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THE (LARGEST) LEBESGUE NUMBER AND ITS
RELATIVE VERSION

VERA ToONIC

ABSTRACT. In this paper we compare different definitions of the
(largest) Lebesgue number of a cover U for a metric space X. We also
introduce the relative version for the Lebesgue number of a covering fam-
ily U for a subset A C X, and justify the relevance of introducing it by
giving a corrected statement and proof of the Lemma 3.4 from [BL07], in-
volving A-quasi homothetic maps with coefficient R between metric spaces
and the comparison of the mesh and the Lebesgue number of a covering
family for a subset on both sides of the map.

1. INTRODUCTION

In any basic course on point-set topology, one is usualy introduced to the
notion of a Lebesgue number of an open cover for a (non-empty) compact
metric space, in the form of Lebesgue covering lemma, which is commonly
given in one of the two following versions:

LEMMA 1.1 (Lebesgue covering lemma, Version 1). ([Hu66, Thm.IV.5.4],
[Kel75], [Dug78], [Eng89]) For every open cover U of a compact metric space
X, there exists a real number A > 0 such that each open ball of radius A
has to be contained in some element of U. That is, the family of open balls
{B(z,\) | ® € X} is a refinement of U. Any such X\ is referred to as a
Lebesgue number of the cover U.

LEMMA 1.2 (Lebesgue covering lemma, Version 2). ([Hu66, Cor.IV.5.6],
[Mun75]) For every open cover U of a compact metric space X, there exists
a real number X > 0 such that any subset A of X with diam A < X has to
be contained in some element of U. Any such X is referred to as a Lebesgue
number of the cover U.

REMARK 1.3. Note that in Version 2, the strict inequality diam A < A is
often replaced by diam A < A (see, for example, [Ung94], [Cool5]).
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It is easy to see that the statements from Version 1 and Version 2 above
are equivalent: any A\ satisfying Version 1 will appear among the numbers
) satisfying the requirement of Version 2, and for a A from Version 2, any
AE (O, %) will satisfy the Version 1 requirement.

But our intention here is to discuss what could be referred to as the
largest Lebesgue number of a cover U for a metric space X, which is a notion
often used in asymptotic dimension theory. However, note that calling it “the
largest” may be a little misleading, since “the largest” is often associated with
the word “maximal”. And we shall see that this number can be defined using
supremum, as well as a combination of inf and sup of certain sets of values
(see Definitions 2.1, 2.7 and 2.9 below), and there are cases when supremum
exists, while the maximum does not (see Example 2.6 below). So perhaps it
would be more accurate to call it the superior Lebesque number, rather than
the largest one, but let us just call it the Lebesgue number.

In any case, we are going to discuss the notion of the Lebesgue number
for a cover U of a (non-empty) metric space X, where the cover U is not
necessarily open, the space X is not necessarily compact, and the number
itself, marked by L(U), can take the values from [0,00) U {oo}. Moreover,
we shall introduce a relative version of the Lebesgue number, which works
for a (non-empty) subset A of X and takes into account whether A C UU or
A = UU (see Definition 3.2 below). Then we intend to show a result (Lemma
4.5, which is a correction of [BLO7, Lemma 3.4], and also [BS07, Lemma
12.2.3]) that illustrates the importance of having this relative version of the
Lebesgue number for subsets.

2. DEFINITION(S) OF THE LEBESGUE NUMBER

As a motivation for introducing our general definition, let us recall that
one way of proving Lemma 1.1 (see, for example, the proof of Theorem
5.26 in [Kel75]), goes as follows. Take any open cover U of a compact
metric space X (such that U does not contain X itself), reduce it to a fi-
nite subcover {Uy,...,U,}, and then define a function f : X — [0,00) by
f(z) := max{dist(z, X \ U;) | ¢ = 1,...,n}, which is continuous on X. Then
f(X) is a compact subset of positive real numbers, so it has a positive mini-
mum, which we can take as a Lebesgue number A\ we are seeking (i.e., every
open ball B(z, \) is contained in some element of i).

