̇2

2)(α̇1 + iα̇2)2)2 =
Re
((
C(α̇2

1 + α̇2
2)(α̇1 + iα̇2)2)2 )

α̇2
1 + α̇2

2
,

i.e.
−(α̇2

1 + α̇2
2)Im(C(α̇1 + iα̇2)2)2 = Re(C2(α̇1 + iα̇2)4)

=
(
Re(C(α̇1 + iα̇2)2)

)2 −
(
Im(C(α̇1 + iα̇2)2)

)2
.
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By (3.15), we obtain

(3.16)
(1 − | − 2Cu+D|−1)

(
Im(C(−2Cu+D)−1)

)2 =
(
Re(C(−2Cu+D)−1)

)2
.

If we assume C ̸= 0, then multiplying (3.16) by |u−D/2C|4 gives(
1 − 1

|D − 2Cu|

)(
Im D

2C

)2
=
(
u− Re D2C

)2
,

which squared can be rewritten as

(3.17) (D− 2Cu)(D̄− 2C̄u)
((
u− Re D2C

)2
−
(

Im D

2C

)2)2
−
(

Im D

2C

)2
= 0.

Expression (3.17) needs to hold for every u ∈ R, but as a real polynomial of
degree six, it holds for at most six values of u ∈ R. By this contradiction,
we conclude that C equals zero and from (3.14) follows that α̇1 and α̇2 are
constant functions, so α is a line, and S is a cylindrical surface. By previous
consideration we proved the following.

Theorem 3.7. Only null-translation surfaces of constant Gaussian cur-
vature are cylindrical surfaces.

Remark 3.8. Parametrization of timelike minimal surfaces as transla-
tion surfaces with null generatrices allows that every result obtained for that
kind of null-translation surfaces can be adopted to timelike minimal surface.
Therefore, as a special case of null-translation surfaces in Theorem 3 (when
both generatrices are null curves), we reproved that there are no timelike
minimal surfaces with non-vanishing constant Gaussian curvature, [2].
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Nul-translacijske plohe konstantne zakrivljenosti u
Lorentz-Minkowskijevom 3-prostoru

Ivana Filipan, Željka Milin Šipuš i Ljiljana Primorac Gajčić

Sažetak. Translacijska ploha je ploha nastala povlačenjem
jedne krivulje duž druge. U ovom radu su analizirane takve
plohe u Lorentz-Minkowskijevom 3-prostoru R3

1, što je glatka
mnogostrukost R3 s definiranom Lorentzovom pseudometrikom.
Translacijske plohe u R3

1 se mogu klasificirati s obzirom na
kauzalni karakter krivulja koje generiraju plohu (prostorni, vre-
menski ili nul (svjetlosni)). Posebna pažnja je posvećena plo-
hama generiranim s barem jednom nul krivuljom, koje nazi-
vamo nul-translacijskim plohama. U radu su odredene sve
nul-translacijske plohe konstantne srednje zakrivljenosti te je
dokazano da su cilindrične plohe jedine nul-translacijske plohe
konstantne Gaussove zakrivljenosti.
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