Generalizing this approach for a metric space X which need not be com-
pact, and a cover U for X which need not be open, we can replace the func-
tion f written above by the function L(U,-) : X — [0,00) U {oco} given by
LU, z) := supdist(x, X \ U), which is > 0 (it can be = 0, depending on

Ueu

the choice of U), and then we can define the Lebesgue number of U as the
infimum of all L(U,x) taken over all x € X. That is, we have the following
definition:
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DEFINITION 2.1 ([BS07], [BLO7]). LetU be a cover of a non-empty metric
space X, i.e., X =UU. Then we define

(2.1) LU):= inf L(U,z), where L(U,z) := sup dist(z, X \ U).
z€X veu

This number L(U) is called the Lebesgue number of U.

In [BSO7], this definition is initially given for open covers U of X, but it
is used on any covers of metric spaces, especially in the context of asymptotic
dimension (asdim). Let us state one of the equivalent definitions for asdim
here.

DEFINITION 2.2 ([BS07], [BDO08]). For a metric space X # 0, asdim X
is the minimal n € NU {0} such that for every d > 0, there is a uniformly

bounded cover U of X with multiplicity < n + 1 and the Lebesgue number
LU) > d.

Since the relevant covers U from Definition 2.2 will have large L(U), it
will not matter whether these covers are open or not. Also, the requirement
for covers to be uniformly bounded (i.e., the diameters of all sets in the cover
to be bounded above by the same positive number) will mean that if X is
unbounded, the Lebesgue number will not be co. In general, if we want the
Lebesgue number of a cover U of X to be finite, we need to assume that no
member of U equals X, since otherwise dist(x, X \ X) = dist(z,0) = oo, so
LU) = oc.

On the other hand, Definition 2.1 is allowing L(i) to be 0, however unde-
sirable this may be, as this can happen for a cover U of a non-compact metric
space X, whether U is open or not. Clearly, if we take i = {[n,n + 1] | n € Z}
as a cover of R, then L(U) = 0. Or:

EXAMPLE 2.3. If X = (0, 1) with the restriction of the standard Euclidean
metric, and U = {(1,1) | n € N>}, then for any x € (0,1), we have L(U, z) =
sup{z — = [ n € N>p and > <z} =z, s0 L) =inf{z | z € (0,1)} = 0.

n

REMARK 2.4. There is a notion of a Lebesgue space, which is a metric
space having the property that every open cover of it has a (positive) Lebesgue
number, taking the definition of a Lebesgue number from either Lemma 1.1 or
Lemma 1.2 (see, for example, [GM98]). But we are not discussing Lebesgue
spaces in this paper.

Considering how we arrived at Definiton 2.1 above, it is not surprising
that the following is true:

LEMMA 2.5. Let X be a metric space, and let U be a cover of X with the
Lebesgue number L(U) > 0. Then for each r € (0, L(U)) and any x € X, the
open ball B(x,r) has to be contained in some element of U, that is, the family
of open balls {B(z,r) | x € X} is a refinement of U.
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PRrROOF. Since L(U) = infyex LU, ), from r € (0, L(U)) it follows that
0 <r < LU,z), for all z € X. Let us fix a random = € X. From r <
L(U,x) = supyey dist(x, X \ U) it follows that there is a U, € U such that
r < dist(x, X \ U,) = inf.cx\v, d(w, 2). If D := dist(z, X \ U,), then for each
z € X\ U, we have that d(x, z) > D. Note that z € X \ U, implying d(z, z) >
D is equivalent to saying that, whenever y € X is such that d(z,y) < D, it
follows that y € U,, i.e., B(z, D) C U,. Therefore B(x,r) C B(x,D) C U,.
0

Let us point out that the radius r from Lemma 2.5 cannot be equal to
L(U) in general, as is shown in the next example.

EXAMPLE 2.6. For X = R? with the standard Euclidean metric, and its
cover by open balls i = {B(z,1—1) | z € R%, n € N>,}, we have that for all
x € X, LU, z) =sup{l — % | n € N>o} =1, so L(U) = 1, but no open ball
with radius 1 is contained in any element of .

Also note that B(z,0) = {y € X | d(z,y) < 0} = 0, so we could allow
r =0 in Lemma 2.5, though it would not be informative.

Regarding Lemma 2.5, we can also consider whether, for a metric space X
and its cover U, the following number is equal to our L() from Definition 2.1:

DEFINITION 2.7. Let U be a cover of a non-empty metric space X. Then
we define

LRad(u) = lgﬁ'( LRad(uax)v where
(2.2) LpaaU,x) :=sup {r >0 | B(z,r) CU, for someU € U}.

First note that the definition of Lg.q(U) only makes sense for covers U
such that, for every € X, there is some r, > 0 such that B(z, ;) is contained
in some U € U. So we could require any cover U we work with to have this
property, or simply ask for a cover U in Definition 2.7 to be open. Let us now
state the following lemma, comparing L(U) and Lg.q(U), for open covers:

LEMMA 2.8. Let X be a metric space and let U be an open cover of X.
Then L(U) = LRad(Z/{)'

PROOF. First note that, since U is an open cover for X, then for each
x € X we have both L(U,x) > 0 and Lgaq(U,x) > 0. This is because for
x € X there is an open set U € U containing it, so there is an r > 0 such that
B(z,r) C U, which is equivalent to dist(z, X \ U) > r. Let us fix a random
zeX.

If we take any r € (0, L(U, x)), using the same argument as in the proof
of Lemma 2.5 we get that B(x,r) C U,, for some U, € U, which means
that all elements of (0, L(U,x)) belong to the set R, := {r > 0 | B(z,r) C
U, for some U € U}, i.e., LU, x) = sup (0, L(U,x)) < supRs; = Lraa(U, x).
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On the other hand, if we take any R € R, then there exists Ur € U such
that B(x, R) C Ug, which is equivalent to saying that dist(z, X \ Ug) > R, so
LU, x) = supy gy dist(z, X \ U) > R. Thus L(U,x) > supRy = Lraa(U, ).

Therefore L(U,x) = Lrqa(U,x), for every x € X, and the claim follows.

O

Since Definition 2.1 gives us L(U/) which is not as sensitive to the choice
of covers as Lrqq(U) is, we shall keep our focus on L(U).

Another approach to introducing the Lebesgue number of a cover for a
metric space would be to give a definition suggested by Lemma 1.2, as it was
done by G. Bell and A. Dranishnikov in [BD08]. We will call their version
Lpiam(U), and define it here (with a slight adjustment in the wording, with
respect to the originaly stated definition):

DEFINITION 2.9. Let U be a cover of a non-empty metric space X. Then
we define

LpiamU) :=sup{D >0 | for every A C X with diam A < D,
(2.3) we have A C U for some U € U}.

For the correspondence between Lpjom (U) and L(U), we can prove the
following:

LEMMA 2.10. Let X be a metric space and let U be a cover of X. Then
L(u) < LDia'rn(u) < 2. L(u)

PROOF. Let U be a cover of X (U need not be open). To begin with,
suppose that L(U) > 0. Then by Lemma 2.5, for any p € (0, L(i{)) and any
xz € X, the open ball B(z,p) is contained in some U, , € U. Let us fix an
r € (0, L(U)). If we take any A C X with diam A < r, then for any = € A we
have d(x,y) < r, Vy € A, ie., A C B(z,r) (where B(x,r) is the closed ball
centered at x with radius r). But note that, for our » < L(U) there exists an
e > 0 such that r +& < L(U), so we have A C B(z,7) C B(x,r+¢) C Upic s,
for some U, 4¢ » € U. Therefore r € D, where

D:={D >0 for every A C X with diam A < D, A C U for some U € U}.
Thus we have (0, L(U)) C (0,sup D), that is, L(U) < Lpiam(U).

On the other hand, suppose that Lp;qm(U) = supD > 0, and take any
D € (0,Lpiam(U)). For a random z € X, from diam B(z, 2) < D we get
that there exists a Up , € U such that B(z, 2) C Up,, so X\ B(z, 2) D X'\
Up,s, which implies dist(z, X \ Up,,) > dist(z, X \ B(z, £)) > L. Therefore
LU, z) = supy ey dist(z, X \ U) > £, for all z € X, which means L(U) =
infyex L(U, ) > 2, and the last inequality is true for all D € (0, Lpiam(U)),
giving us L(U) > LD#‘(M)



236 V. TONIC

Finally, if one of L(U) or Lp;em(U) is equal to 0, so must the other be,
since assuming the contrary would give us a contradiction with one of the
inequalities above. a

REMARK 2.11. From Lemma 2.8 and Lemma 2.10 it follows that, for an
open cover U of X, we have

Lrea(UU) < Lpiam(U) < 2- Lraa(U).

Let us also note here that Lemma 2.10 helps us understand that, as far
as Definition 2.2 for asymptotic dimension is concerned, using L(U) (as in
[BS07]) or Lpiam(U) (as in [BDO8]) as definition of the Lebesgue number of
U does not make a difference for asdim X.

3. THE RELATIVE LEBESGUE NUMBER FOR A COVERING FAMILY OF A
SUBSET

Before we introduce the Lebesgue number with respect to subsets (i.e.,
subspaces) of a metric space, we need some additional terminology, which was
also used in [CHT20).

DEFINITION 3.1. If X # 0 is a set, and A is any non-empty subset of
X, we say that a family U of subsets of X is a covering family of A in X if
ACUl.

Note that U being a covering family of A in X is equivalent to |4 being
a cover of A, where U|4 = {UNA | U € U}, ie., A = UU|4. Clearly, any
cover of X is also a covering family of any subset of X (including X itself).
Also note that if we require a covering family U of A to be an open covering
family, this will mean that all U € U are open in the ambient space X. The
word cover is often used in literature for both A = U/ and A C UU, but
we find making the distinction between a cover and a covering family helpful.
We are now ready to introduce the relative version of the Lebesgue number
for covering families of subsets of X.

DEFINITION 3.2. If A # 0 is a subset (i.e., a subspace) of a metric space
X, then the Lebesgue number of a covering family U of A in the ambient
space X is defined as

LX (u7 A) = ;22 LX (Z/{, .T),

(3.1) where Lx (U, x) := sup dist(z, X \ U).
veu
Note that Lx (U, x) from Definition 3.2 is the same as L(U, x) from Defi-
nition 2.1 (though our U here need not cover the entire X), but we wanted to
emphasize the ambient space by adding the index. Also note that for A = X
we have

Lx(u,X) = lgiLx(u,fL') = L(U),
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that is, in the case A = X we recover the Definition 2.1 of the Lebesgue
number of a cover U of X. Here is a lemma comparing the notion of L(U)
with various appropriate relative versions.

LEMMA 3.3. When U is a cover of a metric space X and A C B C X,
then

(3.2) LU) = Lx U, X) < Lx(U,A) < LpU|p, A) < LaU] 4, A).

The middle and the rightmost inequalities are also true for a covering family
U of Ain X.

PrOOF. L(U) = Lx(U,X) < Lx(U, A) is immediate from the definitions.
For the middle and the rightmost inequality (whether U is a cover of X, or a
covering family of A in X), note that for U € U we have A\U C B\U C X\U,
and therefore dist(xz, A\ U) > dist(x, B\ U) > dist(z, X \ U) for all x € A,
U € U. Passing to the supy gy yields La(U|a,x) > Lp(U|p,x) > Lx(U,x)
for all x € A, so the middle and the rightmost inequalities follow after applying
infg;@(. O

It is easy to show that in the situation of Lemma 3.3, the inequalities
can be strict. Let us see an example of this for the middle and the rightmost
inequalities, for a covering family of a subset of X.

EXAMPLE 3.4. Let X = R3 with Euclidean metric, A = [0,1]° x {0},
B = R? x {0}, and take U = {U;,Us} to be the open covering family of A
in X with Uy = (=5, 5) x (=5, 3) x (=55) and Uz = (5, §) x (=5, %) x
(—%, %) Then L4 (U|a, A) = infaca supy gy dist(a, A\U) = %, LgU|p,A) =

inf,e 4 supy ey dist(a, B\U) = i, while Lx (U, A) = inf,e 4 supy ¢y dist(a, X'\

Now let us recall the notion of mesh for a family of subsets in a metric
space.

DEFINITION 3.5. If X is a metric space and U is any family of subsets of
X (in particular, a cover of X ), then we define the mesh of U by meshf :=
sup{diamU | U € U}.

Clearly, if A C X and U is a cover of X, we have
(3.3) meshf > mesh(U|4).
Also note that if ¢’ is a subcover of the cover U of X, then it is easy to see
that

LU") < L(U) and meshU’ < meshid.

Concerning the relation between the Lebesgue number and the mesh for

the same cover, we observe that while the Lebesgue number (from Def. 2.1)

is well-behaved with respect to subspaces in the sense of Lemma 3.3, it is not
bounded above by mesh, as is shown by the following:
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EXAMPLE 3.6. Let X be a finite set with discrete metric, i.e., the metric
is given by d(z,y) = 1 for x # y. Let U be the open cover of X by singletons.
Then meshYf = 0 and L(U) = 1. Thus in general the Lebesgue number of a
cover is not bounded above by the mesh of that cover, and this issue cannot be
resolved by passing to a subcover (since the singleton cover does not contain
any proper subcovers).

On the other hand, we leave it to the reader to check that, if I/ is an open
cover for a connected metric space (such that no element of U is equal to entire
X), then for every x € X, we have L(U,2z) < meshl{, so here the Lebesgue
number L(U) is bounded above by mesh/. But this is not inherited by all
subspaces, since we can certainly choose a subspace of a connected space X
that looks like the space described in Example 3.6. That is, even if we start
from a cover U of X such that L) < meshlf, it may still happen for a
subspace B C X that L(U|g) > mesh(U|p). So even if a cover U of a space X
has L(U) bounded by meshi/, we inevitably run into problems when we want
to control the Lebesgue number of restrictions of a given cover to subspaces,
in terms of the corresponding meshes.

Thus we should mention here that there is an alternative definition of
the Lebesgue number which has a built-in control by mesh (see, for example,
[Buy05], with notation adjusted to ours):

DEFINITION 3.7. Let X be a metric space. For an (open) cover U of X
we define

LU, z) := min{ L(U, z), mesh(U, z)},
(3.4) where mesh(U, z) ;= sup{diamU | z € U € U},

and L(U, x) is the same as in Definition 2.1. Then we define the Lebesgue
number of U of the second kind by

LU) = inf LU, z).

reX

It is clear that meshl/ = sup,.x mesh(U,z), and that from Z(U,x) <
mesh (U, z) we get L(U) < meshd.

As in Definition 3.2, for any A C X we could also introduce the relative
version Lx (U, A) = inf,c a4 L(U, z) of Definition 3.7, but because of the built-
in mesh control, the Lebesgue number of the second kind fails to satisfy the
inequality (3.2) from Lemma 3.3 (the inequality(3.3) gets in the way). Since
the inequality (3.2) is often useful in proofs of theorems concerning asymptotic
dimension, as well as other types of dimension, the Lebesgue number of the
second kind will not be discussed further in this paper.



THE LEBESGUE NUMBER AND ITS RELATIVE VERSION 239

4. AN APPLICATION OF THE RELATIVE LEBESGUE NUMBER

In this section, we would like to show the advantage of introducing the
notion of the relative Lebesgue number, which comes with the precise notation
for the subset, its covering family and the ambient space. We will show that,
using the precise notation, we will be able to give a more precise, corrected
formulation and the proof of Lemma 3.4 from [BL07], which is also, in a
slightly different form, Lemma 12.2.3 in [BS07]. The original statement of
this lemma reads as follows (considering Z and Z’ are metric spaces):

LEMMA 4.1 ([BLO7, Lemma 3.4]). Leth : Z — Z' be a A\—quasi-homothetic
map with coefficient R. Let V C Z, let U be an open covering' of h(V), and
let U = h=(U). Then:

(i) %R-meshu < meshlf < AR -meshi/;

(ii) sR-LU) < LU) < AR- L(U), where L(U) is the Lebesgue number of
U as a covering of V.

In [BS07], the same lemma appears as Lemma 12.2.3, with part (ii)
changed as follows:

(ii’) LU) < AR - L(U), where L(U) is the Lebesgue number of U as a
covering of V.

This lemma is not proven in either of the sources, as it is considered to be
a direct consequence of definition of a quasi-homothetic map. So let us first
recall the following definition:

DEFINITION 4.2. For some A > 1 and R > 0, a map h : A — B between
metric spaces is called A—quasi-homothetic with coefficient R provided that

1
(4.1) XR-dA(al,ag) < dB(h(al),h(ag)) < /\R~d,4(a1,a2), Val,ageA.

In particular, any such map is continuous and injective.

Now to go back to the statement of Lemma 4.1, the problem with it is
the phrase “U is an open covering of h(V')”, which is open to interpretation
regarding the ambient space for h(V) (which is not mentioned in [BLO7] nor
in [BSO07]). This ¢ could be an open cover of h(V) in (V) (i.e. h(V) = UU),
or more generally, U could be an open covering family of A(V) in h(Z), or
even more generally an open covering family of h(V) in Z'.

When this lemma is used to prove Theorem 1.1 of [BL0O7] (which is also
Theorem 12.2.1 of [BS07]), it turns out it is used for ¢ being an open covering
family of h(V') in Z’. Therefore, after adjusting for our notation, the precise
statement of Lemma 4.1, as used in [BLO7], is:

Inot mentioned in which ambient space
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LEMMA 4.3 (Lemma 4.1, stated precisely). Let h: Z — Z' be a A—quasi-
homothetic map with coefficient R. Let V.C Z, let U be an open covering
family of W(V') in Z', and let U = h=1(U). Then:

(i) %R-meshu < meshlf < AR -meshld, and

But note that the right side inequality of (i) and the left side inequality
of (ii) of Lemma 4.3 are incorrect, which is easily shown by examples, like the
following one.

EXAMPLE 4.4. Take R? and R3 with the Euclidean metric on both, and

let h : R? — R3 be the embedding h(z1,z2) = (z1,22,0), which is a 1-

quasi-homothetic map with coefficient 1. Let V = [0, 12 C R% LetU =

{Ur = (-39 x (53 x (5:5).02=(1.3) x (-1.3) x (-5,8)} be

an open covering family of A(V) = [0,1]? x {0} in R3. Then U = h=1(U)
3

N ”

U = (—5:3) x (=1, 3) .02 = (3, 7) x (=1, 1)}, so meshtd = /3 +
meshif = /3 + 1+ 1 and mesh U/ £ 1-1-meshU. Also,
1
Lz(U,V)=Lg:(U, V)= inf supdist((z1,22),R*\U) = -, and
(z1,22)EV Uy 4
. . 1
Ly (U, h(V))=Lgs (U, h(V))= inf sup dist ( (z1,22,0),R3\U)==.
@ V) =Iaeh(V)= | inf | up dist ((e1,20, 0B\ D) =5

Therefore L -1 Ly(U,V) & Lz (U, (V).

We should note here that the version of Lemma 4.1 published in [BS07]
as Lemma 12.2.3 omits the wrong part of the inequality in part (ii), while the
issue with part (i) remains. In any case, the story of Lemma 4.1 shown so
far illustrates the importance of introducing detailed notation for the relative
Lebesgue number (which includes a covering family, a set to which it is applied
and the ambient space for it all), as well as being careful with statements
involving them. Now we are ready to state the corrected, precise version of
Lemma 4.1, and prove it, noting that in it, ¢/ is an open covering family of
h(V') in the ambient space h(Z). The proof of this lemma, once it is stated
correctly, is indeed a consequence of Definition 4.2 for a quasi-homothetic
map.

LEMMA 4.5. Leth: Z — 7' be a A—quasi-homothetic map with coefficient
R. Let V C Z, let U be an open covering family of h(V) in h(Z), and let
U=h"2U)={hYU) | Uecl}. Then:
(i) %R-meshu < meshlf < AR -meshlf, and
(i) 1R-Lz(U,V) < LyzyU,h(V)) < AR- Lz (U, V).
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PROOF. First note that h : Z — Z’ is injective, so h taken as a function

. Z — h(Z) is bijective. Also, h is continuous, so 4 = h~1(U) is an open
covering family of V in Z. Therefore there is a bijective correspondence
between elements of U(C h(Z)) and U(C Z): each U from U corresponds to

U = h™*(U) from U, and h(U) = U, that is, h(i) = U. Now, for (i):

meshif = sup diam U = sup  sup dz (b1,bs)
veud UeU bybyelU
= sup sup  dz/(b1,b2)
h(U)ehU) bi,baeh(U)

(4.1)
=sup sup dz(h(a1),h(az)) < sup sup AR-dz(ai,as)
Ueld ai,a2€eU UeU ay,a2€U
= AR - sup diamU = AR - mesh /.
Ueld

The other inequality for mesh is proven analogously. For (ii):

LU, h(V)) = inf Lyp(U,b inf dist 4/ (b, h(Z)\ U
h(z)( s h(V)) bel}ILl(V) h(z)( ) = belil(v) glég istz/ (b, h(Z)\ U)

= inf su dist U
M@ER(V) hyenw) z/(h(a), h(Z) \ h(U))
= inf sup distz (h(a),h(Z\U))
a€ceV Ueu

— inf £ dg(h(a),h
Jnf sup meH%\U z'(h(a), h(x))

(4.1)
> .
>l sy SRl

1
= XR : aHel\f/ [s}légdistz(a,Z \U)

1 ) 1
= XR . anel‘f/LZ(Z/{,a) = XR~LZ(Z/I,V).
The other inequality for the Lebesgue number is proven analogously. 0

REMARK 4.6. Let us note here that the issues with Lemma 4.1 (i.e.,
[BLO7, Lemma 3.4], and also [BS07, Lemma 12.2.3]) cause a gap in the original
proof of Theorem 1.1 of [BLO7] (also Theorem 12.2.1 of [BS07]). But the
theorem in question can be proven using Lemma 4.5, i.e., the corrected version
of Lemma 4.1, together with some other corrections, shown to the author of
this paper by Nina Lebedeva in private correspondence.
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Najveéi Lebesgueov broj i njegova relativna verzija

Vera Tonié

SAZETAK. U ovom ¢lanku usporedujemo razlic¢ite definicije
najveéeg Lebesgueovog broja za pokriva¢ U metrickog prostora
X. Takoder uvodimo relativnu verziju najvecéeg Lebesgueovog
broja za pokrivajué¢u familiju & podskupa A C X, te obrazlazemo
vaznost uvodenja ove relativne verzije predstavljanjem isprav-
ljenog iskaza i dokaza za Lemu 3.4 iz [BL07], koja govori o A-kvazi
homoteti¢nim preslikavanjima s koeficijentom R izmedu metrickih
prostora, te sadrzi usporedbu za mesh i za najveéi Lebesgueov
broj pokrivajuée familije za podskup s obje strane preslikavanja.
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